xref: /linux-6.15/include/linux/blkdev.h (revision bb4e9af0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* elevator knows about this request */
69 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83    "quiesce" state must be ignored. */
84 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error.  Ignored by the block layer */
88 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM			((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS		((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104    bio chain. */
105 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
112 
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116 
117 /*
118  * Request state for blk-mq.
119  */
120 enum mq_rq_state {
121 	MQ_RQ_IDLE		= 0,
122 	MQ_RQ_IN_FLIGHT		= 1,
123 	MQ_RQ_COMPLETE		= 2,
124 };
125 
126 /*
127  * Try to put the fields that are referenced together in the same cacheline.
128  *
129  * If you modify this structure, make sure to update blk_rq_init() and
130  * especially blk_mq_rq_ctx_init() to take care of the added fields.
131  */
132 struct request {
133 	struct request_queue *q;
134 	struct blk_mq_ctx *mq_ctx;
135 	struct blk_mq_hw_ctx *mq_hctx;
136 
137 	unsigned int cmd_flags;		/* op and common flags */
138 	req_flags_t rq_flags;
139 
140 	int tag;
141 	int internal_tag;
142 
143 	/* the following two fields are internal, NEVER access directly */
144 	unsigned int __data_len;	/* total data len */
145 	sector_t __sector;		/* sector cursor */
146 
147 	struct bio *bio;
148 	struct bio *biotail;
149 
150 	struct list_head queuelist;
151 
152 	/*
153 	 * The hash is used inside the scheduler, and killed once the
154 	 * request reaches the dispatch list. The ipi_list is only used
155 	 * to queue the request for softirq completion, which is long
156 	 * after the request has been unhashed (and even removed from
157 	 * the dispatch list).
158 	 */
159 	union {
160 		struct hlist_node hash;	/* merge hash */
161 		struct list_head ipi_list;
162 	};
163 
164 	/*
165 	 * The rb_node is only used inside the io scheduler, requests
166 	 * are pruned when moved to the dispatch queue. So let the
167 	 * completion_data share space with the rb_node.
168 	 */
169 	union {
170 		struct rb_node rb_node;	/* sort/lookup */
171 		struct bio_vec special_vec;
172 		void *completion_data;
173 		int error_count; /* for legacy drivers, don't use */
174 	};
175 
176 	/*
177 	 * Three pointers are available for the IO schedulers, if they need
178 	 * more they have to dynamically allocate it.  Flush requests are
179 	 * never put on the IO scheduler. So let the flush fields share
180 	 * space with the elevator data.
181 	 */
182 	union {
183 		struct {
184 			struct io_cq		*icq;
185 			void			*priv[2];
186 		} elv;
187 
188 		struct {
189 			unsigned int		seq;
190 			struct list_head	list;
191 			rq_end_io_fn		*saved_end_io;
192 		} flush;
193 	};
194 
195 	struct gendisk *rq_disk;
196 	struct hd_struct *part;
197 	/* Time that I/O was submitted to the kernel. */
198 	u64 start_time_ns;
199 	/* Time that I/O was submitted to the device. */
200 	u64 io_start_time_ns;
201 
202 #ifdef CONFIG_BLK_WBT
203 	unsigned short wbt_flags;
204 #endif
205 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
206 	unsigned short throtl_size;
207 #endif
208 
209 	/*
210 	 * Number of scatter-gather DMA addr+len pairs after
211 	 * physical address coalescing is performed.
212 	 */
213 	unsigned short nr_phys_segments;
214 
215 #if defined(CONFIG_BLK_DEV_INTEGRITY)
216 	unsigned short nr_integrity_segments;
217 #endif
218 
219 	unsigned short write_hint;
220 	unsigned short ioprio;
221 
222 	unsigned int extra_len;	/* length of alignment and padding */
223 
224 	enum mq_rq_state state;
225 	refcount_t ref;
226 
227 	unsigned int timeout;
228 	unsigned long deadline;
229 
230 	union {
231 		struct __call_single_data csd;
232 		u64 fifo_time;
233 	};
234 
235 	/*
236 	 * completion callback.
237 	 */
238 	rq_end_io_fn *end_io;
239 	void *end_io_data;
240 };
241 
242 static inline bool blk_op_is_scsi(unsigned int op)
243 {
244 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
245 }
246 
247 static inline bool blk_op_is_private(unsigned int op)
248 {
249 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
250 }
251 
252 static inline bool blk_rq_is_scsi(struct request *rq)
253 {
254 	return blk_op_is_scsi(req_op(rq));
255 }
256 
257 static inline bool blk_rq_is_private(struct request *rq)
258 {
259 	return blk_op_is_private(req_op(rq));
260 }
261 
262 static inline bool blk_rq_is_passthrough(struct request *rq)
263 {
264 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
265 }
266 
267 static inline bool bio_is_passthrough(struct bio *bio)
268 {
269 	unsigned op = bio_op(bio);
270 
271 	return blk_op_is_scsi(op) || blk_op_is_private(op);
272 }
273 
274 static inline unsigned short req_get_ioprio(struct request *req)
275 {
276 	return req->ioprio;
277 }
278 
279 #include <linux/elevator.h>
280 
281 struct blk_queue_ctx;
282 
283 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
284 
285 struct bio_vec;
286 typedef int (dma_drain_needed_fn)(struct request *);
287 
288 enum blk_eh_timer_return {
289 	BLK_EH_DONE,		/* drivers has completed the command */
290 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
291 };
292 
293 enum blk_queue_state {
294 	Queue_down,
295 	Queue_up,
296 };
297 
298 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
299 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
300 
301 #define BLK_SCSI_MAX_CMDS	(256)
302 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
303 
304 /*
305  * Zoned block device models (zoned limit).
306  */
307 enum blk_zoned_model {
308 	BLK_ZONED_NONE,	/* Regular block device */
309 	BLK_ZONED_HA,	/* Host-aware zoned block device */
310 	BLK_ZONED_HM,	/* Host-managed zoned block device */
311 };
312 
313 struct queue_limits {
314 	unsigned long		bounce_pfn;
315 	unsigned long		seg_boundary_mask;
316 	unsigned long		virt_boundary_mask;
317 
318 	unsigned int		max_hw_sectors;
319 	unsigned int		max_dev_sectors;
320 	unsigned int		chunk_sectors;
321 	unsigned int		max_sectors;
322 	unsigned int		max_segment_size;
323 	unsigned int		physical_block_size;
324 	unsigned int		alignment_offset;
325 	unsigned int		io_min;
326 	unsigned int		io_opt;
327 	unsigned int		max_discard_sectors;
328 	unsigned int		max_hw_discard_sectors;
329 	unsigned int		max_write_same_sectors;
330 	unsigned int		max_write_zeroes_sectors;
331 	unsigned int		discard_granularity;
332 	unsigned int		discard_alignment;
333 
334 	unsigned short		logical_block_size;
335 	unsigned short		max_segments;
336 	unsigned short		max_integrity_segments;
337 	unsigned short		max_discard_segments;
338 
339 	unsigned char		misaligned;
340 	unsigned char		discard_misaligned;
341 	unsigned char		raid_partial_stripes_expensive;
342 	enum blk_zoned_model	zoned;
343 };
344 
345 #ifdef CONFIG_BLK_DEV_ZONED
346 
347 /*
348  * Maximum number of zones to report with a single report zones command.
349  */
350 #define BLK_ZONED_REPORT_MAX_ZONES	8192U
351 
352 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
353 extern int blkdev_report_zones(struct block_device *bdev,
354 			       sector_t sector, struct blk_zone *zones,
355 			       unsigned int *nr_zones);
356 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
357 			      sector_t nr_sectors, gfp_t gfp_mask);
358 extern int blk_revalidate_disk_zones(struct gendisk *disk);
359 
360 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
361 				     unsigned int cmd, unsigned long arg);
362 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
363 				    unsigned int cmd, unsigned long arg);
364 
365 #else /* CONFIG_BLK_DEV_ZONED */
366 
367 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
368 {
369 	return 0;
370 }
371 
372 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
373 {
374 	return 0;
375 }
376 
377 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
378 					    fmode_t mode, unsigned int cmd,
379 					    unsigned long arg)
380 {
381 	return -ENOTTY;
382 }
383 
384 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
385 					   fmode_t mode, unsigned int cmd,
386 					   unsigned long arg)
387 {
388 	return -ENOTTY;
389 }
390 
391 #endif /* CONFIG_BLK_DEV_ZONED */
392 
393 struct request_queue {
394 	/*
395 	 * Together with queue_head for cacheline sharing
396 	 */
397 	struct list_head	queue_head;
398 	struct request		*last_merge;
399 	struct elevator_queue	*elevator;
400 
401 	struct blk_queue_stats	*stats;
402 	struct rq_qos		*rq_qos;
403 
404 	make_request_fn		*make_request_fn;
405 	dma_drain_needed_fn	*dma_drain_needed;
406 
407 	const struct blk_mq_ops	*mq_ops;
408 
409 	/* sw queues */
410 	struct blk_mq_ctx __percpu	*queue_ctx;
411 	unsigned int		nr_queues;
412 
413 	unsigned int		queue_depth;
414 
415 	/* hw dispatch queues */
416 	struct blk_mq_hw_ctx	**queue_hw_ctx;
417 	unsigned int		nr_hw_queues;
418 
419 	struct backing_dev_info	*backing_dev_info;
420 
421 	/*
422 	 * The queue owner gets to use this for whatever they like.
423 	 * ll_rw_blk doesn't touch it.
424 	 */
425 	void			*queuedata;
426 
427 	/*
428 	 * various queue flags, see QUEUE_* below
429 	 */
430 	unsigned long		queue_flags;
431 	/*
432 	 * Number of contexts that have called blk_set_pm_only(). If this
433 	 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
434 	 * processed.
435 	 */
436 	atomic_t		pm_only;
437 
438 	/*
439 	 * ida allocated id for this queue.  Used to index queues from
440 	 * ioctx.
441 	 */
442 	int			id;
443 
444 	/*
445 	 * queue needs bounce pages for pages above this limit
446 	 */
447 	gfp_t			bounce_gfp;
448 
449 	spinlock_t		queue_lock;
450 
451 	/*
452 	 * queue kobject
453 	 */
454 	struct kobject kobj;
455 
456 	/*
457 	 * mq queue kobject
458 	 */
459 	struct kobject *mq_kobj;
460 
461 #ifdef  CONFIG_BLK_DEV_INTEGRITY
462 	struct blk_integrity integrity;
463 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
464 
465 #ifdef CONFIG_PM
466 	struct device		*dev;
467 	int			rpm_status;
468 	unsigned int		nr_pending;
469 #endif
470 
471 	/*
472 	 * queue settings
473 	 */
474 	unsigned long		nr_requests;	/* Max # of requests */
475 
476 	unsigned int		dma_drain_size;
477 	void			*dma_drain_buffer;
478 	unsigned int		dma_pad_mask;
479 	unsigned int		dma_alignment;
480 
481 	unsigned int		rq_timeout;
482 	int			poll_nsec;
483 
484 	struct blk_stat_callback	*poll_cb;
485 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
486 
487 	struct timer_list	timeout;
488 	struct work_struct	timeout_work;
489 
490 	struct list_head	icq_list;
491 #ifdef CONFIG_BLK_CGROUP
492 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
493 	struct blkcg_gq		*root_blkg;
494 	struct list_head	blkg_list;
495 #endif
496 
497 	struct queue_limits	limits;
498 
499 #ifdef CONFIG_BLK_DEV_ZONED
500 	/*
501 	 * Zoned block device information for request dispatch control.
502 	 * nr_zones is the total number of zones of the device. This is always
503 	 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
504 	 * bits which indicates if a zone is conventional (bit clear) or
505 	 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
506 	 * bits which indicates if a zone is write locked, that is, if a write
507 	 * request targeting the zone was dispatched. All three fields are
508 	 * initialized by the low level device driver (e.g. scsi/sd.c).
509 	 * Stacking drivers (device mappers) may or may not initialize
510 	 * these fields.
511 	 *
512 	 * Reads of this information must be protected with blk_queue_enter() /
513 	 * blk_queue_exit(). Modifying this information is only allowed while
514 	 * no requests are being processed. See also blk_mq_freeze_queue() and
515 	 * blk_mq_unfreeze_queue().
516 	 */
517 	unsigned int		nr_zones;
518 	unsigned long		*seq_zones_bitmap;
519 	unsigned long		*seq_zones_wlock;
520 #endif /* CONFIG_BLK_DEV_ZONED */
521 
522 	/*
523 	 * sg stuff
524 	 */
525 	unsigned int		sg_timeout;
526 	unsigned int		sg_reserved_size;
527 	int			node;
528 #ifdef CONFIG_BLK_DEV_IO_TRACE
529 	struct blk_trace	*blk_trace;
530 	struct mutex		blk_trace_mutex;
531 #endif
532 	/*
533 	 * for flush operations
534 	 */
535 	struct blk_flush_queue	*fq;
536 
537 	struct list_head	requeue_list;
538 	spinlock_t		requeue_lock;
539 	struct delayed_work	requeue_work;
540 
541 	struct mutex		sysfs_lock;
542 
543 	/*
544 	 * for reusing dead hctx instance in case of updating
545 	 * nr_hw_queues
546 	 */
547 	struct list_head	unused_hctx_list;
548 	spinlock_t		unused_hctx_lock;
549 
550 	int			mq_freeze_depth;
551 
552 #if defined(CONFIG_BLK_DEV_BSG)
553 	struct bsg_class_device bsg_dev;
554 #endif
555 
556 #ifdef CONFIG_BLK_DEV_THROTTLING
557 	/* Throttle data */
558 	struct throtl_data *td;
559 #endif
560 	struct rcu_head		rcu_head;
561 	wait_queue_head_t	mq_freeze_wq;
562 	/*
563 	 * Protect concurrent access to q_usage_counter by
564 	 * percpu_ref_kill() and percpu_ref_reinit().
565 	 */
566 	struct mutex		mq_freeze_lock;
567 	struct percpu_ref	q_usage_counter;
568 
569 	struct blk_mq_tag_set	*tag_set;
570 	struct list_head	tag_set_list;
571 	struct bio_set		bio_split;
572 
573 #ifdef CONFIG_BLK_DEBUG_FS
574 	struct dentry		*debugfs_dir;
575 	struct dentry		*sched_debugfs_dir;
576 	struct dentry		*rqos_debugfs_dir;
577 #endif
578 
579 	bool			mq_sysfs_init_done;
580 
581 	size_t			cmd_size;
582 
583 	struct work_struct	release_work;
584 
585 #define BLK_MAX_WRITE_HINTS	5
586 	u64			write_hints[BLK_MAX_WRITE_HINTS];
587 };
588 
589 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
590 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
591 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
592 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
593 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
594 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
595 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
596 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
597 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
598 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
599 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
600 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
601 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
602 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
603 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
604 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
605 #define QUEUE_FLAG_WC		17	/* Write back caching */
606 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
607 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
608 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
609 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
610 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
611 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
612 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
613 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
614 
615 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
616 				 (1 << QUEUE_FLAG_SAME_COMP))
617 
618 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
619 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
620 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
621 
622 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
623 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
624 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
625 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
626 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
627 #define blk_queue_noxmerges(q)	\
628 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
629 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
630 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
631 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
632 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
633 #define blk_queue_secure_erase(q) \
634 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
635 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
636 #define blk_queue_scsi_passthrough(q)	\
637 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
638 #define blk_queue_pci_p2pdma(q)	\
639 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
640 
641 #define blk_noretry_request(rq) \
642 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
643 			     REQ_FAILFAST_DRIVER))
644 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
645 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
646 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
647 
648 extern void blk_set_pm_only(struct request_queue *q);
649 extern void blk_clear_pm_only(struct request_queue *q);
650 
651 static inline bool blk_account_rq(struct request *rq)
652 {
653 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
654 }
655 
656 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
657 
658 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
659 
660 #define rq_dma_dir(rq) \
661 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
662 
663 #define dma_map_bvec(dev, bv, dir, attrs) \
664 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
665 	(dir), (attrs))
666 
667 static inline bool queue_is_mq(struct request_queue *q)
668 {
669 	return q->mq_ops;
670 }
671 
672 static inline enum blk_zoned_model
673 blk_queue_zoned_model(struct request_queue *q)
674 {
675 	return q->limits.zoned;
676 }
677 
678 static inline bool blk_queue_is_zoned(struct request_queue *q)
679 {
680 	switch (blk_queue_zoned_model(q)) {
681 	case BLK_ZONED_HA:
682 	case BLK_ZONED_HM:
683 		return true;
684 	default:
685 		return false;
686 	}
687 }
688 
689 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
690 {
691 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
692 }
693 
694 #ifdef CONFIG_BLK_DEV_ZONED
695 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
696 {
697 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
698 }
699 
700 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
701 					     sector_t sector)
702 {
703 	if (!blk_queue_is_zoned(q))
704 		return 0;
705 	return sector >> ilog2(q->limits.chunk_sectors);
706 }
707 
708 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
709 					 sector_t sector)
710 {
711 	if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
712 		return false;
713 	return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
714 }
715 #else /* CONFIG_BLK_DEV_ZONED */
716 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
717 {
718 	return 0;
719 }
720 #endif /* CONFIG_BLK_DEV_ZONED */
721 
722 static inline bool rq_is_sync(struct request *rq)
723 {
724 	return op_is_sync(rq->cmd_flags);
725 }
726 
727 static inline bool rq_mergeable(struct request *rq)
728 {
729 	if (blk_rq_is_passthrough(rq))
730 		return false;
731 
732 	if (req_op(rq) == REQ_OP_FLUSH)
733 		return false;
734 
735 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
736 		return false;
737 
738 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
739 		return false;
740 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
741 		return false;
742 
743 	return true;
744 }
745 
746 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
747 {
748 	if (bio_page(a) == bio_page(b) &&
749 	    bio_offset(a) == bio_offset(b))
750 		return true;
751 
752 	return false;
753 }
754 
755 static inline unsigned int blk_queue_depth(struct request_queue *q)
756 {
757 	if (q->queue_depth)
758 		return q->queue_depth;
759 
760 	return q->nr_requests;
761 }
762 
763 extern unsigned long blk_max_low_pfn, blk_max_pfn;
764 
765 /*
766  * standard bounce addresses:
767  *
768  * BLK_BOUNCE_HIGH	: bounce all highmem pages
769  * BLK_BOUNCE_ANY	: don't bounce anything
770  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
771  */
772 
773 #if BITS_PER_LONG == 32
774 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
775 #else
776 #define BLK_BOUNCE_HIGH		-1ULL
777 #endif
778 #define BLK_BOUNCE_ANY		(-1ULL)
779 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
780 
781 /*
782  * default timeout for SG_IO if none specified
783  */
784 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
785 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
786 
787 struct rq_map_data {
788 	struct page **pages;
789 	int page_order;
790 	int nr_entries;
791 	unsigned long offset;
792 	int null_mapped;
793 	int from_user;
794 };
795 
796 struct req_iterator {
797 	struct bvec_iter iter;
798 	struct bio *bio;
799 };
800 
801 /* This should not be used directly - use rq_for_each_segment */
802 #define for_each_bio(_bio)		\
803 	for (; _bio; _bio = _bio->bi_next)
804 #define __rq_for_each_bio(_bio, rq)	\
805 	if ((rq->bio))			\
806 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
807 
808 #define rq_for_each_segment(bvl, _rq, _iter)			\
809 	__rq_for_each_bio(_iter.bio, _rq)			\
810 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
811 
812 #define rq_for_each_bvec(bvl, _rq, _iter)			\
813 	__rq_for_each_bio(_iter.bio, _rq)			\
814 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
815 
816 #define rq_iter_last(bvec, _iter)				\
817 		(_iter.bio->bi_next == NULL &&			\
818 		 bio_iter_last(bvec, _iter.iter))
819 
820 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
821 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
822 #endif
823 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
824 extern void rq_flush_dcache_pages(struct request *rq);
825 #else
826 static inline void rq_flush_dcache_pages(struct request *rq)
827 {
828 }
829 #endif
830 
831 extern int blk_register_queue(struct gendisk *disk);
832 extern void blk_unregister_queue(struct gendisk *disk);
833 extern blk_qc_t generic_make_request(struct bio *bio);
834 extern blk_qc_t direct_make_request(struct bio *bio);
835 extern void blk_rq_init(struct request_queue *q, struct request *rq);
836 extern void blk_put_request(struct request *);
837 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
838 				       blk_mq_req_flags_t flags);
839 extern int blk_lld_busy(struct request_queue *q);
840 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
841 			     struct bio_set *bs, gfp_t gfp_mask,
842 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
843 			     void *data);
844 extern void blk_rq_unprep_clone(struct request *rq);
845 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
846 				     struct request *rq);
847 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
848 extern void blk_queue_split(struct request_queue *, struct bio **);
849 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
850 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
851 			      unsigned int, void __user *);
852 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
853 			  unsigned int, void __user *);
854 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
855 			 struct scsi_ioctl_command __user *);
856 
857 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
858 extern void blk_queue_exit(struct request_queue *q);
859 extern void blk_sync_queue(struct request_queue *q);
860 extern int blk_rq_map_user(struct request_queue *, struct request *,
861 			   struct rq_map_data *, void __user *, unsigned long,
862 			   gfp_t);
863 extern int blk_rq_unmap_user(struct bio *);
864 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
865 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
866 			       struct rq_map_data *, const struct iov_iter *,
867 			       gfp_t);
868 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
869 			  struct request *, int);
870 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
871 				  struct request *, int, rq_end_io_fn *);
872 
873 /* Helper to convert REQ_OP_XXX to its string format XXX */
874 extern const char *blk_op_str(unsigned int op);
875 
876 int blk_status_to_errno(blk_status_t status);
877 blk_status_t errno_to_blk_status(int errno);
878 
879 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
880 
881 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
882 {
883 	return bdev->bd_disk->queue;	/* this is never NULL */
884 }
885 
886 /*
887  * The basic unit of block I/O is a sector. It is used in a number of contexts
888  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
889  * bytes. Variables of type sector_t represent an offset or size that is a
890  * multiple of 512 bytes. Hence these two constants.
891  */
892 #ifndef SECTOR_SHIFT
893 #define SECTOR_SHIFT 9
894 #endif
895 #ifndef SECTOR_SIZE
896 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
897 #endif
898 
899 /*
900  * blk_rq_pos()			: the current sector
901  * blk_rq_bytes()		: bytes left in the entire request
902  * blk_rq_cur_bytes()		: bytes left in the current segment
903  * blk_rq_err_bytes()		: bytes left till the next error boundary
904  * blk_rq_sectors()		: sectors left in the entire request
905  * blk_rq_cur_sectors()		: sectors left in the current segment
906  */
907 static inline sector_t blk_rq_pos(const struct request *rq)
908 {
909 	return rq->__sector;
910 }
911 
912 static inline unsigned int blk_rq_bytes(const struct request *rq)
913 {
914 	return rq->__data_len;
915 }
916 
917 static inline int blk_rq_cur_bytes(const struct request *rq)
918 {
919 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
920 }
921 
922 extern unsigned int blk_rq_err_bytes(const struct request *rq);
923 
924 static inline unsigned int blk_rq_sectors(const struct request *rq)
925 {
926 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
927 }
928 
929 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
930 {
931 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
932 }
933 
934 #ifdef CONFIG_BLK_DEV_ZONED
935 static inline unsigned int blk_rq_zone_no(struct request *rq)
936 {
937 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
938 }
939 
940 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
941 {
942 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
943 }
944 #endif /* CONFIG_BLK_DEV_ZONED */
945 
946 /*
947  * Some commands like WRITE SAME have a payload or data transfer size which
948  * is different from the size of the request.  Any driver that supports such
949  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
950  * calculate the data transfer size.
951  */
952 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
953 {
954 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
955 		return rq->special_vec.bv_len;
956 	return blk_rq_bytes(rq);
957 }
958 
959 /*
960  * Return the first full biovec in the request.  The caller needs to check that
961  * there are any bvecs before calling this helper.
962  */
963 static inline struct bio_vec req_bvec(struct request *rq)
964 {
965 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
966 		return rq->special_vec;
967 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
968 }
969 
970 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
971 						     int op)
972 {
973 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
974 		return min(q->limits.max_discard_sectors,
975 			   UINT_MAX >> SECTOR_SHIFT);
976 
977 	if (unlikely(op == REQ_OP_WRITE_SAME))
978 		return q->limits.max_write_same_sectors;
979 
980 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
981 		return q->limits.max_write_zeroes_sectors;
982 
983 	return q->limits.max_sectors;
984 }
985 
986 /*
987  * Return maximum size of a request at given offset. Only valid for
988  * file system requests.
989  */
990 static inline unsigned int blk_max_size_offset(struct request_queue *q,
991 					       sector_t offset)
992 {
993 	if (!q->limits.chunk_sectors)
994 		return q->limits.max_sectors;
995 
996 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
997 			(offset & (q->limits.chunk_sectors - 1))));
998 }
999 
1000 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1001 						  sector_t offset)
1002 {
1003 	struct request_queue *q = rq->q;
1004 
1005 	if (blk_rq_is_passthrough(rq))
1006 		return q->limits.max_hw_sectors;
1007 
1008 	if (!q->limits.chunk_sectors ||
1009 	    req_op(rq) == REQ_OP_DISCARD ||
1010 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1011 		return blk_queue_get_max_sectors(q, req_op(rq));
1012 
1013 	return min(blk_max_size_offset(q, offset),
1014 			blk_queue_get_max_sectors(q, req_op(rq)));
1015 }
1016 
1017 static inline unsigned int blk_rq_count_bios(struct request *rq)
1018 {
1019 	unsigned int nr_bios = 0;
1020 	struct bio *bio;
1021 
1022 	__rq_for_each_bio(bio, rq)
1023 		nr_bios++;
1024 
1025 	return nr_bios;
1026 }
1027 
1028 void blk_steal_bios(struct bio_list *list, struct request *rq);
1029 
1030 /*
1031  * Request completion related functions.
1032  *
1033  * blk_update_request() completes given number of bytes and updates
1034  * the request without completing it.
1035  */
1036 extern bool blk_update_request(struct request *rq, blk_status_t error,
1037 			       unsigned int nr_bytes);
1038 
1039 extern void __blk_complete_request(struct request *);
1040 extern void blk_abort_request(struct request *);
1041 
1042 /*
1043  * Access functions for manipulating queue properties
1044  */
1045 extern void blk_cleanup_queue(struct request_queue *);
1046 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1047 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1048 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1049 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1050 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1051 extern void blk_queue_max_discard_segments(struct request_queue *,
1052 		unsigned short);
1053 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1054 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1055 		unsigned int max_discard_sectors);
1056 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1057 		unsigned int max_write_same_sectors);
1058 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1059 		unsigned int max_write_same_sectors);
1060 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1061 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1062 extern void blk_queue_alignment_offset(struct request_queue *q,
1063 				       unsigned int alignment);
1064 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1065 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1066 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1067 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1068 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1069 extern void blk_set_default_limits(struct queue_limits *lim);
1070 extern void blk_set_stacking_limits(struct queue_limits *lim);
1071 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1072 			    sector_t offset);
1073 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1074 			    sector_t offset);
1075 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1076 			      sector_t offset);
1077 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1078 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1079 extern int blk_queue_dma_drain(struct request_queue *q,
1080 			       dma_drain_needed_fn *dma_drain_needed,
1081 			       void *buf, unsigned int size);
1082 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1083 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1084 extern void blk_queue_dma_alignment(struct request_queue *, int);
1085 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1086 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1087 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1088 
1089 /*
1090  * Number of physical segments as sent to the device.
1091  *
1092  * Normally this is the number of discontiguous data segments sent by the
1093  * submitter.  But for data-less command like discard we might have no
1094  * actual data segments submitted, but the driver might have to add it's
1095  * own special payload.  In that case we still return 1 here so that this
1096  * special payload will be mapped.
1097  */
1098 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1099 {
1100 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1101 		return 1;
1102 	return rq->nr_phys_segments;
1103 }
1104 
1105 /*
1106  * Number of discard segments (or ranges) the driver needs to fill in.
1107  * Each discard bio merged into a request is counted as one segment.
1108  */
1109 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1110 {
1111 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1112 }
1113 
1114 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1115 extern void blk_dump_rq_flags(struct request *, char *);
1116 extern long nr_blockdev_pages(void);
1117 
1118 bool __must_check blk_get_queue(struct request_queue *);
1119 struct request_queue *blk_alloc_queue(gfp_t);
1120 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1121 extern void blk_put_queue(struct request_queue *);
1122 extern void blk_set_queue_dying(struct request_queue *);
1123 
1124 /*
1125  * blk_plug permits building a queue of related requests by holding the I/O
1126  * fragments for a short period. This allows merging of sequential requests
1127  * into single larger request. As the requests are moved from a per-task list to
1128  * the device's request_queue in a batch, this results in improved scalability
1129  * as the lock contention for request_queue lock is reduced.
1130  *
1131  * It is ok not to disable preemption when adding the request to the plug list
1132  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1133  * the plug list when the task sleeps by itself. For details, please see
1134  * schedule() where blk_schedule_flush_plug() is called.
1135  */
1136 struct blk_plug {
1137 	struct list_head mq_list; /* blk-mq requests */
1138 	struct list_head cb_list; /* md requires an unplug callback */
1139 	unsigned short rq_count;
1140 	bool multiple_queues;
1141 };
1142 #define BLK_MAX_REQUEST_COUNT 16
1143 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1144 
1145 struct blk_plug_cb;
1146 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1147 struct blk_plug_cb {
1148 	struct list_head list;
1149 	blk_plug_cb_fn callback;
1150 	void *data;
1151 };
1152 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1153 					     void *data, int size);
1154 extern void blk_start_plug(struct blk_plug *);
1155 extern void blk_finish_plug(struct blk_plug *);
1156 extern void blk_flush_plug_list(struct blk_plug *, bool);
1157 
1158 static inline void blk_flush_plug(struct task_struct *tsk)
1159 {
1160 	struct blk_plug *plug = tsk->plug;
1161 
1162 	if (plug)
1163 		blk_flush_plug_list(plug, false);
1164 }
1165 
1166 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1167 {
1168 	struct blk_plug *plug = tsk->plug;
1169 
1170 	if (plug)
1171 		blk_flush_plug_list(plug, true);
1172 }
1173 
1174 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1175 {
1176 	struct blk_plug *plug = tsk->plug;
1177 
1178 	return plug &&
1179 		 (!list_empty(&plug->mq_list) ||
1180 		 !list_empty(&plug->cb_list));
1181 }
1182 
1183 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1184 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1185 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1186 
1187 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1188 
1189 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1190 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1191 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1192 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1193 		struct bio **biop);
1194 
1195 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1196 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1197 
1198 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1199 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1200 		unsigned flags);
1201 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1202 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1203 
1204 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1205 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1206 {
1207 	return blkdev_issue_discard(sb->s_bdev,
1208 				    block << (sb->s_blocksize_bits -
1209 					      SECTOR_SHIFT),
1210 				    nr_blocks << (sb->s_blocksize_bits -
1211 						  SECTOR_SHIFT),
1212 				    gfp_mask, flags);
1213 }
1214 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1215 		sector_t nr_blocks, gfp_t gfp_mask)
1216 {
1217 	return blkdev_issue_zeroout(sb->s_bdev,
1218 				    block << (sb->s_blocksize_bits -
1219 					      SECTOR_SHIFT),
1220 				    nr_blocks << (sb->s_blocksize_bits -
1221 						  SECTOR_SHIFT),
1222 				    gfp_mask, 0);
1223 }
1224 
1225 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1226 
1227 enum blk_default_limits {
1228 	BLK_MAX_SEGMENTS	= 128,
1229 	BLK_SAFE_MAX_SECTORS	= 255,
1230 	BLK_DEF_MAX_SECTORS	= 2560,
1231 	BLK_MAX_SEGMENT_SIZE	= 65536,
1232 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1233 };
1234 
1235 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1236 {
1237 	return q->limits.seg_boundary_mask;
1238 }
1239 
1240 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1241 {
1242 	return q->limits.virt_boundary_mask;
1243 }
1244 
1245 static inline unsigned int queue_max_sectors(struct request_queue *q)
1246 {
1247 	return q->limits.max_sectors;
1248 }
1249 
1250 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1251 {
1252 	return q->limits.max_hw_sectors;
1253 }
1254 
1255 static inline unsigned short queue_max_segments(struct request_queue *q)
1256 {
1257 	return q->limits.max_segments;
1258 }
1259 
1260 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1261 {
1262 	return q->limits.max_discard_segments;
1263 }
1264 
1265 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1266 {
1267 	return q->limits.max_segment_size;
1268 }
1269 
1270 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1271 {
1272 	int retval = 512;
1273 
1274 	if (q && q->limits.logical_block_size)
1275 		retval = q->limits.logical_block_size;
1276 
1277 	return retval;
1278 }
1279 
1280 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1281 {
1282 	return queue_logical_block_size(bdev_get_queue(bdev));
1283 }
1284 
1285 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1286 {
1287 	return q->limits.physical_block_size;
1288 }
1289 
1290 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1291 {
1292 	return queue_physical_block_size(bdev_get_queue(bdev));
1293 }
1294 
1295 static inline unsigned int queue_io_min(struct request_queue *q)
1296 {
1297 	return q->limits.io_min;
1298 }
1299 
1300 static inline int bdev_io_min(struct block_device *bdev)
1301 {
1302 	return queue_io_min(bdev_get_queue(bdev));
1303 }
1304 
1305 static inline unsigned int queue_io_opt(struct request_queue *q)
1306 {
1307 	return q->limits.io_opt;
1308 }
1309 
1310 static inline int bdev_io_opt(struct block_device *bdev)
1311 {
1312 	return queue_io_opt(bdev_get_queue(bdev));
1313 }
1314 
1315 static inline int queue_alignment_offset(struct request_queue *q)
1316 {
1317 	if (q->limits.misaligned)
1318 		return -1;
1319 
1320 	return q->limits.alignment_offset;
1321 }
1322 
1323 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1324 {
1325 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1326 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1327 		<< SECTOR_SHIFT;
1328 
1329 	return (granularity + lim->alignment_offset - alignment) % granularity;
1330 }
1331 
1332 static inline int bdev_alignment_offset(struct block_device *bdev)
1333 {
1334 	struct request_queue *q = bdev_get_queue(bdev);
1335 
1336 	if (q->limits.misaligned)
1337 		return -1;
1338 
1339 	if (bdev != bdev->bd_contains)
1340 		return bdev->bd_part->alignment_offset;
1341 
1342 	return q->limits.alignment_offset;
1343 }
1344 
1345 static inline int queue_discard_alignment(struct request_queue *q)
1346 {
1347 	if (q->limits.discard_misaligned)
1348 		return -1;
1349 
1350 	return q->limits.discard_alignment;
1351 }
1352 
1353 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1354 {
1355 	unsigned int alignment, granularity, offset;
1356 
1357 	if (!lim->max_discard_sectors)
1358 		return 0;
1359 
1360 	/* Why are these in bytes, not sectors? */
1361 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1362 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1363 	if (!granularity)
1364 		return 0;
1365 
1366 	/* Offset of the partition start in 'granularity' sectors */
1367 	offset = sector_div(sector, granularity);
1368 
1369 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1370 	offset = (granularity + alignment - offset) % granularity;
1371 
1372 	/* Turn it back into bytes, gaah */
1373 	return offset << SECTOR_SHIFT;
1374 }
1375 
1376 static inline int bdev_discard_alignment(struct block_device *bdev)
1377 {
1378 	struct request_queue *q = bdev_get_queue(bdev);
1379 
1380 	if (bdev != bdev->bd_contains)
1381 		return bdev->bd_part->discard_alignment;
1382 
1383 	return q->limits.discard_alignment;
1384 }
1385 
1386 static inline unsigned int bdev_write_same(struct block_device *bdev)
1387 {
1388 	struct request_queue *q = bdev_get_queue(bdev);
1389 
1390 	if (q)
1391 		return q->limits.max_write_same_sectors;
1392 
1393 	return 0;
1394 }
1395 
1396 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1397 {
1398 	struct request_queue *q = bdev_get_queue(bdev);
1399 
1400 	if (q)
1401 		return q->limits.max_write_zeroes_sectors;
1402 
1403 	return 0;
1404 }
1405 
1406 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1407 {
1408 	struct request_queue *q = bdev_get_queue(bdev);
1409 
1410 	if (q)
1411 		return blk_queue_zoned_model(q);
1412 
1413 	return BLK_ZONED_NONE;
1414 }
1415 
1416 static inline bool bdev_is_zoned(struct block_device *bdev)
1417 {
1418 	struct request_queue *q = bdev_get_queue(bdev);
1419 
1420 	if (q)
1421 		return blk_queue_is_zoned(q);
1422 
1423 	return false;
1424 }
1425 
1426 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1427 {
1428 	struct request_queue *q = bdev_get_queue(bdev);
1429 
1430 	if (q)
1431 		return blk_queue_zone_sectors(q);
1432 	return 0;
1433 }
1434 
1435 static inline int queue_dma_alignment(struct request_queue *q)
1436 {
1437 	return q ? q->dma_alignment : 511;
1438 }
1439 
1440 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1441 				 unsigned int len)
1442 {
1443 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1444 	return !(addr & alignment) && !(len & alignment);
1445 }
1446 
1447 /* assumes size > 256 */
1448 static inline unsigned int blksize_bits(unsigned int size)
1449 {
1450 	unsigned int bits = 8;
1451 	do {
1452 		bits++;
1453 		size >>= 1;
1454 	} while (size > 256);
1455 	return bits;
1456 }
1457 
1458 static inline unsigned int block_size(struct block_device *bdev)
1459 {
1460 	return bdev->bd_block_size;
1461 }
1462 
1463 typedef struct {struct page *v;} Sector;
1464 
1465 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1466 
1467 static inline void put_dev_sector(Sector p)
1468 {
1469 	put_page(p.v);
1470 }
1471 
1472 int kblockd_schedule_work(struct work_struct *work);
1473 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1474 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1475 
1476 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1477 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1478 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1479 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1480 
1481 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1482 
1483 enum blk_integrity_flags {
1484 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1485 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1486 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1487 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1488 };
1489 
1490 struct blk_integrity_iter {
1491 	void			*prot_buf;
1492 	void			*data_buf;
1493 	sector_t		seed;
1494 	unsigned int		data_size;
1495 	unsigned short		interval;
1496 	const char		*disk_name;
1497 };
1498 
1499 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1500 
1501 struct blk_integrity_profile {
1502 	integrity_processing_fn		*generate_fn;
1503 	integrity_processing_fn		*verify_fn;
1504 	const char			*name;
1505 };
1506 
1507 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1508 extern void blk_integrity_unregister(struct gendisk *);
1509 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1510 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1511 				   struct scatterlist *);
1512 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1513 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1514 				   struct request *);
1515 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1516 				    struct bio *);
1517 
1518 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1519 {
1520 	struct blk_integrity *bi = &disk->queue->integrity;
1521 
1522 	if (!bi->profile)
1523 		return NULL;
1524 
1525 	return bi;
1526 }
1527 
1528 static inline
1529 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1530 {
1531 	return blk_get_integrity(bdev->bd_disk);
1532 }
1533 
1534 static inline bool blk_integrity_rq(struct request *rq)
1535 {
1536 	return rq->cmd_flags & REQ_INTEGRITY;
1537 }
1538 
1539 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1540 						    unsigned int segs)
1541 {
1542 	q->limits.max_integrity_segments = segs;
1543 }
1544 
1545 static inline unsigned short
1546 queue_max_integrity_segments(struct request_queue *q)
1547 {
1548 	return q->limits.max_integrity_segments;
1549 }
1550 
1551 /**
1552  * bio_integrity_intervals - Return number of integrity intervals for a bio
1553  * @bi:		blk_integrity profile for device
1554  * @sectors:	Size of the bio in 512-byte sectors
1555  *
1556  * Description: The block layer calculates everything in 512 byte
1557  * sectors but integrity metadata is done in terms of the data integrity
1558  * interval size of the storage device.  Convert the block layer sectors
1559  * to the appropriate number of integrity intervals.
1560  */
1561 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1562 						   unsigned int sectors)
1563 {
1564 	return sectors >> (bi->interval_exp - 9);
1565 }
1566 
1567 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1568 					       unsigned int sectors)
1569 {
1570 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1571 }
1572 
1573 /*
1574  * Return the first bvec that contains integrity data.  Only drivers that are
1575  * limited to a single integrity segment should use this helper.
1576  */
1577 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1578 {
1579 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1580 		return NULL;
1581 	return rq->bio->bi_integrity->bip_vec;
1582 }
1583 
1584 #else /* CONFIG_BLK_DEV_INTEGRITY */
1585 
1586 struct bio;
1587 struct block_device;
1588 struct gendisk;
1589 struct blk_integrity;
1590 
1591 static inline int blk_integrity_rq(struct request *rq)
1592 {
1593 	return 0;
1594 }
1595 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1596 					    struct bio *b)
1597 {
1598 	return 0;
1599 }
1600 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1601 					  struct bio *b,
1602 					  struct scatterlist *s)
1603 {
1604 	return 0;
1605 }
1606 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1607 {
1608 	return NULL;
1609 }
1610 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1611 {
1612 	return NULL;
1613 }
1614 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1615 {
1616 	return 0;
1617 }
1618 static inline void blk_integrity_register(struct gendisk *d,
1619 					 struct blk_integrity *b)
1620 {
1621 }
1622 static inline void blk_integrity_unregister(struct gendisk *d)
1623 {
1624 }
1625 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1626 						    unsigned int segs)
1627 {
1628 }
1629 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1630 {
1631 	return 0;
1632 }
1633 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1634 					  struct request *r1,
1635 					  struct request *r2)
1636 {
1637 	return true;
1638 }
1639 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1640 					   struct request *r,
1641 					   struct bio *b)
1642 {
1643 	return true;
1644 }
1645 
1646 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1647 						   unsigned int sectors)
1648 {
1649 	return 0;
1650 }
1651 
1652 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1653 					       unsigned int sectors)
1654 {
1655 	return 0;
1656 }
1657 
1658 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1659 {
1660 	return NULL;
1661 }
1662 
1663 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1664 
1665 struct block_device_operations {
1666 	int (*open) (struct block_device *, fmode_t);
1667 	void (*release) (struct gendisk *, fmode_t);
1668 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1669 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1670 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1671 	unsigned int (*check_events) (struct gendisk *disk,
1672 				      unsigned int clearing);
1673 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1674 	int (*media_changed) (struct gendisk *);
1675 	void (*unlock_native_capacity) (struct gendisk *);
1676 	int (*revalidate_disk) (struct gendisk *);
1677 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1678 	/* this callback is with swap_lock and sometimes page table lock held */
1679 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1680 	int (*report_zones)(struct gendisk *, sector_t sector,
1681 			    struct blk_zone *zones, unsigned int *nr_zones);
1682 	struct module *owner;
1683 	const struct pr_ops *pr_ops;
1684 };
1685 
1686 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1687 				 unsigned long);
1688 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1689 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1690 						struct writeback_control *);
1691 
1692 #ifdef CONFIG_BLK_DEV_ZONED
1693 bool blk_req_needs_zone_write_lock(struct request *rq);
1694 void __blk_req_zone_write_lock(struct request *rq);
1695 void __blk_req_zone_write_unlock(struct request *rq);
1696 
1697 static inline void blk_req_zone_write_lock(struct request *rq)
1698 {
1699 	if (blk_req_needs_zone_write_lock(rq))
1700 		__blk_req_zone_write_lock(rq);
1701 }
1702 
1703 static inline void blk_req_zone_write_unlock(struct request *rq)
1704 {
1705 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1706 		__blk_req_zone_write_unlock(rq);
1707 }
1708 
1709 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1710 {
1711 	return rq->q->seq_zones_wlock &&
1712 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1713 }
1714 
1715 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1716 {
1717 	if (!blk_req_needs_zone_write_lock(rq))
1718 		return true;
1719 	return !blk_req_zone_is_write_locked(rq);
1720 }
1721 #else
1722 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1723 {
1724 	return false;
1725 }
1726 
1727 static inline void blk_req_zone_write_lock(struct request *rq)
1728 {
1729 }
1730 
1731 static inline void blk_req_zone_write_unlock(struct request *rq)
1732 {
1733 }
1734 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1735 {
1736 	return false;
1737 }
1738 
1739 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1740 {
1741 	return true;
1742 }
1743 #endif /* CONFIG_BLK_DEV_ZONED */
1744 
1745 #else /* CONFIG_BLOCK */
1746 
1747 struct block_device;
1748 
1749 /*
1750  * stubs for when the block layer is configured out
1751  */
1752 #define buffer_heads_over_limit 0
1753 
1754 static inline long nr_blockdev_pages(void)
1755 {
1756 	return 0;
1757 }
1758 
1759 struct blk_plug {
1760 };
1761 
1762 static inline void blk_start_plug(struct blk_plug *plug)
1763 {
1764 }
1765 
1766 static inline void blk_finish_plug(struct blk_plug *plug)
1767 {
1768 }
1769 
1770 static inline void blk_flush_plug(struct task_struct *task)
1771 {
1772 }
1773 
1774 static inline void blk_schedule_flush_plug(struct task_struct *task)
1775 {
1776 }
1777 
1778 
1779 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1780 {
1781 	return false;
1782 }
1783 
1784 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1785 				     sector_t *error_sector)
1786 {
1787 	return 0;
1788 }
1789 
1790 #endif /* CONFIG_BLOCK */
1791 
1792 static inline void blk_wake_io_task(struct task_struct *waiter)
1793 {
1794 	/*
1795 	 * If we're polling, the task itself is doing the completions. For
1796 	 * that case, we don't need to signal a wakeup, it's enough to just
1797 	 * mark us as RUNNING.
1798 	 */
1799 	if (waiter == current)
1800 		__set_current_state(TASK_RUNNING);
1801 	else
1802 		wake_up_process(waiter);
1803 }
1804 
1805 #endif
1806