1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/uuid.h> 26 #include <linux/xarray.h> 27 #include <linux/file.h> 28 #include <linux/lockdep.h> 29 30 struct module; 31 struct request_queue; 32 struct elevator_queue; 33 struct blk_trace; 34 struct request; 35 struct sg_io_hdr; 36 struct blkcg_gq; 37 struct blk_flush_queue; 38 struct kiocb; 39 struct pr_ops; 40 struct rq_qos; 41 struct blk_queue_stats; 42 struct blk_stat_callback; 43 struct blk_crypto_profile; 44 45 extern const struct device_type disk_type; 46 extern const struct device_type part_type; 47 extern const struct class block_class; 48 49 /* 50 * Maximum number of blkcg policies allowed to be registered concurrently. 51 * Defined here to simplify include dependency. 52 */ 53 #define BLKCG_MAX_POLS 6 54 55 #define DISK_MAX_PARTS 256 56 #define DISK_NAME_LEN 32 57 58 #define PARTITION_META_INFO_VOLNAMELTH 64 59 /* 60 * Enough for the string representation of any kind of UUID plus NULL. 61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 62 */ 63 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 64 65 struct partition_meta_info { 66 char uuid[PARTITION_META_INFO_UUIDLTH]; 67 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 68 }; 69 70 /** 71 * DOC: genhd capability flags 72 * 73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 74 * removable media. When set, the device remains present even when media is not 75 * inserted. Shall not be set for devices which are removed entirely when the 76 * media is removed. 77 * 78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 79 * doesn't appear in sysfs, and can't be opened from userspace or using 80 * blkdev_get*. Used for the underlying components of multipath devices. 81 * 82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 83 * scan for partitions from add_disk, and users can't add partitions manually. 84 * 85 */ 86 enum { 87 GENHD_FL_REMOVABLE = 1 << 0, 88 GENHD_FL_HIDDEN = 1 << 1, 89 GENHD_FL_NO_PART = 1 << 2, 90 }; 91 92 enum { 93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 95 }; 96 97 enum { 98 /* Poll even if events_poll_msecs is unset */ 99 DISK_EVENT_FLAG_POLL = 1 << 0, 100 /* Forward events to udev */ 101 DISK_EVENT_FLAG_UEVENT = 1 << 1, 102 /* Block event polling when open for exclusive write */ 103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 104 }; 105 106 struct disk_events; 107 struct badblocks; 108 109 enum blk_integrity_checksum { 110 BLK_INTEGRITY_CSUM_NONE = 0, 111 BLK_INTEGRITY_CSUM_IP = 1, 112 BLK_INTEGRITY_CSUM_CRC = 2, 113 BLK_INTEGRITY_CSUM_CRC64 = 3, 114 } __packed ; 115 116 struct blk_integrity { 117 unsigned char flags; 118 enum blk_integrity_checksum csum_type; 119 unsigned char tuple_size; 120 unsigned char pi_offset; 121 unsigned char interval_exp; 122 unsigned char tag_size; 123 }; 124 125 typedef unsigned int __bitwise blk_mode_t; 126 127 /* open for reading */ 128 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0)) 129 /* open for writing */ 130 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1)) 131 /* open exclusively (vs other exclusive openers */ 132 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2)) 133 /* opened with O_NDELAY */ 134 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3)) 135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */ 136 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4)) 137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */ 138 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5)) 139 /* return partition scanning errors */ 140 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6)) 141 142 struct gendisk { 143 /* 144 * major/first_minor/minors should not be set by any new driver, the 145 * block core will take care of allocating them automatically. 146 */ 147 int major; 148 int first_minor; 149 int minors; 150 151 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 152 153 unsigned short events; /* supported events */ 154 unsigned short event_flags; /* flags related to event processing */ 155 156 struct xarray part_tbl; 157 struct block_device *part0; 158 159 const struct block_device_operations *fops; 160 struct request_queue *queue; 161 void *private_data; 162 163 struct bio_set bio_split; 164 165 int flags; 166 unsigned long state; 167 #define GD_NEED_PART_SCAN 0 168 #define GD_READ_ONLY 1 169 #define GD_DEAD 2 170 #define GD_NATIVE_CAPACITY 3 171 #define GD_ADDED 4 172 #define GD_SUPPRESS_PART_SCAN 5 173 #define GD_OWNS_QUEUE 6 174 175 struct mutex open_mutex; /* open/close mutex */ 176 unsigned open_partitions; /* number of open partitions */ 177 178 struct backing_dev_info *bdi; 179 struct kobject queue_kobj; /* the queue/ directory */ 180 struct kobject *slave_dir; 181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 182 struct list_head slave_bdevs; 183 #endif 184 struct timer_rand_state *random; 185 atomic_t sync_io; /* RAID */ 186 struct disk_events *ev; 187 188 #ifdef CONFIG_BLK_DEV_ZONED 189 /* 190 * Zoned block device information. Reads of this information must be 191 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this 192 * information is only allowed while no requests are being processed. 193 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue(). 194 */ 195 unsigned int nr_zones; 196 unsigned int zone_capacity; 197 unsigned int last_zone_capacity; 198 unsigned long __rcu *conv_zones_bitmap; 199 unsigned int zone_wplugs_hash_bits; 200 spinlock_t zone_wplugs_lock; 201 struct mempool_s *zone_wplugs_pool; 202 struct hlist_head *zone_wplugs_hash; 203 struct workqueue_struct *zone_wplugs_wq; 204 #endif /* CONFIG_BLK_DEV_ZONED */ 205 206 #if IS_ENABLED(CONFIG_CDROM) 207 struct cdrom_device_info *cdi; 208 #endif 209 int node_id; 210 struct badblocks *bb; 211 struct lockdep_map lockdep_map; 212 u64 diskseq; 213 blk_mode_t open_mode; 214 215 /* 216 * Independent sector access ranges. This is always NULL for 217 * devices that do not have multiple independent access ranges. 218 */ 219 struct blk_independent_access_ranges *ia_ranges; 220 }; 221 222 /** 223 * disk_openers - returns how many openers are there for a disk 224 * @disk: disk to check 225 * 226 * This returns the number of openers for a disk. Note that this value is only 227 * stable if disk->open_mutex is held. 228 * 229 * Note: Due to a quirk in the block layer open code, each open partition is 230 * only counted once even if there are multiple openers. 231 */ 232 static inline unsigned int disk_openers(struct gendisk *disk) 233 { 234 return atomic_read(&disk->part0->bd_openers); 235 } 236 237 /** 238 * disk_has_partscan - return %true if partition scanning is enabled on a disk 239 * @disk: disk to check 240 * 241 * Returns %true if partitions scanning is enabled for @disk, or %false if 242 * partition scanning is disabled either permanently or temporarily. 243 */ 244 static inline bool disk_has_partscan(struct gendisk *disk) 245 { 246 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) && 247 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 248 } 249 250 /* 251 * The gendisk is refcounted by the part0 block_device, and the bd_device 252 * therein is also used for device model presentation in sysfs. 253 */ 254 #define dev_to_disk(device) \ 255 (dev_to_bdev(device)->bd_disk) 256 #define disk_to_dev(disk) \ 257 (&((disk)->part0->bd_device)) 258 259 #if IS_REACHABLE(CONFIG_CDROM) 260 #define disk_to_cdi(disk) ((disk)->cdi) 261 #else 262 #define disk_to_cdi(disk) NULL 263 #endif 264 265 static inline dev_t disk_devt(struct gendisk *disk) 266 { 267 return MKDEV(disk->major, disk->first_minor); 268 } 269 270 /* blk_validate_limits() validates bsize, so drivers don't usually need to */ 271 static inline int blk_validate_block_size(unsigned long bsize) 272 { 273 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 274 return -EINVAL; 275 276 return 0; 277 } 278 279 static inline bool blk_op_is_passthrough(blk_opf_t op) 280 { 281 op &= REQ_OP_MASK; 282 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 283 } 284 285 /* flags set by the driver in queue_limits.features */ 286 typedef unsigned int __bitwise blk_features_t; 287 288 /* supports a volatile write cache */ 289 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0)) 290 291 /* supports passing on the FUA bit */ 292 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1)) 293 294 /* rotational device (hard drive or floppy) */ 295 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2)) 296 297 /* contributes to the random number pool */ 298 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3)) 299 300 /* do disk/partitions IO accounting */ 301 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4)) 302 303 /* don't modify data until writeback is done */ 304 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5)) 305 306 /* always completes in submit context */ 307 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6)) 308 309 /* supports REQ_NOWAIT */ 310 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7)) 311 312 /* supports DAX */ 313 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8)) 314 315 /* supports I/O polling */ 316 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9)) 317 318 /* is a zoned device */ 319 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10)) 320 321 /* supports PCI(e) p2p requests */ 322 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12)) 323 324 /* skip this queue in blk_mq_(un)quiesce_tagset */ 325 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13)) 326 327 /* bounce all highmem pages */ 328 #define BLK_FEAT_BOUNCE_HIGH ((__force blk_features_t)(1u << 14)) 329 330 /* undocumented magic for bcache */ 331 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \ 332 ((__force blk_features_t)(1u << 15)) 333 334 /* stacked device can/does support atomic writes */ 335 #define BLK_FEAT_ATOMIC_WRITES_STACKED \ 336 ((__force blk_features_t)(1u << 16)) 337 338 /* 339 * Flags automatically inherited when stacking limits. 340 */ 341 #define BLK_FEAT_INHERIT_MASK \ 342 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \ 343 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \ 344 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE) 345 346 /* internal flags in queue_limits.flags */ 347 typedef unsigned int __bitwise blk_flags_t; 348 349 /* do not send FLUSH/FUA commands despite advertising a write cache */ 350 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0)) 351 352 /* I/O topology is misaligned */ 353 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1)) 354 355 /* passthrough command IO accounting */ 356 #define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2)) 357 358 struct queue_limits { 359 blk_features_t features; 360 blk_flags_t flags; 361 unsigned long seg_boundary_mask; 362 unsigned long virt_boundary_mask; 363 364 unsigned int max_hw_sectors; 365 unsigned int max_dev_sectors; 366 unsigned int chunk_sectors; 367 unsigned int max_sectors; 368 unsigned int max_user_sectors; 369 unsigned int max_segment_size; 370 unsigned int physical_block_size; 371 unsigned int logical_block_size; 372 unsigned int alignment_offset; 373 unsigned int io_min; 374 unsigned int io_opt; 375 unsigned int max_discard_sectors; 376 unsigned int max_hw_discard_sectors; 377 unsigned int max_user_discard_sectors; 378 unsigned int max_secure_erase_sectors; 379 unsigned int max_write_zeroes_sectors; 380 unsigned int max_hw_zone_append_sectors; 381 unsigned int max_zone_append_sectors; 382 unsigned int discard_granularity; 383 unsigned int discard_alignment; 384 unsigned int zone_write_granularity; 385 386 /* atomic write limits */ 387 unsigned int atomic_write_hw_max; 388 unsigned int atomic_write_max_sectors; 389 unsigned int atomic_write_hw_boundary; 390 unsigned int atomic_write_boundary_sectors; 391 unsigned int atomic_write_hw_unit_min; 392 unsigned int atomic_write_unit_min; 393 unsigned int atomic_write_hw_unit_max; 394 unsigned int atomic_write_unit_max; 395 396 unsigned short max_segments; 397 unsigned short max_integrity_segments; 398 unsigned short max_discard_segments; 399 400 unsigned int max_open_zones; 401 unsigned int max_active_zones; 402 403 /* 404 * Drivers that set dma_alignment to less than 511 must be prepared to 405 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 406 * due to possible offsets. 407 */ 408 unsigned int dma_alignment; 409 unsigned int dma_pad_mask; 410 411 struct blk_integrity integrity; 412 }; 413 414 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 415 void *data); 416 417 #define BLK_ALL_ZONES ((unsigned int)-1) 418 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 419 unsigned int nr_zones, report_zones_cb cb, void *data); 420 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 421 sector_t sectors, sector_t nr_sectors); 422 int blk_revalidate_disk_zones(struct gendisk *disk); 423 424 /* 425 * Independent access ranges: struct blk_independent_access_range describes 426 * a range of contiguous sectors that can be accessed using device command 427 * execution resources that are independent from the resources used for 428 * other access ranges. This is typically found with single-LUN multi-actuator 429 * HDDs where each access range is served by a different set of heads. 430 * The set of independent ranges supported by the device is defined using 431 * struct blk_independent_access_ranges. The independent ranges must not overlap 432 * and must include all sectors within the disk capacity (no sector holes 433 * allowed). 434 * For a device with multiple ranges, requests targeting sectors in different 435 * ranges can be executed in parallel. A request can straddle an access range 436 * boundary. 437 */ 438 struct blk_independent_access_range { 439 struct kobject kobj; 440 sector_t sector; 441 sector_t nr_sectors; 442 }; 443 444 struct blk_independent_access_ranges { 445 struct kobject kobj; 446 bool sysfs_registered; 447 unsigned int nr_ia_ranges; 448 struct blk_independent_access_range ia_range[]; 449 }; 450 451 struct request_queue { 452 /* 453 * The queue owner gets to use this for whatever they like. 454 * ll_rw_blk doesn't touch it. 455 */ 456 void *queuedata; 457 458 struct elevator_queue *elevator; 459 460 const struct blk_mq_ops *mq_ops; 461 462 /* sw queues */ 463 struct blk_mq_ctx __percpu *queue_ctx; 464 465 /* 466 * various queue flags, see QUEUE_* below 467 */ 468 unsigned long queue_flags; 469 470 unsigned int rq_timeout; 471 472 unsigned int queue_depth; 473 474 refcount_t refs; 475 476 /* hw dispatch queues */ 477 unsigned int nr_hw_queues; 478 struct xarray hctx_table; 479 480 struct percpu_ref q_usage_counter; 481 struct lock_class_key io_lock_cls_key; 482 struct lockdep_map io_lockdep_map; 483 484 struct lock_class_key q_lock_cls_key; 485 struct lockdep_map q_lockdep_map; 486 487 struct request *last_merge; 488 489 spinlock_t queue_lock; 490 491 int quiesce_depth; 492 493 struct gendisk *disk; 494 495 /* 496 * mq queue kobject 497 */ 498 struct kobject *mq_kobj; 499 500 struct queue_limits limits; 501 502 #ifdef CONFIG_PM 503 struct device *dev; 504 enum rpm_status rpm_status; 505 #endif 506 507 /* 508 * Number of contexts that have called blk_set_pm_only(). If this 509 * counter is above zero then only RQF_PM requests are processed. 510 */ 511 atomic_t pm_only; 512 513 struct blk_queue_stats *stats; 514 struct rq_qos *rq_qos; 515 struct mutex rq_qos_mutex; 516 517 /* 518 * ida allocated id for this queue. Used to index queues from 519 * ioctx. 520 */ 521 int id; 522 523 /* 524 * queue settings 525 */ 526 unsigned long nr_requests; /* Max # of requests */ 527 528 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 529 struct blk_crypto_profile *crypto_profile; 530 struct kobject *crypto_kobject; 531 #endif 532 533 struct timer_list timeout; 534 struct work_struct timeout_work; 535 536 atomic_t nr_active_requests_shared_tags; 537 538 struct blk_mq_tags *sched_shared_tags; 539 540 struct list_head icq_list; 541 #ifdef CONFIG_BLK_CGROUP 542 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 543 struct blkcg_gq *root_blkg; 544 struct list_head blkg_list; 545 struct mutex blkcg_mutex; 546 #endif 547 548 int node; 549 550 spinlock_t requeue_lock; 551 struct list_head requeue_list; 552 struct delayed_work requeue_work; 553 554 #ifdef CONFIG_BLK_DEV_IO_TRACE 555 struct blk_trace __rcu *blk_trace; 556 #endif 557 /* 558 * for flush operations 559 */ 560 struct blk_flush_queue *fq; 561 struct list_head flush_list; 562 563 struct mutex sysfs_lock; 564 struct mutex sysfs_dir_lock; 565 struct mutex limits_lock; 566 567 /* 568 * for reusing dead hctx instance in case of updating 569 * nr_hw_queues 570 */ 571 struct list_head unused_hctx_list; 572 spinlock_t unused_hctx_lock; 573 574 int mq_freeze_depth; 575 576 #ifdef CONFIG_BLK_DEV_THROTTLING 577 /* Throttle data */ 578 struct throtl_data *td; 579 #endif 580 struct rcu_head rcu_head; 581 #ifdef CONFIG_LOCKDEP 582 struct task_struct *mq_freeze_owner; 583 int mq_freeze_owner_depth; 584 #endif 585 wait_queue_head_t mq_freeze_wq; 586 /* 587 * Protect concurrent access to q_usage_counter by 588 * percpu_ref_kill() and percpu_ref_reinit(). 589 */ 590 struct mutex mq_freeze_lock; 591 592 struct blk_mq_tag_set *tag_set; 593 struct list_head tag_set_list; 594 595 struct dentry *debugfs_dir; 596 struct dentry *sched_debugfs_dir; 597 struct dentry *rqos_debugfs_dir; 598 /* 599 * Serializes all debugfs metadata operations using the above dentries. 600 */ 601 struct mutex debugfs_mutex; 602 603 bool mq_sysfs_init_done; 604 }; 605 606 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 607 enum { 608 QUEUE_FLAG_DYING, /* queue being torn down */ 609 QUEUE_FLAG_NOMERGES, /* disable merge attempts */ 610 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */ 611 QUEUE_FLAG_FAIL_IO, /* fake timeout */ 612 QUEUE_FLAG_NOXMERGES, /* No extended merges */ 613 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */ 614 QUEUE_FLAG_INIT_DONE, /* queue is initialized */ 615 QUEUE_FLAG_STATS, /* track IO start and completion times */ 616 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */ 617 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */ 618 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */ 619 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */ 620 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */ 621 QUEUE_FLAG_MAX 622 }; 623 624 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP) 625 626 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 627 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 628 629 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 630 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 631 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 632 #define blk_queue_noxmerges(q) \ 633 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 634 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL)) 635 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT) 636 #define blk_queue_passthrough_stat(q) \ 637 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH) 638 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX) 639 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA) 640 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 641 #define blk_queue_rq_alloc_time(q) \ 642 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 643 #else 644 #define blk_queue_rq_alloc_time(q) false 645 #endif 646 647 #define blk_noretry_request(rq) \ 648 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 649 REQ_FAILFAST_DRIVER)) 650 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 651 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 652 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 653 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 654 #define blk_queue_skip_tagset_quiesce(q) \ 655 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE) 656 657 extern void blk_set_pm_only(struct request_queue *q); 658 extern void blk_clear_pm_only(struct request_queue *q); 659 660 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 661 662 #define dma_map_bvec(dev, bv, dir, attrs) \ 663 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 664 (dir), (attrs)) 665 666 static inline bool queue_is_mq(struct request_queue *q) 667 { 668 return q->mq_ops; 669 } 670 671 #ifdef CONFIG_PM 672 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 673 { 674 return q->rpm_status; 675 } 676 #else 677 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 678 { 679 return RPM_ACTIVE; 680 } 681 #endif 682 683 static inline bool blk_queue_is_zoned(struct request_queue *q) 684 { 685 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 686 (q->limits.features & BLK_FEAT_ZONED); 687 } 688 689 #ifdef CONFIG_BLK_DEV_ZONED 690 static inline unsigned int disk_nr_zones(struct gendisk *disk) 691 { 692 return disk->nr_zones; 693 } 694 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs); 695 #else /* CONFIG_BLK_DEV_ZONED */ 696 static inline unsigned int disk_nr_zones(struct gendisk *disk) 697 { 698 return 0; 699 } 700 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) 701 { 702 return false; 703 } 704 #endif /* CONFIG_BLK_DEV_ZONED */ 705 706 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 707 { 708 if (!blk_queue_is_zoned(disk->queue)) 709 return 0; 710 return sector >> ilog2(disk->queue->limits.chunk_sectors); 711 } 712 713 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 714 { 715 return disk_nr_zones(bdev->bd_disk); 716 } 717 718 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 719 { 720 return bdev->bd_disk->queue->limits.max_open_zones; 721 } 722 723 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 724 { 725 return bdev->bd_disk->queue->limits.max_active_zones; 726 } 727 728 static inline unsigned int blk_queue_depth(struct request_queue *q) 729 { 730 if (q->queue_depth) 731 return q->queue_depth; 732 733 return q->nr_requests; 734 } 735 736 /* 737 * default timeout for SG_IO if none specified 738 */ 739 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 740 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 741 742 /* This should not be used directly - use rq_for_each_segment */ 743 #define for_each_bio(_bio) \ 744 for (; _bio; _bio = _bio->bi_next) 745 746 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk, 747 const struct attribute_group **groups, 748 struct fwnode_handle *fwnode); 749 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 750 const struct attribute_group **groups); 751 static inline int __must_check add_disk(struct gendisk *disk) 752 { 753 return device_add_disk(NULL, disk, NULL); 754 } 755 void del_gendisk(struct gendisk *gp); 756 void invalidate_disk(struct gendisk *disk); 757 void set_disk_ro(struct gendisk *disk, bool read_only); 758 void disk_uevent(struct gendisk *disk, enum kobject_action action); 759 760 static inline u8 bdev_partno(const struct block_device *bdev) 761 { 762 return atomic_read(&bdev->__bd_flags) & BD_PARTNO; 763 } 764 765 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag) 766 { 767 return atomic_read(&bdev->__bd_flags) & flag; 768 } 769 770 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag) 771 { 772 atomic_or(flag, &bdev->__bd_flags); 773 } 774 775 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag) 776 { 777 atomic_andnot(flag, &bdev->__bd_flags); 778 } 779 780 static inline bool get_disk_ro(struct gendisk *disk) 781 { 782 return bdev_test_flag(disk->part0, BD_READ_ONLY) || 783 test_bit(GD_READ_ONLY, &disk->state); 784 } 785 786 static inline bool bdev_read_only(struct block_device *bdev) 787 { 788 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk); 789 } 790 791 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 792 void disk_force_media_change(struct gendisk *disk); 793 void bdev_mark_dead(struct block_device *bdev, bool surprise); 794 795 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 796 void rand_initialize_disk(struct gendisk *disk); 797 798 static inline sector_t get_start_sect(struct block_device *bdev) 799 { 800 return bdev->bd_start_sect; 801 } 802 803 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 804 { 805 return bdev->bd_nr_sectors; 806 } 807 808 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 809 { 810 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 811 } 812 813 static inline sector_t get_capacity(struct gendisk *disk) 814 { 815 return bdev_nr_sectors(disk->part0); 816 } 817 818 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 819 { 820 return bdev_nr_sectors(sb->s_bdev) >> 821 (sb->s_blocksize_bits - SECTOR_SHIFT); 822 } 823 824 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 825 826 void put_disk(struct gendisk *disk); 827 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node, 828 struct lock_class_key *lkclass); 829 830 /** 831 * blk_alloc_disk - allocate a gendisk structure 832 * @lim: queue limits to be used for this disk. 833 * @node_id: numa node to allocate on 834 * 835 * Allocate and pre-initialize a gendisk structure for use with BIO based 836 * drivers. 837 * 838 * Returns an ERR_PTR on error, else the allocated disk. 839 * 840 * Context: can sleep 841 */ 842 #define blk_alloc_disk(lim, node_id) \ 843 ({ \ 844 static struct lock_class_key __key; \ 845 \ 846 __blk_alloc_disk(lim, node_id, &__key); \ 847 }) 848 849 int __register_blkdev(unsigned int major, const char *name, 850 void (*probe)(dev_t devt)); 851 #define register_blkdev(major, name) \ 852 __register_blkdev(major, name, NULL) 853 void unregister_blkdev(unsigned int major, const char *name); 854 855 bool disk_check_media_change(struct gendisk *disk); 856 void set_capacity(struct gendisk *disk, sector_t size); 857 858 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 859 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 860 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 861 #else 862 static inline int bd_link_disk_holder(struct block_device *bdev, 863 struct gendisk *disk) 864 { 865 return 0; 866 } 867 static inline void bd_unlink_disk_holder(struct block_device *bdev, 868 struct gendisk *disk) 869 { 870 } 871 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 872 873 dev_t part_devt(struct gendisk *disk, u8 partno); 874 void inc_diskseq(struct gendisk *disk); 875 void blk_request_module(dev_t devt); 876 877 extern int blk_register_queue(struct gendisk *disk); 878 extern void blk_unregister_queue(struct gendisk *disk); 879 void submit_bio_noacct(struct bio *bio); 880 struct bio *bio_split_to_limits(struct bio *bio); 881 882 extern int blk_lld_busy(struct request_queue *q); 883 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 884 extern void blk_queue_exit(struct request_queue *q); 885 extern void blk_sync_queue(struct request_queue *q); 886 887 /* Helper to convert REQ_OP_XXX to its string format XXX */ 888 extern const char *blk_op_str(enum req_op op); 889 890 int blk_status_to_errno(blk_status_t status); 891 blk_status_t errno_to_blk_status(int errno); 892 const char *blk_status_to_str(blk_status_t status); 893 894 /* only poll the hardware once, don't continue until a completion was found */ 895 #define BLK_POLL_ONESHOT (1 << 0) 896 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 897 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 898 unsigned int flags); 899 900 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 901 { 902 return bdev->bd_queue; /* this is never NULL */ 903 } 904 905 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 906 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 907 908 static inline unsigned int bio_zone_no(struct bio *bio) 909 { 910 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 911 } 912 913 static inline bool bio_straddles_zones(struct bio *bio) 914 { 915 return bio_sectors(bio) && 916 bio_zone_no(bio) != 917 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1); 918 } 919 920 /* 921 * Return how much within the boundary is left to be used for I/O at a given 922 * offset. 923 */ 924 static inline unsigned int blk_boundary_sectors_left(sector_t offset, 925 unsigned int boundary_sectors) 926 { 927 if (unlikely(!is_power_of_2(boundary_sectors))) 928 return boundary_sectors - sector_div(offset, boundary_sectors); 929 return boundary_sectors - (offset & (boundary_sectors - 1)); 930 } 931 932 /** 933 * queue_limits_start_update - start an atomic update of queue limits 934 * @q: queue to update 935 * 936 * This functions starts an atomic update of the queue limits. It takes a lock 937 * to prevent other updates and returns a snapshot of the current limits that 938 * the caller can modify. The caller must call queue_limits_commit_update() 939 * to finish the update. 940 * 941 * Context: process context. The caller must have frozen the queue or ensured 942 * that there is outstanding I/O by other means. 943 */ 944 static inline struct queue_limits 945 queue_limits_start_update(struct request_queue *q) 946 { 947 mutex_lock(&q->limits_lock); 948 return q->limits; 949 } 950 int queue_limits_commit_update(struct request_queue *q, 951 struct queue_limits *lim); 952 int queue_limits_set(struct request_queue *q, struct queue_limits *lim); 953 int blk_validate_limits(struct queue_limits *lim); 954 955 /** 956 * queue_limits_cancel_update - cancel an atomic update of queue limits 957 * @q: queue to update 958 * 959 * This functions cancels an atomic update of the queue limits started by 960 * queue_limits_start_update() and should be used when an error occurs after 961 * starting update. 962 */ 963 static inline void queue_limits_cancel_update(struct request_queue *q) 964 { 965 mutex_unlock(&q->limits_lock); 966 } 967 968 /* 969 * These helpers are for drivers that have sloppy feature negotiation and might 970 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O 971 * completion handler when the device returned an indicator that the respective 972 * feature is not actually supported. They are racy and the driver needs to 973 * cope with that. Try to avoid this scheme if you can. 974 */ 975 static inline void blk_queue_disable_discard(struct request_queue *q) 976 { 977 q->limits.max_discard_sectors = 0; 978 } 979 980 static inline void blk_queue_disable_secure_erase(struct request_queue *q) 981 { 982 q->limits.max_secure_erase_sectors = 0; 983 } 984 985 static inline void blk_queue_disable_write_zeroes(struct request_queue *q) 986 { 987 q->limits.max_write_zeroes_sectors = 0; 988 } 989 990 /* 991 * Access functions for manipulating queue properties 992 */ 993 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 994 extern void blk_set_stacking_limits(struct queue_limits *lim); 995 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 996 sector_t offset); 997 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 998 sector_t offset, const char *pfx); 999 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1000 1001 struct blk_independent_access_ranges * 1002 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 1003 void disk_set_independent_access_ranges(struct gendisk *disk, 1004 struct blk_independent_access_ranges *iars); 1005 1006 bool __must_check blk_get_queue(struct request_queue *); 1007 extern void blk_put_queue(struct request_queue *); 1008 1009 void blk_mark_disk_dead(struct gendisk *disk); 1010 1011 struct rq_list { 1012 struct request *head; 1013 struct request *tail; 1014 }; 1015 1016 #ifdef CONFIG_BLOCK 1017 /* 1018 * blk_plug permits building a queue of related requests by holding the I/O 1019 * fragments for a short period. This allows merging of sequential requests 1020 * into single larger request. As the requests are moved from a per-task list to 1021 * the device's request_queue in a batch, this results in improved scalability 1022 * as the lock contention for request_queue lock is reduced. 1023 * 1024 * It is ok not to disable preemption when adding the request to the plug list 1025 * or when attempting a merge. For details, please see schedule() where 1026 * blk_flush_plug() is called. 1027 */ 1028 struct blk_plug { 1029 struct rq_list mq_list; /* blk-mq requests */ 1030 1031 /* if ios_left is > 1, we can batch tag/rq allocations */ 1032 struct rq_list cached_rqs; 1033 u64 cur_ktime; 1034 unsigned short nr_ios; 1035 1036 unsigned short rq_count; 1037 1038 bool multiple_queues; 1039 bool has_elevator; 1040 1041 struct list_head cb_list; /* md requires an unplug callback */ 1042 }; 1043 1044 struct blk_plug_cb; 1045 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1046 struct blk_plug_cb { 1047 struct list_head list; 1048 blk_plug_cb_fn callback; 1049 void *data; 1050 }; 1051 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1052 void *data, int size); 1053 extern void blk_start_plug(struct blk_plug *); 1054 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1055 extern void blk_finish_plug(struct blk_plug *); 1056 1057 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1058 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1059 { 1060 if (plug) 1061 __blk_flush_plug(plug, async); 1062 } 1063 1064 /* 1065 * tsk == current here 1066 */ 1067 static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1068 { 1069 struct blk_plug *plug = tsk->plug; 1070 1071 if (plug) 1072 plug->cur_ktime = 0; 1073 current->flags &= ~PF_BLOCK_TS; 1074 } 1075 1076 int blkdev_issue_flush(struct block_device *bdev); 1077 long nr_blockdev_pages(void); 1078 #else /* CONFIG_BLOCK */ 1079 struct blk_plug { 1080 }; 1081 1082 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1083 unsigned short nr_ios) 1084 { 1085 } 1086 1087 static inline void blk_start_plug(struct blk_plug *plug) 1088 { 1089 } 1090 1091 static inline void blk_finish_plug(struct blk_plug *plug) 1092 { 1093 } 1094 1095 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1096 { 1097 } 1098 1099 static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1100 { 1101 } 1102 1103 static inline int blkdev_issue_flush(struct block_device *bdev) 1104 { 1105 return 0; 1106 } 1107 1108 static inline long nr_blockdev_pages(void) 1109 { 1110 return 0; 1111 } 1112 #endif /* CONFIG_BLOCK */ 1113 1114 extern void blk_io_schedule(void); 1115 1116 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1117 sector_t nr_sects, gfp_t gfp_mask); 1118 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1119 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1120 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1121 sector_t nr_sects, gfp_t gfp); 1122 1123 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1124 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1125 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */ 1126 1127 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1128 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1129 unsigned flags); 1130 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1131 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1132 1133 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1134 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1135 { 1136 return blkdev_issue_discard(sb->s_bdev, 1137 block << (sb->s_blocksize_bits - 1138 SECTOR_SHIFT), 1139 nr_blocks << (sb->s_blocksize_bits - 1140 SECTOR_SHIFT), 1141 gfp_mask); 1142 } 1143 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1144 sector_t nr_blocks, gfp_t gfp_mask) 1145 { 1146 return blkdev_issue_zeroout(sb->s_bdev, 1147 block << (sb->s_blocksize_bits - 1148 SECTOR_SHIFT), 1149 nr_blocks << (sb->s_blocksize_bits - 1150 SECTOR_SHIFT), 1151 gfp_mask, 0); 1152 } 1153 1154 static inline bool bdev_is_partition(struct block_device *bdev) 1155 { 1156 return bdev_partno(bdev) != 0; 1157 } 1158 1159 enum blk_default_limits { 1160 BLK_MAX_SEGMENTS = 128, 1161 BLK_SAFE_MAX_SECTORS = 255, 1162 BLK_MAX_SEGMENT_SIZE = 65536, 1163 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1164 }; 1165 1166 /* 1167 * Default upper limit for the software max_sectors limit used for 1168 * regular file system I/O. This can be increased through sysfs. 1169 * 1170 * Not to be confused with the max_hw_sector limit that is entirely 1171 * controlled by the driver, usually based on hardware limits. 1172 */ 1173 #define BLK_DEF_MAX_SECTORS_CAP 2560u 1174 1175 static inline struct queue_limits *bdev_limits(struct block_device *bdev) 1176 { 1177 return &bdev_get_queue(bdev)->limits; 1178 } 1179 1180 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1181 { 1182 return q->limits.seg_boundary_mask; 1183 } 1184 1185 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1186 { 1187 return q->limits.virt_boundary_mask; 1188 } 1189 1190 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1191 { 1192 return q->limits.max_sectors; 1193 } 1194 1195 static inline unsigned int queue_max_bytes(struct request_queue *q) 1196 { 1197 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1198 } 1199 1200 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1201 { 1202 return q->limits.max_hw_sectors; 1203 } 1204 1205 static inline unsigned short queue_max_segments(const struct request_queue *q) 1206 { 1207 return q->limits.max_segments; 1208 } 1209 1210 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1211 { 1212 return q->limits.max_discard_segments; 1213 } 1214 1215 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1216 { 1217 return q->limits.max_segment_size; 1218 } 1219 1220 static inline bool queue_emulates_zone_append(struct request_queue *q) 1221 { 1222 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors; 1223 } 1224 1225 static inline bool bdev_emulates_zone_append(struct block_device *bdev) 1226 { 1227 return queue_emulates_zone_append(bdev_get_queue(bdev)); 1228 } 1229 1230 static inline unsigned int 1231 bdev_max_zone_append_sectors(struct block_device *bdev) 1232 { 1233 return bdev_limits(bdev)->max_zone_append_sectors; 1234 } 1235 1236 static inline unsigned int bdev_max_segments(struct block_device *bdev) 1237 { 1238 return queue_max_segments(bdev_get_queue(bdev)); 1239 } 1240 1241 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1242 { 1243 return q->limits.logical_block_size; 1244 } 1245 1246 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1247 { 1248 return queue_logical_block_size(bdev_get_queue(bdev)); 1249 } 1250 1251 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1252 { 1253 return q->limits.physical_block_size; 1254 } 1255 1256 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1257 { 1258 return queue_physical_block_size(bdev_get_queue(bdev)); 1259 } 1260 1261 static inline unsigned int queue_io_min(const struct request_queue *q) 1262 { 1263 return q->limits.io_min; 1264 } 1265 1266 static inline unsigned int bdev_io_min(struct block_device *bdev) 1267 { 1268 return queue_io_min(bdev_get_queue(bdev)); 1269 } 1270 1271 static inline unsigned int queue_io_opt(const struct request_queue *q) 1272 { 1273 return q->limits.io_opt; 1274 } 1275 1276 static inline unsigned int bdev_io_opt(struct block_device *bdev) 1277 { 1278 return queue_io_opt(bdev_get_queue(bdev)); 1279 } 1280 1281 static inline unsigned int 1282 queue_zone_write_granularity(const struct request_queue *q) 1283 { 1284 return q->limits.zone_write_granularity; 1285 } 1286 1287 static inline unsigned int 1288 bdev_zone_write_granularity(struct block_device *bdev) 1289 { 1290 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1291 } 1292 1293 int bdev_alignment_offset(struct block_device *bdev); 1294 unsigned int bdev_discard_alignment(struct block_device *bdev); 1295 1296 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1297 { 1298 return bdev_limits(bdev)->max_discard_sectors; 1299 } 1300 1301 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1302 { 1303 return bdev_limits(bdev)->discard_granularity; 1304 } 1305 1306 static inline unsigned int 1307 bdev_max_secure_erase_sectors(struct block_device *bdev) 1308 { 1309 return bdev_limits(bdev)->max_secure_erase_sectors; 1310 } 1311 1312 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1313 { 1314 return bdev_limits(bdev)->max_write_zeroes_sectors; 1315 } 1316 1317 static inline bool bdev_nonrot(struct block_device *bdev) 1318 { 1319 return blk_queue_nonrot(bdev_get_queue(bdev)); 1320 } 1321 1322 static inline bool bdev_synchronous(struct block_device *bdev) 1323 { 1324 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS; 1325 } 1326 1327 static inline bool bdev_stable_writes(struct block_device *bdev) 1328 { 1329 struct request_queue *q = bdev_get_queue(bdev); 1330 1331 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1332 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE) 1333 return true; 1334 return q->limits.features & BLK_FEAT_STABLE_WRITES; 1335 } 1336 1337 static inline bool blk_queue_write_cache(struct request_queue *q) 1338 { 1339 return (q->limits.features & BLK_FEAT_WRITE_CACHE) && 1340 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED); 1341 } 1342 1343 static inline bool bdev_write_cache(struct block_device *bdev) 1344 { 1345 return blk_queue_write_cache(bdev_get_queue(bdev)); 1346 } 1347 1348 static inline bool bdev_fua(struct block_device *bdev) 1349 { 1350 return bdev_limits(bdev)->features & BLK_FEAT_FUA; 1351 } 1352 1353 static inline bool bdev_nowait(struct block_device *bdev) 1354 { 1355 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT; 1356 } 1357 1358 static inline bool bdev_is_zoned(struct block_device *bdev) 1359 { 1360 return blk_queue_is_zoned(bdev_get_queue(bdev)); 1361 } 1362 1363 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) 1364 { 1365 return disk_zone_no(bdev->bd_disk, sec); 1366 } 1367 1368 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1369 { 1370 struct request_queue *q = bdev_get_queue(bdev); 1371 1372 if (!blk_queue_is_zoned(q)) 1373 return 0; 1374 return q->limits.chunk_sectors; 1375 } 1376 1377 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, 1378 sector_t sector) 1379 { 1380 return sector & (bdev_zone_sectors(bdev) - 1); 1381 } 1382 1383 static inline sector_t bio_offset_from_zone_start(struct bio *bio) 1384 { 1385 return bdev_offset_from_zone_start(bio->bi_bdev, 1386 bio->bi_iter.bi_sector); 1387 } 1388 1389 static inline bool bdev_is_zone_start(struct block_device *bdev, 1390 sector_t sector) 1391 { 1392 return bdev_offset_from_zone_start(bdev, sector) == 0; 1393 } 1394 1395 /** 1396 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone 1397 * @bdev: block device to check 1398 * @sector: sector number 1399 * 1400 * Check if @sector on @bdev is contained in a sequential write required zone. 1401 */ 1402 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector) 1403 { 1404 bool is_seq = false; 1405 1406 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED) 1407 if (bdev_is_zoned(bdev)) { 1408 struct gendisk *disk = bdev->bd_disk; 1409 unsigned long *bitmap; 1410 1411 rcu_read_lock(); 1412 bitmap = rcu_dereference(disk->conv_zones_bitmap); 1413 is_seq = !bitmap || 1414 !test_bit(disk_zone_no(disk, sector), bitmap); 1415 rcu_read_unlock(); 1416 } 1417 #endif 1418 1419 return is_seq; 1420 } 1421 1422 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector, 1423 sector_t nr_sects, gfp_t gfp_mask); 1424 1425 static inline unsigned int queue_dma_alignment(const struct request_queue *q) 1426 { 1427 return q->limits.dma_alignment; 1428 } 1429 1430 static inline unsigned int 1431 queue_atomic_write_unit_max_bytes(const struct request_queue *q) 1432 { 1433 return q->limits.atomic_write_unit_max; 1434 } 1435 1436 static inline unsigned int 1437 queue_atomic_write_unit_min_bytes(const struct request_queue *q) 1438 { 1439 return q->limits.atomic_write_unit_min; 1440 } 1441 1442 static inline unsigned int 1443 queue_atomic_write_boundary_bytes(const struct request_queue *q) 1444 { 1445 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT; 1446 } 1447 1448 static inline unsigned int 1449 queue_atomic_write_max_bytes(const struct request_queue *q) 1450 { 1451 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT; 1452 } 1453 1454 static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1455 { 1456 return queue_dma_alignment(bdev_get_queue(bdev)); 1457 } 1458 1459 static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1460 struct iov_iter *iter) 1461 { 1462 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1463 bdev_logical_block_size(bdev) - 1); 1464 } 1465 1466 static inline unsigned int 1467 blk_lim_dma_alignment_and_pad(struct queue_limits *lim) 1468 { 1469 return lim->dma_alignment | lim->dma_pad_mask; 1470 } 1471 1472 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr, 1473 unsigned int len) 1474 { 1475 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits); 1476 1477 return !(addr & alignment) && !(len & alignment); 1478 } 1479 1480 /* assumes size > 256 */ 1481 static inline unsigned int blksize_bits(unsigned int size) 1482 { 1483 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1484 } 1485 1486 int kblockd_schedule_work(struct work_struct *work); 1487 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1488 1489 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1490 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1491 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1492 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1493 1494 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1495 1496 bool blk_crypto_register(struct blk_crypto_profile *profile, 1497 struct request_queue *q); 1498 1499 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1500 1501 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1502 struct request_queue *q) 1503 { 1504 return true; 1505 } 1506 1507 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1508 1509 enum blk_unique_id { 1510 /* these match the Designator Types specified in SPC */ 1511 BLK_UID_T10 = 1, 1512 BLK_UID_EUI64 = 2, 1513 BLK_UID_NAA = 3, 1514 }; 1515 1516 struct block_device_operations { 1517 void (*submit_bio)(struct bio *bio); 1518 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1519 unsigned int flags); 1520 int (*open)(struct gendisk *disk, blk_mode_t mode); 1521 void (*release)(struct gendisk *disk); 1522 int (*ioctl)(struct block_device *bdev, blk_mode_t mode, 1523 unsigned cmd, unsigned long arg); 1524 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode, 1525 unsigned cmd, unsigned long arg); 1526 unsigned int (*check_events) (struct gendisk *disk, 1527 unsigned int clearing); 1528 void (*unlock_native_capacity) (struct gendisk *); 1529 int (*getgeo)(struct block_device *, struct hd_geometry *); 1530 int (*set_read_only)(struct block_device *bdev, bool ro); 1531 void (*free_disk)(struct gendisk *disk); 1532 /* this callback is with swap_lock and sometimes page table lock held */ 1533 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1534 int (*report_zones)(struct gendisk *, sector_t sector, 1535 unsigned int nr_zones, report_zones_cb cb, void *data); 1536 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1537 /* returns the length of the identifier or a negative errno: */ 1538 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1539 enum blk_unique_id id_type); 1540 struct module *owner; 1541 const struct pr_ops *pr_ops; 1542 1543 /* 1544 * Special callback for probing GPT entry at a given sector. 1545 * Needed by Android devices, used by GPT scanner and MMC blk 1546 * driver. 1547 */ 1548 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1549 }; 1550 1551 #ifdef CONFIG_COMPAT 1552 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t, 1553 unsigned int, unsigned long); 1554 #else 1555 #define blkdev_compat_ptr_ioctl NULL 1556 #endif 1557 1558 static inline void blk_wake_io_task(struct task_struct *waiter) 1559 { 1560 /* 1561 * If we're polling, the task itself is doing the completions. For 1562 * that case, we don't need to signal a wakeup, it's enough to just 1563 * mark us as RUNNING. 1564 */ 1565 if (waiter == current) 1566 __set_current_state(TASK_RUNNING); 1567 else 1568 wake_up_process(waiter); 1569 } 1570 1571 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 1572 unsigned long start_time); 1573 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1574 unsigned int sectors, unsigned long start_time); 1575 1576 unsigned long bio_start_io_acct(struct bio *bio); 1577 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1578 struct block_device *orig_bdev); 1579 1580 /** 1581 * bio_end_io_acct - end I/O accounting for bio based drivers 1582 * @bio: bio to end account for 1583 * @start_time: start time returned by bio_start_io_acct() 1584 */ 1585 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1586 { 1587 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1588 } 1589 1590 int set_blocksize(struct file *file, int size); 1591 1592 int lookup_bdev(const char *pathname, dev_t *dev); 1593 1594 void blkdev_show(struct seq_file *seqf, off_t offset); 1595 1596 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1597 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1598 #ifdef CONFIG_BLOCK 1599 #define BLKDEV_MAJOR_MAX 512 1600 #else 1601 #define BLKDEV_MAJOR_MAX 0 1602 #endif 1603 1604 struct blk_holder_ops { 1605 void (*mark_dead)(struct block_device *bdev, bool surprise); 1606 1607 /* 1608 * Sync the file system mounted on the block device. 1609 */ 1610 void (*sync)(struct block_device *bdev); 1611 1612 /* 1613 * Freeze the file system mounted on the block device. 1614 */ 1615 int (*freeze)(struct block_device *bdev); 1616 1617 /* 1618 * Thaw the file system mounted on the block device. 1619 */ 1620 int (*thaw)(struct block_device *bdev); 1621 }; 1622 1623 /* 1624 * For filesystems using @fs_holder_ops, the @holder argument passed to 1625 * helpers used to open and claim block devices via 1626 * bd_prepare_to_claim() must point to a superblock. 1627 */ 1628 extern const struct blk_holder_ops fs_holder_ops; 1629 1630 /* 1631 * Return the correct open flags for blkdev_get_by_* for super block flags 1632 * as stored in sb->s_flags. 1633 */ 1634 #define sb_open_mode(flags) \ 1635 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \ 1636 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE)) 1637 1638 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder, 1639 const struct blk_holder_ops *hops); 1640 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode, 1641 void *holder, const struct blk_holder_ops *hops); 1642 int bd_prepare_to_claim(struct block_device *bdev, void *holder, 1643 const struct blk_holder_ops *hops); 1644 void bd_abort_claiming(struct block_device *bdev, void *holder); 1645 1646 /* just for blk-cgroup, don't use elsewhere */ 1647 struct block_device *blkdev_get_no_open(dev_t dev); 1648 void blkdev_put_no_open(struct block_device *bdev); 1649 1650 struct block_device *I_BDEV(struct inode *inode); 1651 struct block_device *file_bdev(struct file *bdev_file); 1652 bool disk_live(struct gendisk *disk); 1653 unsigned int block_size(struct block_device *bdev); 1654 1655 #ifdef CONFIG_BLOCK 1656 void invalidate_bdev(struct block_device *bdev); 1657 int sync_blockdev(struct block_device *bdev); 1658 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1659 int sync_blockdev_nowait(struct block_device *bdev); 1660 void sync_bdevs(bool wait); 1661 void bdev_statx(struct path *, struct kstat *, u32); 1662 void printk_all_partitions(void); 1663 int __init early_lookup_bdev(const char *pathname, dev_t *dev); 1664 #else 1665 static inline void invalidate_bdev(struct block_device *bdev) 1666 { 1667 } 1668 static inline int sync_blockdev(struct block_device *bdev) 1669 { 1670 return 0; 1671 } 1672 static inline int sync_blockdev_nowait(struct block_device *bdev) 1673 { 1674 return 0; 1675 } 1676 static inline void sync_bdevs(bool wait) 1677 { 1678 } 1679 static inline void bdev_statx(struct path *path, struct kstat *stat, 1680 u32 request_mask) 1681 { 1682 } 1683 static inline void printk_all_partitions(void) 1684 { 1685 } 1686 static inline int early_lookup_bdev(const char *pathname, dev_t *dev) 1687 { 1688 return -EINVAL; 1689 } 1690 #endif /* CONFIG_BLOCK */ 1691 1692 int bdev_freeze(struct block_device *bdev); 1693 int bdev_thaw(struct block_device *bdev); 1694 void bdev_fput(struct file *bdev_file); 1695 1696 struct io_comp_batch { 1697 struct rq_list req_list; 1698 bool need_ts; 1699 void (*complete)(struct io_comp_batch *); 1700 }; 1701 1702 static inline bool bdev_can_atomic_write(struct block_device *bdev) 1703 { 1704 struct request_queue *bd_queue = bdev->bd_queue; 1705 struct queue_limits *limits = &bd_queue->limits; 1706 1707 if (!limits->atomic_write_unit_min) 1708 return false; 1709 1710 if (bdev_is_partition(bdev)) { 1711 sector_t bd_start_sect = bdev->bd_start_sect; 1712 unsigned int alignment = 1713 max(limits->atomic_write_unit_min, 1714 limits->atomic_write_hw_boundary); 1715 1716 if (!IS_ALIGNED(bd_start_sect, alignment >> SECTOR_SHIFT)) 1717 return false; 1718 } 1719 1720 return true; 1721 } 1722 1723 static inline unsigned int 1724 bdev_atomic_write_unit_min_bytes(struct block_device *bdev) 1725 { 1726 if (!bdev_can_atomic_write(bdev)) 1727 return 0; 1728 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev)); 1729 } 1730 1731 static inline unsigned int 1732 bdev_atomic_write_unit_max_bytes(struct block_device *bdev) 1733 { 1734 if (!bdev_can_atomic_write(bdev)) 1735 return 0; 1736 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev)); 1737 } 1738 1739 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1740 1741 #endif /* _LINUX_BLKDEV_H */ 1742