1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 31 struct module; 32 struct scsi_ioctl_command; 33 34 struct request_queue; 35 struct elevator_queue; 36 struct blk_trace; 37 struct request; 38 struct sg_io_hdr; 39 struct bsg_job; 40 struct blkcg_gq; 41 struct blk_flush_queue; 42 struct pr_ops; 43 struct rq_qos; 44 struct blk_queue_stats; 45 struct blk_stat_callback; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* elevator knows about this request */ 69 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70 /* drive already may have started this one */ 71 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72 /* may not be passed by ioscheduler */ 73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74 /* request for flush sequence */ 75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76 /* merge of different types, fail separately */ 77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78 /* track inflight for MQ */ 79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80 /* don't call prep for this one */ 81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82 /* set for "ide_preempt" requests and also for requests for which the SCSI 83 "quiesce" state must be ignored. */ 84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 85 /* contains copies of user pages */ 86 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 87 /* vaguely specified driver internal error. Ignored by the block layer */ 88 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 89 /* don't warn about errors */ 90 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 91 /* elevator private data attached */ 92 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 93 /* account into disk and partition IO statistics */ 94 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 95 /* request came from our alloc pool */ 96 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 97 /* runtime pm request */ 98 #define RQF_PM ((__force req_flags_t)(1 << 15)) 99 /* on IO scheduler merge hash */ 100 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 101 /* track IO completion time */ 102 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 103 /* Look at ->special_vec for the actual data payload instead of the 104 bio chain. */ 105 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 106 /* The per-zone write lock is held for this request */ 107 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 108 /* already slept for hybrid poll */ 109 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 110 /* ->timeout has been called, don't expire again */ 111 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 112 113 /* flags that prevent us from merging requests: */ 114 #define RQF_NOMERGE_FLAGS \ 115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 116 117 /* 118 * Request state for blk-mq. 119 */ 120 enum mq_rq_state { 121 MQ_RQ_IDLE = 0, 122 MQ_RQ_IN_FLIGHT = 1, 123 MQ_RQ_COMPLETE = 2, 124 }; 125 126 /* 127 * Try to put the fields that are referenced together in the same cacheline. 128 * 129 * If you modify this structure, make sure to update blk_rq_init() and 130 * especially blk_mq_rq_ctx_init() to take care of the added fields. 131 */ 132 struct request { 133 struct request_queue *q; 134 struct blk_mq_ctx *mq_ctx; 135 struct blk_mq_hw_ctx *mq_hctx; 136 137 unsigned int cmd_flags; /* op and common flags */ 138 req_flags_t rq_flags; 139 140 int tag; 141 int internal_tag; 142 143 /* the following two fields are internal, NEVER access directly */ 144 unsigned int __data_len; /* total data len */ 145 sector_t __sector; /* sector cursor */ 146 147 struct bio *bio; 148 struct bio *biotail; 149 150 struct list_head queuelist; 151 152 /* 153 * The hash is used inside the scheduler, and killed once the 154 * request reaches the dispatch list. The ipi_list is only used 155 * to queue the request for softirq completion, which is long 156 * after the request has been unhashed (and even removed from 157 * the dispatch list). 158 */ 159 union { 160 struct hlist_node hash; /* merge hash */ 161 struct list_head ipi_list; 162 }; 163 164 /* 165 * The rb_node is only used inside the io scheduler, requests 166 * are pruned when moved to the dispatch queue. So let the 167 * completion_data share space with the rb_node. 168 */ 169 union { 170 struct rb_node rb_node; /* sort/lookup */ 171 struct bio_vec special_vec; 172 void *completion_data; 173 int error_count; /* for legacy drivers, don't use */ 174 }; 175 176 /* 177 * Three pointers are available for the IO schedulers, if they need 178 * more they have to dynamically allocate it. Flush requests are 179 * never put on the IO scheduler. So let the flush fields share 180 * space with the elevator data. 181 */ 182 union { 183 struct { 184 struct io_cq *icq; 185 void *priv[2]; 186 } elv; 187 188 struct { 189 unsigned int seq; 190 struct list_head list; 191 rq_end_io_fn *saved_end_io; 192 } flush; 193 }; 194 195 struct gendisk *rq_disk; 196 struct hd_struct *part; 197 /* Time that I/O was submitted to the kernel. */ 198 u64 start_time_ns; 199 /* Time that I/O was submitted to the device. */ 200 u64 io_start_time_ns; 201 202 #ifdef CONFIG_BLK_WBT 203 unsigned short wbt_flags; 204 #endif 205 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 206 unsigned short throtl_size; 207 #endif 208 209 /* 210 * Number of scatter-gather DMA addr+len pairs after 211 * physical address coalescing is performed. 212 */ 213 unsigned short nr_phys_segments; 214 215 #if defined(CONFIG_BLK_DEV_INTEGRITY) 216 unsigned short nr_integrity_segments; 217 #endif 218 219 unsigned short write_hint; 220 unsigned short ioprio; 221 222 unsigned int extra_len; /* length of alignment and padding */ 223 224 enum mq_rq_state state; 225 refcount_t ref; 226 227 unsigned int timeout; 228 unsigned long deadline; 229 230 union { 231 struct __call_single_data csd; 232 u64 fifo_time; 233 }; 234 235 /* 236 * completion callback. 237 */ 238 rq_end_io_fn *end_io; 239 void *end_io_data; 240 }; 241 242 static inline bool blk_op_is_scsi(unsigned int op) 243 { 244 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 245 } 246 247 static inline bool blk_op_is_private(unsigned int op) 248 { 249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 250 } 251 252 static inline bool blk_rq_is_scsi(struct request *rq) 253 { 254 return blk_op_is_scsi(req_op(rq)); 255 } 256 257 static inline bool blk_rq_is_private(struct request *rq) 258 { 259 return blk_op_is_private(req_op(rq)); 260 } 261 262 static inline bool blk_rq_is_passthrough(struct request *rq) 263 { 264 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 265 } 266 267 static inline bool bio_is_passthrough(struct bio *bio) 268 { 269 unsigned op = bio_op(bio); 270 271 return blk_op_is_scsi(op) || blk_op_is_private(op); 272 } 273 274 static inline unsigned short req_get_ioprio(struct request *req) 275 { 276 return req->ioprio; 277 } 278 279 #include <linux/elevator.h> 280 281 struct blk_queue_ctx; 282 283 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 284 285 struct bio_vec; 286 typedef int (dma_drain_needed_fn)(struct request *); 287 288 enum blk_eh_timer_return { 289 BLK_EH_DONE, /* drivers has completed the command */ 290 BLK_EH_RESET_TIMER, /* reset timer and try again */ 291 }; 292 293 enum blk_queue_state { 294 Queue_down, 295 Queue_up, 296 }; 297 298 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 299 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 300 301 #define BLK_SCSI_MAX_CMDS (256) 302 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 303 304 /* 305 * Zoned block device models (zoned limit). 306 */ 307 enum blk_zoned_model { 308 BLK_ZONED_NONE, /* Regular block device */ 309 BLK_ZONED_HA, /* Host-aware zoned block device */ 310 BLK_ZONED_HM, /* Host-managed zoned block device */ 311 }; 312 313 struct queue_limits { 314 unsigned long bounce_pfn; 315 unsigned long seg_boundary_mask; 316 unsigned long virt_boundary_mask; 317 318 unsigned int max_hw_sectors; 319 unsigned int max_dev_sectors; 320 unsigned int chunk_sectors; 321 unsigned int max_sectors; 322 unsigned int max_segment_size; 323 unsigned int physical_block_size; 324 unsigned int alignment_offset; 325 unsigned int io_min; 326 unsigned int io_opt; 327 unsigned int max_discard_sectors; 328 unsigned int max_hw_discard_sectors; 329 unsigned int max_write_same_sectors; 330 unsigned int max_write_zeroes_sectors; 331 unsigned int discard_granularity; 332 unsigned int discard_alignment; 333 334 unsigned short logical_block_size; 335 unsigned short max_segments; 336 unsigned short max_integrity_segments; 337 unsigned short max_discard_segments; 338 339 unsigned char misaligned; 340 unsigned char discard_misaligned; 341 unsigned char raid_partial_stripes_expensive; 342 enum blk_zoned_model zoned; 343 }; 344 345 #ifdef CONFIG_BLK_DEV_ZONED 346 347 /* 348 * Maximum number of zones to report with a single report zones command. 349 */ 350 #define BLK_ZONED_REPORT_MAX_ZONES 8192U 351 352 extern unsigned int blkdev_nr_zones(struct block_device *bdev); 353 extern int blkdev_report_zones(struct block_device *bdev, 354 sector_t sector, struct blk_zone *zones, 355 unsigned int *nr_zones); 356 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 357 sector_t nr_sectors, gfp_t gfp_mask); 358 extern int blk_revalidate_disk_zones(struct gendisk *disk); 359 360 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 361 unsigned int cmd, unsigned long arg); 362 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 363 unsigned int cmd, unsigned long arg); 364 365 #else /* CONFIG_BLK_DEV_ZONED */ 366 367 static inline unsigned int blkdev_nr_zones(struct block_device *bdev) 368 { 369 return 0; 370 } 371 372 static inline int blk_revalidate_disk_zones(struct gendisk *disk) 373 { 374 return 0; 375 } 376 377 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 378 fmode_t mode, unsigned int cmd, 379 unsigned long arg) 380 { 381 return -ENOTTY; 382 } 383 384 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 385 fmode_t mode, unsigned int cmd, 386 unsigned long arg) 387 { 388 return -ENOTTY; 389 } 390 391 #endif /* CONFIG_BLK_DEV_ZONED */ 392 393 struct request_queue { 394 /* 395 * Together with queue_head for cacheline sharing 396 */ 397 struct list_head queue_head; 398 struct request *last_merge; 399 struct elevator_queue *elevator; 400 401 struct blk_queue_stats *stats; 402 struct rq_qos *rq_qos; 403 404 make_request_fn *make_request_fn; 405 dma_drain_needed_fn *dma_drain_needed; 406 407 const struct blk_mq_ops *mq_ops; 408 409 /* sw queues */ 410 struct blk_mq_ctx __percpu *queue_ctx; 411 unsigned int nr_queues; 412 413 unsigned int queue_depth; 414 415 /* hw dispatch queues */ 416 struct blk_mq_hw_ctx **queue_hw_ctx; 417 unsigned int nr_hw_queues; 418 419 struct backing_dev_info *backing_dev_info; 420 421 /* 422 * The queue owner gets to use this for whatever they like. 423 * ll_rw_blk doesn't touch it. 424 */ 425 void *queuedata; 426 427 /* 428 * various queue flags, see QUEUE_* below 429 */ 430 unsigned long queue_flags; 431 /* 432 * Number of contexts that have called blk_set_pm_only(). If this 433 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 434 * processed. 435 */ 436 atomic_t pm_only; 437 438 /* 439 * ida allocated id for this queue. Used to index queues from 440 * ioctx. 441 */ 442 int id; 443 444 /* 445 * queue needs bounce pages for pages above this limit 446 */ 447 gfp_t bounce_gfp; 448 449 spinlock_t queue_lock; 450 451 /* 452 * queue kobject 453 */ 454 struct kobject kobj; 455 456 /* 457 * mq queue kobject 458 */ 459 struct kobject *mq_kobj; 460 461 #ifdef CONFIG_BLK_DEV_INTEGRITY 462 struct blk_integrity integrity; 463 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 464 465 #ifdef CONFIG_PM 466 struct device *dev; 467 int rpm_status; 468 unsigned int nr_pending; 469 #endif 470 471 /* 472 * queue settings 473 */ 474 unsigned long nr_requests; /* Max # of requests */ 475 476 unsigned int dma_drain_size; 477 void *dma_drain_buffer; 478 unsigned int dma_pad_mask; 479 unsigned int dma_alignment; 480 481 unsigned int rq_timeout; 482 int poll_nsec; 483 484 struct blk_stat_callback *poll_cb; 485 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 486 487 struct timer_list timeout; 488 struct work_struct timeout_work; 489 490 struct list_head icq_list; 491 #ifdef CONFIG_BLK_CGROUP 492 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 493 struct blkcg_gq *root_blkg; 494 struct list_head blkg_list; 495 #endif 496 497 struct queue_limits limits; 498 499 #ifdef CONFIG_BLK_DEV_ZONED 500 /* 501 * Zoned block device information for request dispatch control. 502 * nr_zones is the total number of zones of the device. This is always 503 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones 504 * bits which indicates if a zone is conventional (bit clear) or 505 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones 506 * bits which indicates if a zone is write locked, that is, if a write 507 * request targeting the zone was dispatched. All three fields are 508 * initialized by the low level device driver (e.g. scsi/sd.c). 509 * Stacking drivers (device mappers) may or may not initialize 510 * these fields. 511 * 512 * Reads of this information must be protected with blk_queue_enter() / 513 * blk_queue_exit(). Modifying this information is only allowed while 514 * no requests are being processed. See also blk_mq_freeze_queue() and 515 * blk_mq_unfreeze_queue(). 516 */ 517 unsigned int nr_zones; 518 unsigned long *seq_zones_bitmap; 519 unsigned long *seq_zones_wlock; 520 #endif /* CONFIG_BLK_DEV_ZONED */ 521 522 /* 523 * sg stuff 524 */ 525 unsigned int sg_timeout; 526 unsigned int sg_reserved_size; 527 int node; 528 #ifdef CONFIG_BLK_DEV_IO_TRACE 529 struct blk_trace *blk_trace; 530 struct mutex blk_trace_mutex; 531 #endif 532 /* 533 * for flush operations 534 */ 535 struct blk_flush_queue *fq; 536 537 struct list_head requeue_list; 538 spinlock_t requeue_lock; 539 struct delayed_work requeue_work; 540 541 struct mutex sysfs_lock; 542 543 /* 544 * for reusing dead hctx instance in case of updating 545 * nr_hw_queues 546 */ 547 struct list_head unused_hctx_list; 548 spinlock_t unused_hctx_lock; 549 550 int mq_freeze_depth; 551 552 #if defined(CONFIG_BLK_DEV_BSG) 553 struct bsg_class_device bsg_dev; 554 #endif 555 556 #ifdef CONFIG_BLK_DEV_THROTTLING 557 /* Throttle data */ 558 struct throtl_data *td; 559 #endif 560 struct rcu_head rcu_head; 561 wait_queue_head_t mq_freeze_wq; 562 /* 563 * Protect concurrent access to q_usage_counter by 564 * percpu_ref_kill() and percpu_ref_reinit(). 565 */ 566 struct mutex mq_freeze_lock; 567 struct percpu_ref q_usage_counter; 568 569 struct blk_mq_tag_set *tag_set; 570 struct list_head tag_set_list; 571 struct bio_set bio_split; 572 573 #ifdef CONFIG_BLK_DEBUG_FS 574 struct dentry *debugfs_dir; 575 struct dentry *sched_debugfs_dir; 576 struct dentry *rqos_debugfs_dir; 577 #endif 578 579 bool mq_sysfs_init_done; 580 581 size_t cmd_size; 582 583 struct work_struct release_work; 584 585 #define BLK_MAX_WRITE_HINTS 5 586 u64 write_hints[BLK_MAX_WRITE_HINTS]; 587 }; 588 589 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 590 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 591 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 592 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 593 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 594 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 595 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 596 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 597 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 598 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 599 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 600 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 601 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 602 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 603 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 604 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 605 #define QUEUE_FLAG_WC 17 /* Write back caching */ 606 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 607 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 608 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 609 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 610 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 611 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 612 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 613 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 614 615 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 616 (1 << QUEUE_FLAG_SAME_COMP)) 617 618 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 619 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 620 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 621 622 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 623 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 624 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 625 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 626 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 627 #define blk_queue_noxmerges(q) \ 628 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 629 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 630 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 631 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 632 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 633 #define blk_queue_secure_erase(q) \ 634 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 635 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 636 #define blk_queue_scsi_passthrough(q) \ 637 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 638 #define blk_queue_pci_p2pdma(q) \ 639 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 640 641 #define blk_noretry_request(rq) \ 642 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 643 REQ_FAILFAST_DRIVER)) 644 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 645 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 646 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 647 648 extern void blk_set_pm_only(struct request_queue *q); 649 extern void blk_clear_pm_only(struct request_queue *q); 650 651 static inline bool blk_account_rq(struct request *rq) 652 { 653 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 654 } 655 656 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 657 658 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 659 660 #define rq_dma_dir(rq) \ 661 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 662 663 #define dma_map_bvec(dev, bv, dir, attrs) \ 664 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 665 (dir), (attrs)) 666 667 static inline bool queue_is_mq(struct request_queue *q) 668 { 669 return q->mq_ops; 670 } 671 672 static inline enum blk_zoned_model 673 blk_queue_zoned_model(struct request_queue *q) 674 { 675 return q->limits.zoned; 676 } 677 678 static inline bool blk_queue_is_zoned(struct request_queue *q) 679 { 680 switch (blk_queue_zoned_model(q)) { 681 case BLK_ZONED_HA: 682 case BLK_ZONED_HM: 683 return true; 684 default: 685 return false; 686 } 687 } 688 689 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 690 { 691 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 692 } 693 694 #ifdef CONFIG_BLK_DEV_ZONED 695 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 696 { 697 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 698 } 699 700 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 701 sector_t sector) 702 { 703 if (!blk_queue_is_zoned(q)) 704 return 0; 705 return sector >> ilog2(q->limits.chunk_sectors); 706 } 707 708 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 709 sector_t sector) 710 { 711 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) 712 return false; 713 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); 714 } 715 #else /* CONFIG_BLK_DEV_ZONED */ 716 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 717 { 718 return 0; 719 } 720 #endif /* CONFIG_BLK_DEV_ZONED */ 721 722 static inline bool rq_is_sync(struct request *rq) 723 { 724 return op_is_sync(rq->cmd_flags); 725 } 726 727 static inline bool rq_mergeable(struct request *rq) 728 { 729 if (blk_rq_is_passthrough(rq)) 730 return false; 731 732 if (req_op(rq) == REQ_OP_FLUSH) 733 return false; 734 735 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 736 return false; 737 738 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 739 return false; 740 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 741 return false; 742 743 return true; 744 } 745 746 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 747 { 748 if (bio_page(a) == bio_page(b) && 749 bio_offset(a) == bio_offset(b)) 750 return true; 751 752 return false; 753 } 754 755 static inline unsigned int blk_queue_depth(struct request_queue *q) 756 { 757 if (q->queue_depth) 758 return q->queue_depth; 759 760 return q->nr_requests; 761 } 762 763 extern unsigned long blk_max_low_pfn, blk_max_pfn; 764 765 /* 766 * standard bounce addresses: 767 * 768 * BLK_BOUNCE_HIGH : bounce all highmem pages 769 * BLK_BOUNCE_ANY : don't bounce anything 770 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 771 */ 772 773 #if BITS_PER_LONG == 32 774 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 775 #else 776 #define BLK_BOUNCE_HIGH -1ULL 777 #endif 778 #define BLK_BOUNCE_ANY (-1ULL) 779 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 780 781 /* 782 * default timeout for SG_IO if none specified 783 */ 784 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 785 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 786 787 struct rq_map_data { 788 struct page **pages; 789 int page_order; 790 int nr_entries; 791 unsigned long offset; 792 int null_mapped; 793 int from_user; 794 }; 795 796 struct req_iterator { 797 struct bvec_iter iter; 798 struct bio *bio; 799 }; 800 801 /* This should not be used directly - use rq_for_each_segment */ 802 #define for_each_bio(_bio) \ 803 for (; _bio; _bio = _bio->bi_next) 804 #define __rq_for_each_bio(_bio, rq) \ 805 if ((rq->bio)) \ 806 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 807 808 #define rq_for_each_segment(bvl, _rq, _iter) \ 809 __rq_for_each_bio(_iter.bio, _rq) \ 810 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 811 812 #define rq_for_each_bvec(bvl, _rq, _iter) \ 813 __rq_for_each_bio(_iter.bio, _rq) \ 814 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 815 816 #define rq_iter_last(bvec, _iter) \ 817 (_iter.bio->bi_next == NULL && \ 818 bio_iter_last(bvec, _iter.iter)) 819 820 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 821 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 822 #endif 823 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 824 extern void rq_flush_dcache_pages(struct request *rq); 825 #else 826 static inline void rq_flush_dcache_pages(struct request *rq) 827 { 828 } 829 #endif 830 831 extern int blk_register_queue(struct gendisk *disk); 832 extern void blk_unregister_queue(struct gendisk *disk); 833 extern blk_qc_t generic_make_request(struct bio *bio); 834 extern blk_qc_t direct_make_request(struct bio *bio); 835 extern void blk_rq_init(struct request_queue *q, struct request *rq); 836 extern void blk_put_request(struct request *); 837 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 838 blk_mq_req_flags_t flags); 839 extern int blk_lld_busy(struct request_queue *q); 840 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 841 struct bio_set *bs, gfp_t gfp_mask, 842 int (*bio_ctr)(struct bio *, struct bio *, void *), 843 void *data); 844 extern void blk_rq_unprep_clone(struct request *rq); 845 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 846 struct request *rq); 847 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 848 extern void blk_queue_split(struct request_queue *, struct bio **); 849 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 850 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 851 unsigned int, void __user *); 852 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 853 unsigned int, void __user *); 854 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 855 struct scsi_ioctl_command __user *); 856 857 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 858 extern void blk_queue_exit(struct request_queue *q); 859 extern void blk_sync_queue(struct request_queue *q); 860 extern int blk_rq_map_user(struct request_queue *, struct request *, 861 struct rq_map_data *, void __user *, unsigned long, 862 gfp_t); 863 extern int blk_rq_unmap_user(struct bio *); 864 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 865 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 866 struct rq_map_data *, const struct iov_iter *, 867 gfp_t); 868 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 869 struct request *, int); 870 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 871 struct request *, int, rq_end_io_fn *); 872 873 /* Helper to convert REQ_OP_XXX to its string format XXX */ 874 extern const char *blk_op_str(unsigned int op); 875 876 int blk_status_to_errno(blk_status_t status); 877 blk_status_t errno_to_blk_status(int errno); 878 879 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 880 881 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 882 { 883 return bdev->bd_disk->queue; /* this is never NULL */ 884 } 885 886 /* 887 * The basic unit of block I/O is a sector. It is used in a number of contexts 888 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 889 * bytes. Variables of type sector_t represent an offset or size that is a 890 * multiple of 512 bytes. Hence these two constants. 891 */ 892 #ifndef SECTOR_SHIFT 893 #define SECTOR_SHIFT 9 894 #endif 895 #ifndef SECTOR_SIZE 896 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 897 #endif 898 899 /* 900 * blk_rq_pos() : the current sector 901 * blk_rq_bytes() : bytes left in the entire request 902 * blk_rq_cur_bytes() : bytes left in the current segment 903 * blk_rq_err_bytes() : bytes left till the next error boundary 904 * blk_rq_sectors() : sectors left in the entire request 905 * blk_rq_cur_sectors() : sectors left in the current segment 906 */ 907 static inline sector_t blk_rq_pos(const struct request *rq) 908 { 909 return rq->__sector; 910 } 911 912 static inline unsigned int blk_rq_bytes(const struct request *rq) 913 { 914 return rq->__data_len; 915 } 916 917 static inline int blk_rq_cur_bytes(const struct request *rq) 918 { 919 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 920 } 921 922 extern unsigned int blk_rq_err_bytes(const struct request *rq); 923 924 static inline unsigned int blk_rq_sectors(const struct request *rq) 925 { 926 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 927 } 928 929 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 930 { 931 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 932 } 933 934 #ifdef CONFIG_BLK_DEV_ZONED 935 static inline unsigned int blk_rq_zone_no(struct request *rq) 936 { 937 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 938 } 939 940 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 941 { 942 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 943 } 944 #endif /* CONFIG_BLK_DEV_ZONED */ 945 946 /* 947 * Some commands like WRITE SAME have a payload or data transfer size which 948 * is different from the size of the request. Any driver that supports such 949 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 950 * calculate the data transfer size. 951 */ 952 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 953 { 954 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 955 return rq->special_vec.bv_len; 956 return blk_rq_bytes(rq); 957 } 958 959 /* 960 * Return the first full biovec in the request. The caller needs to check that 961 * there are any bvecs before calling this helper. 962 */ 963 static inline struct bio_vec req_bvec(struct request *rq) 964 { 965 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 966 return rq->special_vec; 967 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 968 } 969 970 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 971 int op) 972 { 973 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 974 return min(q->limits.max_discard_sectors, 975 UINT_MAX >> SECTOR_SHIFT); 976 977 if (unlikely(op == REQ_OP_WRITE_SAME)) 978 return q->limits.max_write_same_sectors; 979 980 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 981 return q->limits.max_write_zeroes_sectors; 982 983 return q->limits.max_sectors; 984 } 985 986 /* 987 * Return maximum size of a request at given offset. Only valid for 988 * file system requests. 989 */ 990 static inline unsigned int blk_max_size_offset(struct request_queue *q, 991 sector_t offset) 992 { 993 if (!q->limits.chunk_sectors) 994 return q->limits.max_sectors; 995 996 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 997 (offset & (q->limits.chunk_sectors - 1)))); 998 } 999 1000 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1001 sector_t offset) 1002 { 1003 struct request_queue *q = rq->q; 1004 1005 if (blk_rq_is_passthrough(rq)) 1006 return q->limits.max_hw_sectors; 1007 1008 if (!q->limits.chunk_sectors || 1009 req_op(rq) == REQ_OP_DISCARD || 1010 req_op(rq) == REQ_OP_SECURE_ERASE) 1011 return blk_queue_get_max_sectors(q, req_op(rq)); 1012 1013 return min(blk_max_size_offset(q, offset), 1014 blk_queue_get_max_sectors(q, req_op(rq))); 1015 } 1016 1017 static inline unsigned int blk_rq_count_bios(struct request *rq) 1018 { 1019 unsigned int nr_bios = 0; 1020 struct bio *bio; 1021 1022 __rq_for_each_bio(bio, rq) 1023 nr_bios++; 1024 1025 return nr_bios; 1026 } 1027 1028 void blk_steal_bios(struct bio_list *list, struct request *rq); 1029 1030 /* 1031 * Request completion related functions. 1032 * 1033 * blk_update_request() completes given number of bytes and updates 1034 * the request without completing it. 1035 */ 1036 extern bool blk_update_request(struct request *rq, blk_status_t error, 1037 unsigned int nr_bytes); 1038 1039 extern void __blk_complete_request(struct request *); 1040 extern void blk_abort_request(struct request *); 1041 1042 /* 1043 * Access functions for manipulating queue properties 1044 */ 1045 extern void blk_cleanup_queue(struct request_queue *); 1046 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1047 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1048 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1049 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1050 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1051 extern void blk_queue_max_discard_segments(struct request_queue *, 1052 unsigned short); 1053 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1054 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1055 unsigned int max_discard_sectors); 1056 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1057 unsigned int max_write_same_sectors); 1058 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1059 unsigned int max_write_same_sectors); 1060 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1061 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1062 extern void blk_queue_alignment_offset(struct request_queue *q, 1063 unsigned int alignment); 1064 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1065 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1066 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1067 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1068 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1069 extern void blk_set_default_limits(struct queue_limits *lim); 1070 extern void blk_set_stacking_limits(struct queue_limits *lim); 1071 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1072 sector_t offset); 1073 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1074 sector_t offset); 1075 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1076 sector_t offset); 1077 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1078 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1079 extern int blk_queue_dma_drain(struct request_queue *q, 1080 dma_drain_needed_fn *dma_drain_needed, 1081 void *buf, unsigned int size); 1082 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1083 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1084 extern void blk_queue_dma_alignment(struct request_queue *, int); 1085 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1086 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1087 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1088 1089 /* 1090 * Number of physical segments as sent to the device. 1091 * 1092 * Normally this is the number of discontiguous data segments sent by the 1093 * submitter. But for data-less command like discard we might have no 1094 * actual data segments submitted, but the driver might have to add it's 1095 * own special payload. In that case we still return 1 here so that this 1096 * special payload will be mapped. 1097 */ 1098 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1099 { 1100 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1101 return 1; 1102 return rq->nr_phys_segments; 1103 } 1104 1105 /* 1106 * Number of discard segments (or ranges) the driver needs to fill in. 1107 * Each discard bio merged into a request is counted as one segment. 1108 */ 1109 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1110 { 1111 return max_t(unsigned short, rq->nr_phys_segments, 1); 1112 } 1113 1114 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1115 extern void blk_dump_rq_flags(struct request *, char *); 1116 extern long nr_blockdev_pages(void); 1117 1118 bool __must_check blk_get_queue(struct request_queue *); 1119 struct request_queue *blk_alloc_queue(gfp_t); 1120 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id); 1121 extern void blk_put_queue(struct request_queue *); 1122 extern void blk_set_queue_dying(struct request_queue *); 1123 1124 /* 1125 * blk_plug permits building a queue of related requests by holding the I/O 1126 * fragments for a short period. This allows merging of sequential requests 1127 * into single larger request. As the requests are moved from a per-task list to 1128 * the device's request_queue in a batch, this results in improved scalability 1129 * as the lock contention for request_queue lock is reduced. 1130 * 1131 * It is ok not to disable preemption when adding the request to the plug list 1132 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1133 * the plug list when the task sleeps by itself. For details, please see 1134 * schedule() where blk_schedule_flush_plug() is called. 1135 */ 1136 struct blk_plug { 1137 struct list_head mq_list; /* blk-mq requests */ 1138 struct list_head cb_list; /* md requires an unplug callback */ 1139 unsigned short rq_count; 1140 bool multiple_queues; 1141 }; 1142 #define BLK_MAX_REQUEST_COUNT 16 1143 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1144 1145 struct blk_plug_cb; 1146 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1147 struct blk_plug_cb { 1148 struct list_head list; 1149 blk_plug_cb_fn callback; 1150 void *data; 1151 }; 1152 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1153 void *data, int size); 1154 extern void blk_start_plug(struct blk_plug *); 1155 extern void blk_finish_plug(struct blk_plug *); 1156 extern void blk_flush_plug_list(struct blk_plug *, bool); 1157 1158 static inline void blk_flush_plug(struct task_struct *tsk) 1159 { 1160 struct blk_plug *plug = tsk->plug; 1161 1162 if (plug) 1163 blk_flush_plug_list(plug, false); 1164 } 1165 1166 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1167 { 1168 struct blk_plug *plug = tsk->plug; 1169 1170 if (plug) 1171 blk_flush_plug_list(plug, true); 1172 } 1173 1174 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1175 { 1176 struct blk_plug *plug = tsk->plug; 1177 1178 return plug && 1179 (!list_empty(&plug->mq_list) || 1180 !list_empty(&plug->cb_list)); 1181 } 1182 1183 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1184 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1185 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1186 1187 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1188 1189 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1190 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1191 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1192 sector_t nr_sects, gfp_t gfp_mask, int flags, 1193 struct bio **biop); 1194 1195 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1196 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1197 1198 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1199 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1200 unsigned flags); 1201 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1202 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1203 1204 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1205 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1206 { 1207 return blkdev_issue_discard(sb->s_bdev, 1208 block << (sb->s_blocksize_bits - 1209 SECTOR_SHIFT), 1210 nr_blocks << (sb->s_blocksize_bits - 1211 SECTOR_SHIFT), 1212 gfp_mask, flags); 1213 } 1214 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1215 sector_t nr_blocks, gfp_t gfp_mask) 1216 { 1217 return blkdev_issue_zeroout(sb->s_bdev, 1218 block << (sb->s_blocksize_bits - 1219 SECTOR_SHIFT), 1220 nr_blocks << (sb->s_blocksize_bits - 1221 SECTOR_SHIFT), 1222 gfp_mask, 0); 1223 } 1224 1225 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1226 1227 enum blk_default_limits { 1228 BLK_MAX_SEGMENTS = 128, 1229 BLK_SAFE_MAX_SECTORS = 255, 1230 BLK_DEF_MAX_SECTORS = 2560, 1231 BLK_MAX_SEGMENT_SIZE = 65536, 1232 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1233 }; 1234 1235 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1236 { 1237 return q->limits.seg_boundary_mask; 1238 } 1239 1240 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1241 { 1242 return q->limits.virt_boundary_mask; 1243 } 1244 1245 static inline unsigned int queue_max_sectors(struct request_queue *q) 1246 { 1247 return q->limits.max_sectors; 1248 } 1249 1250 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1251 { 1252 return q->limits.max_hw_sectors; 1253 } 1254 1255 static inline unsigned short queue_max_segments(struct request_queue *q) 1256 { 1257 return q->limits.max_segments; 1258 } 1259 1260 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1261 { 1262 return q->limits.max_discard_segments; 1263 } 1264 1265 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1266 { 1267 return q->limits.max_segment_size; 1268 } 1269 1270 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1271 { 1272 int retval = 512; 1273 1274 if (q && q->limits.logical_block_size) 1275 retval = q->limits.logical_block_size; 1276 1277 return retval; 1278 } 1279 1280 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1281 { 1282 return queue_logical_block_size(bdev_get_queue(bdev)); 1283 } 1284 1285 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1286 { 1287 return q->limits.physical_block_size; 1288 } 1289 1290 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1291 { 1292 return queue_physical_block_size(bdev_get_queue(bdev)); 1293 } 1294 1295 static inline unsigned int queue_io_min(struct request_queue *q) 1296 { 1297 return q->limits.io_min; 1298 } 1299 1300 static inline int bdev_io_min(struct block_device *bdev) 1301 { 1302 return queue_io_min(bdev_get_queue(bdev)); 1303 } 1304 1305 static inline unsigned int queue_io_opt(struct request_queue *q) 1306 { 1307 return q->limits.io_opt; 1308 } 1309 1310 static inline int bdev_io_opt(struct block_device *bdev) 1311 { 1312 return queue_io_opt(bdev_get_queue(bdev)); 1313 } 1314 1315 static inline int queue_alignment_offset(struct request_queue *q) 1316 { 1317 if (q->limits.misaligned) 1318 return -1; 1319 1320 return q->limits.alignment_offset; 1321 } 1322 1323 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1324 { 1325 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1326 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1327 << SECTOR_SHIFT; 1328 1329 return (granularity + lim->alignment_offset - alignment) % granularity; 1330 } 1331 1332 static inline int bdev_alignment_offset(struct block_device *bdev) 1333 { 1334 struct request_queue *q = bdev_get_queue(bdev); 1335 1336 if (q->limits.misaligned) 1337 return -1; 1338 1339 if (bdev != bdev->bd_contains) 1340 return bdev->bd_part->alignment_offset; 1341 1342 return q->limits.alignment_offset; 1343 } 1344 1345 static inline int queue_discard_alignment(struct request_queue *q) 1346 { 1347 if (q->limits.discard_misaligned) 1348 return -1; 1349 1350 return q->limits.discard_alignment; 1351 } 1352 1353 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1354 { 1355 unsigned int alignment, granularity, offset; 1356 1357 if (!lim->max_discard_sectors) 1358 return 0; 1359 1360 /* Why are these in bytes, not sectors? */ 1361 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1362 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1363 if (!granularity) 1364 return 0; 1365 1366 /* Offset of the partition start in 'granularity' sectors */ 1367 offset = sector_div(sector, granularity); 1368 1369 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1370 offset = (granularity + alignment - offset) % granularity; 1371 1372 /* Turn it back into bytes, gaah */ 1373 return offset << SECTOR_SHIFT; 1374 } 1375 1376 static inline int bdev_discard_alignment(struct block_device *bdev) 1377 { 1378 struct request_queue *q = bdev_get_queue(bdev); 1379 1380 if (bdev != bdev->bd_contains) 1381 return bdev->bd_part->discard_alignment; 1382 1383 return q->limits.discard_alignment; 1384 } 1385 1386 static inline unsigned int bdev_write_same(struct block_device *bdev) 1387 { 1388 struct request_queue *q = bdev_get_queue(bdev); 1389 1390 if (q) 1391 return q->limits.max_write_same_sectors; 1392 1393 return 0; 1394 } 1395 1396 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1397 { 1398 struct request_queue *q = bdev_get_queue(bdev); 1399 1400 if (q) 1401 return q->limits.max_write_zeroes_sectors; 1402 1403 return 0; 1404 } 1405 1406 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1407 { 1408 struct request_queue *q = bdev_get_queue(bdev); 1409 1410 if (q) 1411 return blk_queue_zoned_model(q); 1412 1413 return BLK_ZONED_NONE; 1414 } 1415 1416 static inline bool bdev_is_zoned(struct block_device *bdev) 1417 { 1418 struct request_queue *q = bdev_get_queue(bdev); 1419 1420 if (q) 1421 return blk_queue_is_zoned(q); 1422 1423 return false; 1424 } 1425 1426 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1427 { 1428 struct request_queue *q = bdev_get_queue(bdev); 1429 1430 if (q) 1431 return blk_queue_zone_sectors(q); 1432 return 0; 1433 } 1434 1435 static inline int queue_dma_alignment(struct request_queue *q) 1436 { 1437 return q ? q->dma_alignment : 511; 1438 } 1439 1440 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1441 unsigned int len) 1442 { 1443 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1444 return !(addr & alignment) && !(len & alignment); 1445 } 1446 1447 /* assumes size > 256 */ 1448 static inline unsigned int blksize_bits(unsigned int size) 1449 { 1450 unsigned int bits = 8; 1451 do { 1452 bits++; 1453 size >>= 1; 1454 } while (size > 256); 1455 return bits; 1456 } 1457 1458 static inline unsigned int block_size(struct block_device *bdev) 1459 { 1460 return bdev->bd_block_size; 1461 } 1462 1463 typedef struct {struct page *v;} Sector; 1464 1465 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1466 1467 static inline void put_dev_sector(Sector p) 1468 { 1469 put_page(p.v); 1470 } 1471 1472 int kblockd_schedule_work(struct work_struct *work); 1473 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1474 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1475 1476 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1477 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1478 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1479 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1480 1481 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1482 1483 enum blk_integrity_flags { 1484 BLK_INTEGRITY_VERIFY = 1 << 0, 1485 BLK_INTEGRITY_GENERATE = 1 << 1, 1486 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1487 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1488 }; 1489 1490 struct blk_integrity_iter { 1491 void *prot_buf; 1492 void *data_buf; 1493 sector_t seed; 1494 unsigned int data_size; 1495 unsigned short interval; 1496 const char *disk_name; 1497 }; 1498 1499 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1500 1501 struct blk_integrity_profile { 1502 integrity_processing_fn *generate_fn; 1503 integrity_processing_fn *verify_fn; 1504 const char *name; 1505 }; 1506 1507 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1508 extern void blk_integrity_unregister(struct gendisk *); 1509 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1510 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1511 struct scatterlist *); 1512 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1513 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1514 struct request *); 1515 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1516 struct bio *); 1517 1518 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1519 { 1520 struct blk_integrity *bi = &disk->queue->integrity; 1521 1522 if (!bi->profile) 1523 return NULL; 1524 1525 return bi; 1526 } 1527 1528 static inline 1529 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1530 { 1531 return blk_get_integrity(bdev->bd_disk); 1532 } 1533 1534 static inline bool blk_integrity_rq(struct request *rq) 1535 { 1536 return rq->cmd_flags & REQ_INTEGRITY; 1537 } 1538 1539 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1540 unsigned int segs) 1541 { 1542 q->limits.max_integrity_segments = segs; 1543 } 1544 1545 static inline unsigned short 1546 queue_max_integrity_segments(struct request_queue *q) 1547 { 1548 return q->limits.max_integrity_segments; 1549 } 1550 1551 /** 1552 * bio_integrity_intervals - Return number of integrity intervals for a bio 1553 * @bi: blk_integrity profile for device 1554 * @sectors: Size of the bio in 512-byte sectors 1555 * 1556 * Description: The block layer calculates everything in 512 byte 1557 * sectors but integrity metadata is done in terms of the data integrity 1558 * interval size of the storage device. Convert the block layer sectors 1559 * to the appropriate number of integrity intervals. 1560 */ 1561 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1562 unsigned int sectors) 1563 { 1564 return sectors >> (bi->interval_exp - 9); 1565 } 1566 1567 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1568 unsigned int sectors) 1569 { 1570 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1571 } 1572 1573 /* 1574 * Return the first bvec that contains integrity data. Only drivers that are 1575 * limited to a single integrity segment should use this helper. 1576 */ 1577 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1578 { 1579 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1580 return NULL; 1581 return rq->bio->bi_integrity->bip_vec; 1582 } 1583 1584 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1585 1586 struct bio; 1587 struct block_device; 1588 struct gendisk; 1589 struct blk_integrity; 1590 1591 static inline int blk_integrity_rq(struct request *rq) 1592 { 1593 return 0; 1594 } 1595 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1596 struct bio *b) 1597 { 1598 return 0; 1599 } 1600 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1601 struct bio *b, 1602 struct scatterlist *s) 1603 { 1604 return 0; 1605 } 1606 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1607 { 1608 return NULL; 1609 } 1610 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1611 { 1612 return NULL; 1613 } 1614 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1615 { 1616 return 0; 1617 } 1618 static inline void blk_integrity_register(struct gendisk *d, 1619 struct blk_integrity *b) 1620 { 1621 } 1622 static inline void blk_integrity_unregister(struct gendisk *d) 1623 { 1624 } 1625 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1626 unsigned int segs) 1627 { 1628 } 1629 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1630 { 1631 return 0; 1632 } 1633 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1634 struct request *r1, 1635 struct request *r2) 1636 { 1637 return true; 1638 } 1639 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1640 struct request *r, 1641 struct bio *b) 1642 { 1643 return true; 1644 } 1645 1646 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1647 unsigned int sectors) 1648 { 1649 return 0; 1650 } 1651 1652 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1653 unsigned int sectors) 1654 { 1655 return 0; 1656 } 1657 1658 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1659 { 1660 return NULL; 1661 } 1662 1663 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1664 1665 struct block_device_operations { 1666 int (*open) (struct block_device *, fmode_t); 1667 void (*release) (struct gendisk *, fmode_t); 1668 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1669 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1670 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1671 unsigned int (*check_events) (struct gendisk *disk, 1672 unsigned int clearing); 1673 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1674 int (*media_changed) (struct gendisk *); 1675 void (*unlock_native_capacity) (struct gendisk *); 1676 int (*revalidate_disk) (struct gendisk *); 1677 int (*getgeo)(struct block_device *, struct hd_geometry *); 1678 /* this callback is with swap_lock and sometimes page table lock held */ 1679 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1680 int (*report_zones)(struct gendisk *, sector_t sector, 1681 struct blk_zone *zones, unsigned int *nr_zones); 1682 struct module *owner; 1683 const struct pr_ops *pr_ops; 1684 }; 1685 1686 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1687 unsigned long); 1688 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1689 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1690 struct writeback_control *); 1691 1692 #ifdef CONFIG_BLK_DEV_ZONED 1693 bool blk_req_needs_zone_write_lock(struct request *rq); 1694 void __blk_req_zone_write_lock(struct request *rq); 1695 void __blk_req_zone_write_unlock(struct request *rq); 1696 1697 static inline void blk_req_zone_write_lock(struct request *rq) 1698 { 1699 if (blk_req_needs_zone_write_lock(rq)) 1700 __blk_req_zone_write_lock(rq); 1701 } 1702 1703 static inline void blk_req_zone_write_unlock(struct request *rq) 1704 { 1705 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1706 __blk_req_zone_write_unlock(rq); 1707 } 1708 1709 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1710 { 1711 return rq->q->seq_zones_wlock && 1712 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1713 } 1714 1715 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1716 { 1717 if (!blk_req_needs_zone_write_lock(rq)) 1718 return true; 1719 return !blk_req_zone_is_write_locked(rq); 1720 } 1721 #else 1722 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1723 { 1724 return false; 1725 } 1726 1727 static inline void blk_req_zone_write_lock(struct request *rq) 1728 { 1729 } 1730 1731 static inline void blk_req_zone_write_unlock(struct request *rq) 1732 { 1733 } 1734 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1735 { 1736 return false; 1737 } 1738 1739 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1740 { 1741 return true; 1742 } 1743 #endif /* CONFIG_BLK_DEV_ZONED */ 1744 1745 #else /* CONFIG_BLOCK */ 1746 1747 struct block_device; 1748 1749 /* 1750 * stubs for when the block layer is configured out 1751 */ 1752 #define buffer_heads_over_limit 0 1753 1754 static inline long nr_blockdev_pages(void) 1755 { 1756 return 0; 1757 } 1758 1759 struct blk_plug { 1760 }; 1761 1762 static inline void blk_start_plug(struct blk_plug *plug) 1763 { 1764 } 1765 1766 static inline void blk_finish_plug(struct blk_plug *plug) 1767 { 1768 } 1769 1770 static inline void blk_flush_plug(struct task_struct *task) 1771 { 1772 } 1773 1774 static inline void blk_schedule_flush_plug(struct task_struct *task) 1775 { 1776 } 1777 1778 1779 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1780 { 1781 return false; 1782 } 1783 1784 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1785 sector_t *error_sector) 1786 { 1787 return 0; 1788 } 1789 1790 #endif /* CONFIG_BLOCK */ 1791 1792 static inline void blk_wake_io_task(struct task_struct *waiter) 1793 { 1794 /* 1795 * If we're polling, the task itself is doing the completions. For 1796 * that case, we don't need to signal a wakeup, it's enough to just 1797 * mark us as RUNNING. 1798 */ 1799 if (waiter == current) 1800 __set_current_state(TASK_RUNNING); 1801 else 1802 wake_up_process(waiter); 1803 } 1804 1805 #endif 1806