1 #ifndef _LINUX_BLKDEV_H 2 #define _LINUX_BLKDEV_H 3 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 7 #ifdef CONFIG_BLOCK 8 9 #include <linux/major.h> 10 #include <linux/genhd.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/timer.h> 14 #include <linux/workqueue.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev-defs.h> 17 #include <linux/wait.h> 18 #include <linux/mempool.h> 19 #include <linux/pfn.h> 20 #include <linux/bio.h> 21 #include <linux/stringify.h> 22 #include <linux/gfp.h> 23 #include <linux/bsg.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate.h> 26 #include <linux/percpu-refcount.h> 27 #include <linux/scatterlist.h> 28 #include <linux/blkzoned.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_wb; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consisitent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* 53 * Maximum number of blkcg policies allowed to be registered concurrently. 54 * Defined here to simplify include dependency. 55 */ 56 #define BLKCG_MAX_POLS 3 57 58 typedef void (rq_end_io_fn)(struct request *, int); 59 60 #define BLK_RL_SYNCFULL (1U << 0) 61 #define BLK_RL_ASYNCFULL (1U << 1) 62 63 struct request_list { 64 struct request_queue *q; /* the queue this rl belongs to */ 65 #ifdef CONFIG_BLK_CGROUP 66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 67 #endif 68 /* 69 * count[], starved[], and wait[] are indexed by 70 * BLK_RW_SYNC/BLK_RW_ASYNC 71 */ 72 int count[2]; 73 int starved[2]; 74 mempool_t *rq_pool; 75 wait_queue_head_t wait[2]; 76 unsigned int flags; 77 }; 78 79 /* 80 * request flags */ 81 typedef __u32 __bitwise req_flags_t; 82 83 /* elevator knows about this request */ 84 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 85 /* drive already may have started this one */ 86 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 87 /* uses tagged queueing */ 88 #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 89 /* may not be passed by ioscheduler */ 90 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 91 /* request for flush sequence */ 92 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 93 /* merge of different types, fail separately */ 94 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 95 /* track inflight for MQ */ 96 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 97 /* don't call prep for this one */ 98 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 99 /* set for "ide_preempt" requests and also for requests for which the SCSI 100 "quiesce" state must be ignored. */ 101 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 102 /* contains copies of user pages */ 103 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 104 /* vaguely specified driver internal error. Ignored by the block layer */ 105 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 106 /* don't warn about errors */ 107 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 108 /* elevator private data attached */ 109 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 110 /* account I/O stat */ 111 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 112 /* request came from our alloc pool */ 113 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 114 /* runtime pm request */ 115 #define RQF_PM ((__force req_flags_t)(1 << 15)) 116 /* on IO scheduler merge hash */ 117 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 118 /* IO stats tracking on */ 119 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 120 /* Look at ->special_vec for the actual data payload instead of the 121 bio chain. */ 122 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 123 124 /* flags that prevent us from merging requests: */ 125 #define RQF_NOMERGE_FLAGS \ 126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 127 128 /* 129 * Try to put the fields that are referenced together in the same cacheline. 130 * 131 * If you modify this structure, make sure to update blk_rq_init() and 132 * especially blk_mq_rq_ctx_init() to take care of the added fields. 133 */ 134 struct request { 135 struct list_head queuelist; 136 union { 137 struct call_single_data csd; 138 u64 fifo_time; 139 }; 140 141 struct request_queue *q; 142 struct blk_mq_ctx *mq_ctx; 143 144 int cpu; 145 unsigned int cmd_flags; /* op and common flags */ 146 req_flags_t rq_flags; 147 148 int internal_tag; 149 150 unsigned long atomic_flags; 151 152 /* the following two fields are internal, NEVER access directly */ 153 unsigned int __data_len; /* total data len */ 154 int tag; 155 sector_t __sector; /* sector cursor */ 156 157 struct bio *bio; 158 struct bio *biotail; 159 160 /* 161 * The hash is used inside the scheduler, and killed once the 162 * request reaches the dispatch list. The ipi_list is only used 163 * to queue the request for softirq completion, which is long 164 * after the request has been unhashed (and even removed from 165 * the dispatch list). 166 */ 167 union { 168 struct hlist_node hash; /* merge hash */ 169 struct list_head ipi_list; 170 }; 171 172 /* 173 * The rb_node is only used inside the io scheduler, requests 174 * are pruned when moved to the dispatch queue. So let the 175 * completion_data share space with the rb_node. 176 */ 177 union { 178 struct rb_node rb_node; /* sort/lookup */ 179 struct bio_vec special_vec; 180 void *completion_data; 181 int error_count; /* for legacy drivers, don't use */ 182 }; 183 184 /* 185 * Three pointers are available for the IO schedulers, if they need 186 * more they have to dynamically allocate it. Flush requests are 187 * never put on the IO scheduler. So let the flush fields share 188 * space with the elevator data. 189 */ 190 union { 191 struct { 192 struct io_cq *icq; 193 void *priv[2]; 194 } elv; 195 196 struct { 197 unsigned int seq; 198 struct list_head list; 199 rq_end_io_fn *saved_end_io; 200 } flush; 201 }; 202 203 struct gendisk *rq_disk; 204 struct hd_struct *part; 205 unsigned long start_time; 206 struct blk_issue_stat issue_stat; 207 #ifdef CONFIG_BLK_CGROUP 208 struct request_list *rl; /* rl this rq is alloced from */ 209 unsigned long long start_time_ns; 210 unsigned long long io_start_time_ns; /* when passed to hardware */ 211 #endif 212 /* Number of scatter-gather DMA addr+len pairs after 213 * physical address coalescing is performed. 214 */ 215 unsigned short nr_phys_segments; 216 #if defined(CONFIG_BLK_DEV_INTEGRITY) 217 unsigned short nr_integrity_segments; 218 #endif 219 220 unsigned short ioprio; 221 222 unsigned int timeout; 223 224 void *special; /* opaque pointer available for LLD use */ 225 226 unsigned int extra_len; /* length of alignment and padding */ 227 228 unsigned long deadline; 229 struct list_head timeout_list; 230 231 /* 232 * completion callback. 233 */ 234 rq_end_io_fn *end_io; 235 void *end_io_data; 236 237 /* for bidi */ 238 struct request *next_rq; 239 }; 240 241 static inline bool blk_rq_is_scsi(struct request *rq) 242 { 243 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT; 244 } 245 246 static inline bool blk_rq_is_private(struct request *rq) 247 { 248 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT; 249 } 250 251 static inline bool blk_rq_is_passthrough(struct request *rq) 252 { 253 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 254 } 255 256 static inline unsigned short req_get_ioprio(struct request *req) 257 { 258 return req->ioprio; 259 } 260 261 #include <linux/elevator.h> 262 263 struct blk_queue_ctx; 264 265 typedef void (request_fn_proc) (struct request_queue *q); 266 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 267 typedef int (prep_rq_fn) (struct request_queue *, struct request *); 268 typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 269 270 struct bio_vec; 271 typedef void (softirq_done_fn)(struct request *); 272 typedef int (dma_drain_needed_fn)(struct request *); 273 typedef int (lld_busy_fn) (struct request_queue *q); 274 typedef int (bsg_job_fn) (struct bsg_job *); 275 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 276 typedef void (exit_rq_fn)(struct request_queue *, struct request *); 277 278 enum blk_eh_timer_return { 279 BLK_EH_NOT_HANDLED, 280 BLK_EH_HANDLED, 281 BLK_EH_RESET_TIMER, 282 }; 283 284 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 285 286 enum blk_queue_state { 287 Queue_down, 288 Queue_up, 289 }; 290 291 struct blk_queue_tag { 292 struct request **tag_index; /* map of busy tags */ 293 unsigned long *tag_map; /* bit map of free/busy tags */ 294 int max_depth; /* what we will send to device */ 295 int real_max_depth; /* what the array can hold */ 296 atomic_t refcnt; /* map can be shared */ 297 int alloc_policy; /* tag allocation policy */ 298 int next_tag; /* next tag */ 299 }; 300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 302 303 #define BLK_SCSI_MAX_CMDS (256) 304 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 305 306 /* 307 * Zoned block device models (zoned limit). 308 */ 309 enum blk_zoned_model { 310 BLK_ZONED_NONE, /* Regular block device */ 311 BLK_ZONED_HA, /* Host-aware zoned block device */ 312 BLK_ZONED_HM, /* Host-managed zoned block device */ 313 }; 314 315 struct queue_limits { 316 unsigned long bounce_pfn; 317 unsigned long seg_boundary_mask; 318 unsigned long virt_boundary_mask; 319 320 unsigned int max_hw_sectors; 321 unsigned int max_dev_sectors; 322 unsigned int chunk_sectors; 323 unsigned int max_sectors; 324 unsigned int max_segment_size; 325 unsigned int physical_block_size; 326 unsigned int alignment_offset; 327 unsigned int io_min; 328 unsigned int io_opt; 329 unsigned int max_discard_sectors; 330 unsigned int max_hw_discard_sectors; 331 unsigned int max_write_same_sectors; 332 unsigned int max_write_zeroes_sectors; 333 unsigned int discard_granularity; 334 unsigned int discard_alignment; 335 336 unsigned short logical_block_size; 337 unsigned short max_segments; 338 unsigned short max_integrity_segments; 339 unsigned short max_discard_segments; 340 341 unsigned char misaligned; 342 unsigned char discard_misaligned; 343 unsigned char cluster; 344 unsigned char raid_partial_stripes_expensive; 345 enum blk_zoned_model zoned; 346 }; 347 348 #ifdef CONFIG_BLK_DEV_ZONED 349 350 struct blk_zone_report_hdr { 351 unsigned int nr_zones; 352 u8 padding[60]; 353 }; 354 355 extern int blkdev_report_zones(struct block_device *bdev, 356 sector_t sector, struct blk_zone *zones, 357 unsigned int *nr_zones, gfp_t gfp_mask); 358 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 359 sector_t nr_sectors, gfp_t gfp_mask); 360 361 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 362 unsigned int cmd, unsigned long arg); 363 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 364 unsigned int cmd, unsigned long arg); 365 366 #else /* CONFIG_BLK_DEV_ZONED */ 367 368 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 369 fmode_t mode, unsigned int cmd, 370 unsigned long arg) 371 { 372 return -ENOTTY; 373 } 374 375 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 376 fmode_t mode, unsigned int cmd, 377 unsigned long arg) 378 { 379 return -ENOTTY; 380 } 381 382 #endif /* CONFIG_BLK_DEV_ZONED */ 383 384 struct request_queue { 385 /* 386 * Together with queue_head for cacheline sharing 387 */ 388 struct list_head queue_head; 389 struct request *last_merge; 390 struct elevator_queue *elevator; 391 int nr_rqs[2]; /* # allocated [a]sync rqs */ 392 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 393 394 atomic_t shared_hctx_restart; 395 396 struct blk_queue_stats *stats; 397 struct rq_wb *rq_wb; 398 399 /* 400 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 401 * is used, root blkg allocates from @q->root_rl and all other 402 * blkgs from their own blkg->rl. Which one to use should be 403 * determined using bio_request_list(). 404 */ 405 struct request_list root_rl; 406 407 request_fn_proc *request_fn; 408 make_request_fn *make_request_fn; 409 prep_rq_fn *prep_rq_fn; 410 unprep_rq_fn *unprep_rq_fn; 411 softirq_done_fn *softirq_done_fn; 412 rq_timed_out_fn *rq_timed_out_fn; 413 dma_drain_needed_fn *dma_drain_needed; 414 lld_busy_fn *lld_busy_fn; 415 init_rq_fn *init_rq_fn; 416 exit_rq_fn *exit_rq_fn; 417 418 const struct blk_mq_ops *mq_ops; 419 420 unsigned int *mq_map; 421 422 /* sw queues */ 423 struct blk_mq_ctx __percpu *queue_ctx; 424 unsigned int nr_queues; 425 426 unsigned int queue_depth; 427 428 /* hw dispatch queues */ 429 struct blk_mq_hw_ctx **queue_hw_ctx; 430 unsigned int nr_hw_queues; 431 432 /* 433 * Dispatch queue sorting 434 */ 435 sector_t end_sector; 436 struct request *boundary_rq; 437 438 /* 439 * Delayed queue handling 440 */ 441 struct delayed_work delay_work; 442 443 struct backing_dev_info *backing_dev_info; 444 445 /* 446 * The queue owner gets to use this for whatever they like. 447 * ll_rw_blk doesn't touch it. 448 */ 449 void *queuedata; 450 451 /* 452 * various queue flags, see QUEUE_* below 453 */ 454 unsigned long queue_flags; 455 456 /* 457 * ida allocated id for this queue. Used to index queues from 458 * ioctx. 459 */ 460 int id; 461 462 /* 463 * queue needs bounce pages for pages above this limit 464 */ 465 gfp_t bounce_gfp; 466 467 /* 468 * protects queue structures from reentrancy. ->__queue_lock should 469 * _never_ be used directly, it is queue private. always use 470 * ->queue_lock. 471 */ 472 spinlock_t __queue_lock; 473 spinlock_t *queue_lock; 474 475 /* 476 * queue kobject 477 */ 478 struct kobject kobj; 479 480 /* 481 * mq queue kobject 482 */ 483 struct kobject mq_kobj; 484 485 #ifdef CONFIG_BLK_DEV_INTEGRITY 486 struct blk_integrity integrity; 487 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 488 489 #ifdef CONFIG_PM 490 struct device *dev; 491 int rpm_status; 492 unsigned int nr_pending; 493 #endif 494 495 /* 496 * queue settings 497 */ 498 unsigned long nr_requests; /* Max # of requests */ 499 unsigned int nr_congestion_on; 500 unsigned int nr_congestion_off; 501 unsigned int nr_batching; 502 503 unsigned int dma_drain_size; 504 void *dma_drain_buffer; 505 unsigned int dma_pad_mask; 506 unsigned int dma_alignment; 507 508 struct blk_queue_tag *queue_tags; 509 struct list_head tag_busy_list; 510 511 unsigned int nr_sorted; 512 unsigned int in_flight[2]; 513 514 /* 515 * Number of active block driver functions for which blk_drain_queue() 516 * must wait. Must be incremented around functions that unlock the 517 * queue_lock internally, e.g. scsi_request_fn(). 518 */ 519 unsigned int request_fn_active; 520 521 unsigned int rq_timeout; 522 int poll_nsec; 523 524 struct blk_stat_callback *poll_cb; 525 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 526 527 struct timer_list timeout; 528 struct work_struct timeout_work; 529 struct list_head timeout_list; 530 531 struct list_head icq_list; 532 #ifdef CONFIG_BLK_CGROUP 533 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 534 struct blkcg_gq *root_blkg; 535 struct list_head blkg_list; 536 #endif 537 538 struct queue_limits limits; 539 540 /* 541 * sg stuff 542 */ 543 unsigned int sg_timeout; 544 unsigned int sg_reserved_size; 545 int node; 546 #ifdef CONFIG_BLK_DEV_IO_TRACE 547 struct blk_trace *blk_trace; 548 #endif 549 /* 550 * for flush operations 551 */ 552 struct blk_flush_queue *fq; 553 554 struct list_head requeue_list; 555 spinlock_t requeue_lock; 556 struct delayed_work requeue_work; 557 558 struct mutex sysfs_lock; 559 560 int bypass_depth; 561 atomic_t mq_freeze_depth; 562 563 #if defined(CONFIG_BLK_DEV_BSG) 564 bsg_job_fn *bsg_job_fn; 565 int bsg_job_size; 566 struct bsg_class_device bsg_dev; 567 #endif 568 569 #ifdef CONFIG_BLK_DEV_THROTTLING 570 /* Throttle data */ 571 struct throtl_data *td; 572 #endif 573 struct rcu_head rcu_head; 574 wait_queue_head_t mq_freeze_wq; 575 struct percpu_ref q_usage_counter; 576 struct list_head all_q_node; 577 578 struct blk_mq_tag_set *tag_set; 579 struct list_head tag_set_list; 580 struct bio_set *bio_split; 581 582 #ifdef CONFIG_BLK_DEBUG_FS 583 struct dentry *debugfs_dir; 584 struct dentry *sched_debugfs_dir; 585 #endif 586 587 bool mq_sysfs_init_done; 588 589 size_t cmd_size; 590 void *rq_alloc_data; 591 592 struct work_struct release_work; 593 }; 594 595 #define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */ 596 #define QUEUE_FLAG_STOPPED 2 /* queue is stopped */ 597 #define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */ 598 #define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */ 599 #define QUEUE_FLAG_DYING 5 /* queue being torn down */ 600 #define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */ 601 #define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */ 602 #define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */ 603 #define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */ 604 #define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */ 605 #define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */ 606 #define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */ 607 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 608 #define QUEUE_FLAG_IO_STAT 13 /* do IO stats */ 609 #define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */ 610 #define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */ 611 #define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */ 612 #define QUEUE_FLAG_SECERASE 17 /* supports secure erase */ 613 #define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */ 614 #define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */ 615 #define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */ 616 #define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/ 617 #define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */ 618 #define QUEUE_FLAG_WC 23 /* Write back caching */ 619 #define QUEUE_FLAG_FUA 24 /* device supports FUA writes */ 620 #define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */ 621 #define QUEUE_FLAG_DAX 26 /* device supports DAX */ 622 #define QUEUE_FLAG_STATS 27 /* track rq completion times */ 623 #define QUEUE_FLAG_POLL_STATS 28 /* collecting stats for hybrid polling */ 624 #define QUEUE_FLAG_REGISTERED 29 /* queue has been registered to a disk */ 625 626 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 627 (1 << QUEUE_FLAG_STACKABLE) | \ 628 (1 << QUEUE_FLAG_SAME_COMP) | \ 629 (1 << QUEUE_FLAG_ADD_RANDOM)) 630 631 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 632 (1 << QUEUE_FLAG_STACKABLE) | \ 633 (1 << QUEUE_FLAG_SAME_COMP) | \ 634 (1 << QUEUE_FLAG_POLL)) 635 636 static inline void queue_lockdep_assert_held(struct request_queue *q) 637 { 638 if (q->queue_lock) 639 lockdep_assert_held(q->queue_lock); 640 } 641 642 static inline void queue_flag_set_unlocked(unsigned int flag, 643 struct request_queue *q) 644 { 645 __set_bit(flag, &q->queue_flags); 646 } 647 648 static inline int queue_flag_test_and_clear(unsigned int flag, 649 struct request_queue *q) 650 { 651 queue_lockdep_assert_held(q); 652 653 if (test_bit(flag, &q->queue_flags)) { 654 __clear_bit(flag, &q->queue_flags); 655 return 1; 656 } 657 658 return 0; 659 } 660 661 static inline int queue_flag_test_and_set(unsigned int flag, 662 struct request_queue *q) 663 { 664 queue_lockdep_assert_held(q); 665 666 if (!test_bit(flag, &q->queue_flags)) { 667 __set_bit(flag, &q->queue_flags); 668 return 0; 669 } 670 671 return 1; 672 } 673 674 static inline void queue_flag_set(unsigned int flag, struct request_queue *q) 675 { 676 queue_lockdep_assert_held(q); 677 __set_bit(flag, &q->queue_flags); 678 } 679 680 static inline void queue_flag_clear_unlocked(unsigned int flag, 681 struct request_queue *q) 682 { 683 __clear_bit(flag, &q->queue_flags); 684 } 685 686 static inline int queue_in_flight(struct request_queue *q) 687 { 688 return q->in_flight[0] + q->in_flight[1]; 689 } 690 691 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) 692 { 693 queue_lockdep_assert_held(q); 694 __clear_bit(flag, &q->queue_flags); 695 } 696 697 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 698 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 699 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 700 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 701 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 702 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 703 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 704 #define blk_queue_noxmerges(q) \ 705 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 706 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 707 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 708 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 709 #define blk_queue_stackable(q) \ 710 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags) 711 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 712 #define blk_queue_secure_erase(q) \ 713 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 714 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 715 716 #define blk_noretry_request(rq) \ 717 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 718 REQ_FAILFAST_DRIVER)) 719 720 static inline bool blk_account_rq(struct request *rq) 721 { 722 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 723 } 724 725 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 726 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 727 /* rq->queuelist of dequeued request must be list_empty() */ 728 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 729 730 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 731 732 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 733 734 /* 735 * Driver can handle struct request, if it either has an old style 736 * request_fn defined, or is blk-mq based. 737 */ 738 static inline bool queue_is_rq_based(struct request_queue *q) 739 { 740 return q->request_fn || q->mq_ops; 741 } 742 743 static inline unsigned int blk_queue_cluster(struct request_queue *q) 744 { 745 return q->limits.cluster; 746 } 747 748 static inline enum blk_zoned_model 749 blk_queue_zoned_model(struct request_queue *q) 750 { 751 return q->limits.zoned; 752 } 753 754 static inline bool blk_queue_is_zoned(struct request_queue *q) 755 { 756 switch (blk_queue_zoned_model(q)) { 757 case BLK_ZONED_HA: 758 case BLK_ZONED_HM: 759 return true; 760 default: 761 return false; 762 } 763 } 764 765 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 766 { 767 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 768 } 769 770 static inline bool rq_is_sync(struct request *rq) 771 { 772 return op_is_sync(rq->cmd_flags); 773 } 774 775 static inline bool blk_rl_full(struct request_list *rl, bool sync) 776 { 777 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 778 779 return rl->flags & flag; 780 } 781 782 static inline void blk_set_rl_full(struct request_list *rl, bool sync) 783 { 784 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 785 786 rl->flags |= flag; 787 } 788 789 static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 790 { 791 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 792 793 rl->flags &= ~flag; 794 } 795 796 static inline bool rq_mergeable(struct request *rq) 797 { 798 if (blk_rq_is_passthrough(rq)) 799 return false; 800 801 if (req_op(rq) == REQ_OP_FLUSH) 802 return false; 803 804 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 805 return false; 806 807 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 808 return false; 809 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 810 return false; 811 812 return true; 813 } 814 815 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 816 { 817 if (bio_data(a) == bio_data(b)) 818 return true; 819 820 return false; 821 } 822 823 static inline unsigned int blk_queue_depth(struct request_queue *q) 824 { 825 if (q->queue_depth) 826 return q->queue_depth; 827 828 return q->nr_requests; 829 } 830 831 /* 832 * q->prep_rq_fn return values 833 */ 834 enum { 835 BLKPREP_OK, /* serve it */ 836 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 837 BLKPREP_DEFER, /* leave on queue */ 838 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 839 }; 840 841 extern unsigned long blk_max_low_pfn, blk_max_pfn; 842 843 /* 844 * standard bounce addresses: 845 * 846 * BLK_BOUNCE_HIGH : bounce all highmem pages 847 * BLK_BOUNCE_ANY : don't bounce anything 848 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 849 */ 850 851 #if BITS_PER_LONG == 32 852 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 853 #else 854 #define BLK_BOUNCE_HIGH -1ULL 855 #endif 856 #define BLK_BOUNCE_ANY (-1ULL) 857 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 858 859 /* 860 * default timeout for SG_IO if none specified 861 */ 862 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 863 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 864 865 #ifdef CONFIG_BOUNCE 866 extern int init_emergency_isa_pool(void); 867 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); 868 #else 869 static inline int init_emergency_isa_pool(void) 870 { 871 return 0; 872 } 873 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) 874 { 875 } 876 #endif /* CONFIG_MMU */ 877 878 struct rq_map_data { 879 struct page **pages; 880 int page_order; 881 int nr_entries; 882 unsigned long offset; 883 int null_mapped; 884 int from_user; 885 }; 886 887 struct req_iterator { 888 struct bvec_iter iter; 889 struct bio *bio; 890 }; 891 892 /* This should not be used directly - use rq_for_each_segment */ 893 #define for_each_bio(_bio) \ 894 for (; _bio; _bio = _bio->bi_next) 895 #define __rq_for_each_bio(_bio, rq) \ 896 if ((rq->bio)) \ 897 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 898 899 #define rq_for_each_segment(bvl, _rq, _iter) \ 900 __rq_for_each_bio(_iter.bio, _rq) \ 901 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 902 903 #define rq_iter_last(bvec, _iter) \ 904 (_iter.bio->bi_next == NULL && \ 905 bio_iter_last(bvec, _iter.iter)) 906 907 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 908 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 909 #endif 910 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 911 extern void rq_flush_dcache_pages(struct request *rq); 912 #else 913 static inline void rq_flush_dcache_pages(struct request *rq) 914 { 915 } 916 #endif 917 918 #ifdef CONFIG_PRINTK 919 #define vfs_msg(sb, level, fmt, ...) \ 920 __vfs_msg(sb, level, fmt, ##__VA_ARGS__) 921 #else 922 #define vfs_msg(sb, level, fmt, ...) \ 923 do { \ 924 no_printk(fmt, ##__VA_ARGS__); \ 925 __vfs_msg(sb, "", " "); \ 926 } while (0) 927 #endif 928 929 extern int blk_register_queue(struct gendisk *disk); 930 extern void blk_unregister_queue(struct gendisk *disk); 931 extern blk_qc_t generic_make_request(struct bio *bio); 932 extern void blk_rq_init(struct request_queue *q, struct request *rq); 933 extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 934 extern void blk_put_request(struct request *); 935 extern void __blk_put_request(struct request_queue *, struct request *); 936 extern struct request *blk_get_request(struct request_queue *, int, gfp_t); 937 extern void blk_requeue_request(struct request_queue *, struct request *); 938 extern int blk_lld_busy(struct request_queue *q); 939 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 940 struct bio_set *bs, gfp_t gfp_mask, 941 int (*bio_ctr)(struct bio *, struct bio *, void *), 942 void *data); 943 extern void blk_rq_unprep_clone(struct request *rq); 944 extern int blk_insert_cloned_request(struct request_queue *q, 945 struct request *rq); 946 extern int blk_rq_append_bio(struct request *rq, struct bio *bio); 947 extern void blk_delay_queue(struct request_queue *, unsigned long); 948 extern void blk_queue_split(struct request_queue *, struct bio **, 949 struct bio_set *); 950 extern void blk_recount_segments(struct request_queue *, struct bio *); 951 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 952 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 953 unsigned int, void __user *); 954 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 955 unsigned int, void __user *); 956 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 957 struct scsi_ioctl_command __user *); 958 959 extern int blk_queue_enter(struct request_queue *q, bool nowait); 960 extern void blk_queue_exit(struct request_queue *q); 961 extern void blk_start_queue(struct request_queue *q); 962 extern void blk_start_queue_async(struct request_queue *q); 963 extern void blk_stop_queue(struct request_queue *q); 964 extern void blk_sync_queue(struct request_queue *q); 965 extern void __blk_stop_queue(struct request_queue *q); 966 extern void __blk_run_queue(struct request_queue *q); 967 extern void __blk_run_queue_uncond(struct request_queue *q); 968 extern void blk_run_queue(struct request_queue *); 969 extern void blk_run_queue_async(struct request_queue *q); 970 extern void blk_mq_quiesce_queue(struct request_queue *q); 971 extern int blk_rq_map_user(struct request_queue *, struct request *, 972 struct rq_map_data *, void __user *, unsigned long, 973 gfp_t); 974 extern int blk_rq_unmap_user(struct bio *); 975 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 976 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 977 struct rq_map_data *, const struct iov_iter *, 978 gfp_t); 979 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 980 struct request *, int); 981 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 982 struct request *, int, rq_end_io_fn *); 983 984 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 985 986 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 987 { 988 return bdev->bd_disk->queue; /* this is never NULL */ 989 } 990 991 /* 992 * blk_rq_pos() : the current sector 993 * blk_rq_bytes() : bytes left in the entire request 994 * blk_rq_cur_bytes() : bytes left in the current segment 995 * blk_rq_err_bytes() : bytes left till the next error boundary 996 * blk_rq_sectors() : sectors left in the entire request 997 * blk_rq_cur_sectors() : sectors left in the current segment 998 */ 999 static inline sector_t blk_rq_pos(const struct request *rq) 1000 { 1001 return rq->__sector; 1002 } 1003 1004 static inline unsigned int blk_rq_bytes(const struct request *rq) 1005 { 1006 return rq->__data_len; 1007 } 1008 1009 static inline int blk_rq_cur_bytes(const struct request *rq) 1010 { 1011 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1012 } 1013 1014 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1015 1016 static inline unsigned int blk_rq_sectors(const struct request *rq) 1017 { 1018 return blk_rq_bytes(rq) >> 9; 1019 } 1020 1021 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1022 { 1023 return blk_rq_cur_bytes(rq) >> 9; 1024 } 1025 1026 /* 1027 * Some commands like WRITE SAME have a payload or data transfer size which 1028 * is different from the size of the request. Any driver that supports such 1029 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1030 * calculate the data transfer size. 1031 */ 1032 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1033 { 1034 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1035 return rq->special_vec.bv_len; 1036 return blk_rq_bytes(rq); 1037 } 1038 1039 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1040 int op) 1041 { 1042 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1043 return min(q->limits.max_discard_sectors, UINT_MAX >> 9); 1044 1045 if (unlikely(op == REQ_OP_WRITE_SAME)) 1046 return q->limits.max_write_same_sectors; 1047 1048 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1049 return q->limits.max_write_zeroes_sectors; 1050 1051 return q->limits.max_sectors; 1052 } 1053 1054 /* 1055 * Return maximum size of a request at given offset. Only valid for 1056 * file system requests. 1057 */ 1058 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1059 sector_t offset) 1060 { 1061 if (!q->limits.chunk_sectors) 1062 return q->limits.max_sectors; 1063 1064 return q->limits.chunk_sectors - 1065 (offset & (q->limits.chunk_sectors - 1)); 1066 } 1067 1068 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1069 sector_t offset) 1070 { 1071 struct request_queue *q = rq->q; 1072 1073 if (blk_rq_is_passthrough(rq)) 1074 return q->limits.max_hw_sectors; 1075 1076 if (!q->limits.chunk_sectors || 1077 req_op(rq) == REQ_OP_DISCARD || 1078 req_op(rq) == REQ_OP_SECURE_ERASE) 1079 return blk_queue_get_max_sectors(q, req_op(rq)); 1080 1081 return min(blk_max_size_offset(q, offset), 1082 blk_queue_get_max_sectors(q, req_op(rq))); 1083 } 1084 1085 static inline unsigned int blk_rq_count_bios(struct request *rq) 1086 { 1087 unsigned int nr_bios = 0; 1088 struct bio *bio; 1089 1090 __rq_for_each_bio(bio, rq) 1091 nr_bios++; 1092 1093 return nr_bios; 1094 } 1095 1096 /* 1097 * Request issue related functions. 1098 */ 1099 extern struct request *blk_peek_request(struct request_queue *q); 1100 extern void blk_start_request(struct request *rq); 1101 extern struct request *blk_fetch_request(struct request_queue *q); 1102 1103 /* 1104 * Request completion related functions. 1105 * 1106 * blk_update_request() completes given number of bytes and updates 1107 * the request without completing it. 1108 * 1109 * blk_end_request() and friends. __blk_end_request() must be called 1110 * with the request queue spinlock acquired. 1111 * 1112 * Several drivers define their own end_request and call 1113 * blk_end_request() for parts of the original function. 1114 * This prevents code duplication in drivers. 1115 */ 1116 extern bool blk_update_request(struct request *rq, int error, 1117 unsigned int nr_bytes); 1118 extern void blk_finish_request(struct request *rq, int error); 1119 extern bool blk_end_request(struct request *rq, int error, 1120 unsigned int nr_bytes); 1121 extern void blk_end_request_all(struct request *rq, int error); 1122 extern bool __blk_end_request(struct request *rq, int error, 1123 unsigned int nr_bytes); 1124 extern void __blk_end_request_all(struct request *rq, int error); 1125 extern bool __blk_end_request_cur(struct request *rq, int error); 1126 1127 extern void blk_complete_request(struct request *); 1128 extern void __blk_complete_request(struct request *); 1129 extern void blk_abort_request(struct request *); 1130 extern void blk_unprep_request(struct request *); 1131 1132 /* 1133 * Access functions for manipulating queue properties 1134 */ 1135 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1136 spinlock_t *lock, int node_id); 1137 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1138 extern int blk_init_allocated_queue(struct request_queue *); 1139 extern void blk_cleanup_queue(struct request_queue *); 1140 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1141 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1142 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1143 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1144 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1145 extern void blk_queue_max_discard_segments(struct request_queue *, 1146 unsigned short); 1147 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1148 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1149 unsigned int max_discard_sectors); 1150 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1151 unsigned int max_write_same_sectors); 1152 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1153 unsigned int max_write_same_sectors); 1154 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1155 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1156 extern void blk_queue_alignment_offset(struct request_queue *q, 1157 unsigned int alignment); 1158 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1159 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1160 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1161 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1162 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1163 extern void blk_set_default_limits(struct queue_limits *lim); 1164 extern void blk_set_stacking_limits(struct queue_limits *lim); 1165 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1166 sector_t offset); 1167 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1168 sector_t offset); 1169 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1170 sector_t offset); 1171 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1172 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1173 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1174 extern int blk_queue_dma_drain(struct request_queue *q, 1175 dma_drain_needed_fn *dma_drain_needed, 1176 void *buf, unsigned int size); 1177 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1178 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1179 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1180 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1181 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1182 extern void blk_queue_dma_alignment(struct request_queue *, int); 1183 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1184 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1185 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1186 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1187 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1188 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1189 1190 /* 1191 * Number of physical segments as sent to the device. 1192 * 1193 * Normally this is the number of discontiguous data segments sent by the 1194 * submitter. But for data-less command like discard we might have no 1195 * actual data segments submitted, but the driver might have to add it's 1196 * own special payload. In that case we still return 1 here so that this 1197 * special payload will be mapped. 1198 */ 1199 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1200 { 1201 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1202 return 1; 1203 return rq->nr_phys_segments; 1204 } 1205 1206 /* 1207 * Number of discard segments (or ranges) the driver needs to fill in. 1208 * Each discard bio merged into a request is counted as one segment. 1209 */ 1210 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1211 { 1212 return max_t(unsigned short, rq->nr_phys_segments, 1); 1213 } 1214 1215 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1216 extern void blk_dump_rq_flags(struct request *, char *); 1217 extern long nr_blockdev_pages(void); 1218 1219 bool __must_check blk_get_queue(struct request_queue *); 1220 struct request_queue *blk_alloc_queue(gfp_t); 1221 struct request_queue *blk_alloc_queue_node(gfp_t, int); 1222 extern void blk_put_queue(struct request_queue *); 1223 extern void blk_set_queue_dying(struct request_queue *); 1224 1225 /* 1226 * block layer runtime pm functions 1227 */ 1228 #ifdef CONFIG_PM 1229 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1230 extern int blk_pre_runtime_suspend(struct request_queue *q); 1231 extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1232 extern void blk_pre_runtime_resume(struct request_queue *q); 1233 extern void blk_post_runtime_resume(struct request_queue *q, int err); 1234 extern void blk_set_runtime_active(struct request_queue *q); 1235 #else 1236 static inline void blk_pm_runtime_init(struct request_queue *q, 1237 struct device *dev) {} 1238 static inline int blk_pre_runtime_suspend(struct request_queue *q) 1239 { 1240 return -ENOSYS; 1241 } 1242 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1243 static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1244 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1245 static inline void blk_set_runtime_active(struct request_queue *q) {} 1246 #endif 1247 1248 /* 1249 * blk_plug permits building a queue of related requests by holding the I/O 1250 * fragments for a short period. This allows merging of sequential requests 1251 * into single larger request. As the requests are moved from a per-task list to 1252 * the device's request_queue in a batch, this results in improved scalability 1253 * as the lock contention for request_queue lock is reduced. 1254 * 1255 * It is ok not to disable preemption when adding the request to the plug list 1256 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1257 * the plug list when the task sleeps by itself. For details, please see 1258 * schedule() where blk_schedule_flush_plug() is called. 1259 */ 1260 struct blk_plug { 1261 struct list_head list; /* requests */ 1262 struct list_head mq_list; /* blk-mq requests */ 1263 struct list_head cb_list; /* md requires an unplug callback */ 1264 }; 1265 #define BLK_MAX_REQUEST_COUNT 16 1266 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1267 1268 struct blk_plug_cb; 1269 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1270 struct blk_plug_cb { 1271 struct list_head list; 1272 blk_plug_cb_fn callback; 1273 void *data; 1274 }; 1275 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1276 void *data, int size); 1277 extern void blk_start_plug(struct blk_plug *); 1278 extern void blk_finish_plug(struct blk_plug *); 1279 extern void blk_flush_plug_list(struct blk_plug *, bool); 1280 1281 static inline void blk_flush_plug(struct task_struct *tsk) 1282 { 1283 struct blk_plug *plug = tsk->plug; 1284 1285 if (plug) 1286 blk_flush_plug_list(plug, false); 1287 } 1288 1289 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1290 { 1291 struct blk_plug *plug = tsk->plug; 1292 1293 if (plug) 1294 blk_flush_plug_list(plug, true); 1295 } 1296 1297 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1298 { 1299 struct blk_plug *plug = tsk->plug; 1300 1301 return plug && 1302 (!list_empty(&plug->list) || 1303 !list_empty(&plug->mq_list) || 1304 !list_empty(&plug->cb_list)); 1305 } 1306 1307 /* 1308 * tag stuff 1309 */ 1310 extern int blk_queue_start_tag(struct request_queue *, struct request *); 1311 extern struct request *blk_queue_find_tag(struct request_queue *, int); 1312 extern void blk_queue_end_tag(struct request_queue *, struct request *); 1313 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1314 extern void blk_queue_free_tags(struct request_queue *); 1315 extern int blk_queue_resize_tags(struct request_queue *, int); 1316 extern void blk_queue_invalidate_tags(struct request_queue *); 1317 extern struct blk_queue_tag *blk_init_tags(int, int); 1318 extern void blk_free_tags(struct blk_queue_tag *); 1319 1320 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1321 int tag) 1322 { 1323 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1324 return NULL; 1325 return bqt->tag_index[tag]; 1326 } 1327 1328 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1329 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1330 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1331 1332 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1333 1334 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1335 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1336 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1337 sector_t nr_sects, gfp_t gfp_mask, int flags, 1338 struct bio **biop); 1339 1340 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1341 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1342 1343 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1344 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1345 unsigned flags); 1346 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1347 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1348 1349 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1350 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1351 { 1352 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9), 1353 nr_blocks << (sb->s_blocksize_bits - 9), 1354 gfp_mask, flags); 1355 } 1356 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1357 sector_t nr_blocks, gfp_t gfp_mask) 1358 { 1359 return blkdev_issue_zeroout(sb->s_bdev, 1360 block << (sb->s_blocksize_bits - 9), 1361 nr_blocks << (sb->s_blocksize_bits - 9), 1362 gfp_mask, 0); 1363 } 1364 1365 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm); 1366 1367 enum blk_default_limits { 1368 BLK_MAX_SEGMENTS = 128, 1369 BLK_SAFE_MAX_SECTORS = 255, 1370 BLK_DEF_MAX_SECTORS = 2560, 1371 BLK_MAX_SEGMENT_SIZE = 65536, 1372 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1373 }; 1374 1375 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1376 1377 static inline unsigned long queue_bounce_pfn(struct request_queue *q) 1378 { 1379 return q->limits.bounce_pfn; 1380 } 1381 1382 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1383 { 1384 return q->limits.seg_boundary_mask; 1385 } 1386 1387 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1388 { 1389 return q->limits.virt_boundary_mask; 1390 } 1391 1392 static inline unsigned int queue_max_sectors(struct request_queue *q) 1393 { 1394 return q->limits.max_sectors; 1395 } 1396 1397 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1398 { 1399 return q->limits.max_hw_sectors; 1400 } 1401 1402 static inline unsigned short queue_max_segments(struct request_queue *q) 1403 { 1404 return q->limits.max_segments; 1405 } 1406 1407 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1408 { 1409 return q->limits.max_discard_segments; 1410 } 1411 1412 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1413 { 1414 return q->limits.max_segment_size; 1415 } 1416 1417 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1418 { 1419 int retval = 512; 1420 1421 if (q && q->limits.logical_block_size) 1422 retval = q->limits.logical_block_size; 1423 1424 return retval; 1425 } 1426 1427 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1428 { 1429 return queue_logical_block_size(bdev_get_queue(bdev)); 1430 } 1431 1432 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1433 { 1434 return q->limits.physical_block_size; 1435 } 1436 1437 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1438 { 1439 return queue_physical_block_size(bdev_get_queue(bdev)); 1440 } 1441 1442 static inline unsigned int queue_io_min(struct request_queue *q) 1443 { 1444 return q->limits.io_min; 1445 } 1446 1447 static inline int bdev_io_min(struct block_device *bdev) 1448 { 1449 return queue_io_min(bdev_get_queue(bdev)); 1450 } 1451 1452 static inline unsigned int queue_io_opt(struct request_queue *q) 1453 { 1454 return q->limits.io_opt; 1455 } 1456 1457 static inline int bdev_io_opt(struct block_device *bdev) 1458 { 1459 return queue_io_opt(bdev_get_queue(bdev)); 1460 } 1461 1462 static inline int queue_alignment_offset(struct request_queue *q) 1463 { 1464 if (q->limits.misaligned) 1465 return -1; 1466 1467 return q->limits.alignment_offset; 1468 } 1469 1470 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1471 { 1472 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1473 unsigned int alignment = sector_div(sector, granularity >> 9) << 9; 1474 1475 return (granularity + lim->alignment_offset - alignment) % granularity; 1476 } 1477 1478 static inline int bdev_alignment_offset(struct block_device *bdev) 1479 { 1480 struct request_queue *q = bdev_get_queue(bdev); 1481 1482 if (q->limits.misaligned) 1483 return -1; 1484 1485 if (bdev != bdev->bd_contains) 1486 return bdev->bd_part->alignment_offset; 1487 1488 return q->limits.alignment_offset; 1489 } 1490 1491 static inline int queue_discard_alignment(struct request_queue *q) 1492 { 1493 if (q->limits.discard_misaligned) 1494 return -1; 1495 1496 return q->limits.discard_alignment; 1497 } 1498 1499 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1500 { 1501 unsigned int alignment, granularity, offset; 1502 1503 if (!lim->max_discard_sectors) 1504 return 0; 1505 1506 /* Why are these in bytes, not sectors? */ 1507 alignment = lim->discard_alignment >> 9; 1508 granularity = lim->discard_granularity >> 9; 1509 if (!granularity) 1510 return 0; 1511 1512 /* Offset of the partition start in 'granularity' sectors */ 1513 offset = sector_div(sector, granularity); 1514 1515 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1516 offset = (granularity + alignment - offset) % granularity; 1517 1518 /* Turn it back into bytes, gaah */ 1519 return offset << 9; 1520 } 1521 1522 static inline int bdev_discard_alignment(struct block_device *bdev) 1523 { 1524 struct request_queue *q = bdev_get_queue(bdev); 1525 1526 if (bdev != bdev->bd_contains) 1527 return bdev->bd_part->discard_alignment; 1528 1529 return q->limits.discard_alignment; 1530 } 1531 1532 static inline unsigned int bdev_write_same(struct block_device *bdev) 1533 { 1534 struct request_queue *q = bdev_get_queue(bdev); 1535 1536 if (q) 1537 return q->limits.max_write_same_sectors; 1538 1539 return 0; 1540 } 1541 1542 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1543 { 1544 struct request_queue *q = bdev_get_queue(bdev); 1545 1546 if (q) 1547 return q->limits.max_write_zeroes_sectors; 1548 1549 return 0; 1550 } 1551 1552 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1553 { 1554 struct request_queue *q = bdev_get_queue(bdev); 1555 1556 if (q) 1557 return blk_queue_zoned_model(q); 1558 1559 return BLK_ZONED_NONE; 1560 } 1561 1562 static inline bool bdev_is_zoned(struct block_device *bdev) 1563 { 1564 struct request_queue *q = bdev_get_queue(bdev); 1565 1566 if (q) 1567 return blk_queue_is_zoned(q); 1568 1569 return false; 1570 } 1571 1572 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1573 { 1574 struct request_queue *q = bdev_get_queue(bdev); 1575 1576 if (q) 1577 return blk_queue_zone_sectors(q); 1578 1579 return 0; 1580 } 1581 1582 static inline int queue_dma_alignment(struct request_queue *q) 1583 { 1584 return q ? q->dma_alignment : 511; 1585 } 1586 1587 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1588 unsigned int len) 1589 { 1590 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1591 return !(addr & alignment) && !(len & alignment); 1592 } 1593 1594 /* assumes size > 256 */ 1595 static inline unsigned int blksize_bits(unsigned int size) 1596 { 1597 unsigned int bits = 8; 1598 do { 1599 bits++; 1600 size >>= 1; 1601 } while (size > 256); 1602 return bits; 1603 } 1604 1605 static inline unsigned int block_size(struct block_device *bdev) 1606 { 1607 return bdev->bd_block_size; 1608 } 1609 1610 static inline bool queue_flush_queueable(struct request_queue *q) 1611 { 1612 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1613 } 1614 1615 typedef struct {struct page *v;} Sector; 1616 1617 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1618 1619 static inline void put_dev_sector(Sector p) 1620 { 1621 put_page(p.v); 1622 } 1623 1624 static inline bool __bvec_gap_to_prev(struct request_queue *q, 1625 struct bio_vec *bprv, unsigned int offset) 1626 { 1627 return offset || 1628 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1629 } 1630 1631 /* 1632 * Check if adding a bio_vec after bprv with offset would create a gap in 1633 * the SG list. Most drivers don't care about this, but some do. 1634 */ 1635 static inline bool bvec_gap_to_prev(struct request_queue *q, 1636 struct bio_vec *bprv, unsigned int offset) 1637 { 1638 if (!queue_virt_boundary(q)) 1639 return false; 1640 return __bvec_gap_to_prev(q, bprv, offset); 1641 } 1642 1643 /* 1644 * Check if the two bvecs from two bios can be merged to one segment. 1645 * If yes, no need to check gap between the two bios since the 1st bio 1646 * and the 1st bvec in the 2nd bio can be handled in one segment. 1647 */ 1648 static inline bool bios_segs_mergeable(struct request_queue *q, 1649 struct bio *prev, struct bio_vec *prev_last_bv, 1650 struct bio_vec *next_first_bv) 1651 { 1652 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1653 return false; 1654 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1655 return false; 1656 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1657 queue_max_segment_size(q)) 1658 return false; 1659 return true; 1660 } 1661 1662 static inline bool bio_will_gap(struct request_queue *q, 1663 struct request *prev_rq, 1664 struct bio *prev, 1665 struct bio *next) 1666 { 1667 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1668 struct bio_vec pb, nb; 1669 1670 /* 1671 * don't merge if the 1st bio starts with non-zero 1672 * offset, otherwise it is quite difficult to respect 1673 * sg gap limit. We work hard to merge a huge number of small 1674 * single bios in case of mkfs. 1675 */ 1676 if (prev_rq) 1677 bio_get_first_bvec(prev_rq->bio, &pb); 1678 else 1679 bio_get_first_bvec(prev, &pb); 1680 if (pb.bv_offset) 1681 return true; 1682 1683 /* 1684 * We don't need to worry about the situation that the 1685 * merged segment ends in unaligned virt boundary: 1686 * 1687 * - if 'pb' ends aligned, the merged segment ends aligned 1688 * - if 'pb' ends unaligned, the next bio must include 1689 * one single bvec of 'nb', otherwise the 'nb' can't 1690 * merge with 'pb' 1691 */ 1692 bio_get_last_bvec(prev, &pb); 1693 bio_get_first_bvec(next, &nb); 1694 1695 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1696 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1697 } 1698 1699 return false; 1700 } 1701 1702 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1703 { 1704 return bio_will_gap(req->q, req, req->biotail, bio); 1705 } 1706 1707 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1708 { 1709 return bio_will_gap(req->q, NULL, bio, req->bio); 1710 } 1711 1712 int kblockd_schedule_work(struct work_struct *work); 1713 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1714 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay); 1715 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1716 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1717 1718 #ifdef CONFIG_BLK_CGROUP 1719 /* 1720 * This should not be using sched_clock(). A real patch is in progress 1721 * to fix this up, until that is in place we need to disable preemption 1722 * around sched_clock() in this function and set_io_start_time_ns(). 1723 */ 1724 static inline void set_start_time_ns(struct request *req) 1725 { 1726 preempt_disable(); 1727 req->start_time_ns = sched_clock(); 1728 preempt_enable(); 1729 } 1730 1731 static inline void set_io_start_time_ns(struct request *req) 1732 { 1733 preempt_disable(); 1734 req->io_start_time_ns = sched_clock(); 1735 preempt_enable(); 1736 } 1737 1738 static inline uint64_t rq_start_time_ns(struct request *req) 1739 { 1740 return req->start_time_ns; 1741 } 1742 1743 static inline uint64_t rq_io_start_time_ns(struct request *req) 1744 { 1745 return req->io_start_time_ns; 1746 } 1747 #else 1748 static inline void set_start_time_ns(struct request *req) {} 1749 static inline void set_io_start_time_ns(struct request *req) {} 1750 static inline uint64_t rq_start_time_ns(struct request *req) 1751 { 1752 return 0; 1753 } 1754 static inline uint64_t rq_io_start_time_ns(struct request *req) 1755 { 1756 return 0; 1757 } 1758 #endif 1759 1760 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1761 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1762 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1763 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1764 1765 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1766 1767 enum blk_integrity_flags { 1768 BLK_INTEGRITY_VERIFY = 1 << 0, 1769 BLK_INTEGRITY_GENERATE = 1 << 1, 1770 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1771 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1772 }; 1773 1774 struct blk_integrity_iter { 1775 void *prot_buf; 1776 void *data_buf; 1777 sector_t seed; 1778 unsigned int data_size; 1779 unsigned short interval; 1780 const char *disk_name; 1781 }; 1782 1783 typedef int (integrity_processing_fn) (struct blk_integrity_iter *); 1784 1785 struct blk_integrity_profile { 1786 integrity_processing_fn *generate_fn; 1787 integrity_processing_fn *verify_fn; 1788 const char *name; 1789 }; 1790 1791 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1792 extern void blk_integrity_unregister(struct gendisk *); 1793 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1794 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1795 struct scatterlist *); 1796 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1797 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1798 struct request *); 1799 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1800 struct bio *); 1801 1802 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1803 { 1804 struct blk_integrity *bi = &disk->queue->integrity; 1805 1806 if (!bi->profile) 1807 return NULL; 1808 1809 return bi; 1810 } 1811 1812 static inline 1813 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1814 { 1815 return blk_get_integrity(bdev->bd_disk); 1816 } 1817 1818 static inline bool blk_integrity_rq(struct request *rq) 1819 { 1820 return rq->cmd_flags & REQ_INTEGRITY; 1821 } 1822 1823 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1824 unsigned int segs) 1825 { 1826 q->limits.max_integrity_segments = segs; 1827 } 1828 1829 static inline unsigned short 1830 queue_max_integrity_segments(struct request_queue *q) 1831 { 1832 return q->limits.max_integrity_segments; 1833 } 1834 1835 static inline bool integrity_req_gap_back_merge(struct request *req, 1836 struct bio *next) 1837 { 1838 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1839 struct bio_integrity_payload *bip_next = bio_integrity(next); 1840 1841 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1842 bip_next->bip_vec[0].bv_offset); 1843 } 1844 1845 static inline bool integrity_req_gap_front_merge(struct request *req, 1846 struct bio *bio) 1847 { 1848 struct bio_integrity_payload *bip = bio_integrity(bio); 1849 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1850 1851 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1852 bip_next->bip_vec[0].bv_offset); 1853 } 1854 1855 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1856 1857 struct bio; 1858 struct block_device; 1859 struct gendisk; 1860 struct blk_integrity; 1861 1862 static inline int blk_integrity_rq(struct request *rq) 1863 { 1864 return 0; 1865 } 1866 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1867 struct bio *b) 1868 { 1869 return 0; 1870 } 1871 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1872 struct bio *b, 1873 struct scatterlist *s) 1874 { 1875 return 0; 1876 } 1877 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1878 { 1879 return NULL; 1880 } 1881 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1882 { 1883 return NULL; 1884 } 1885 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1886 { 1887 return 0; 1888 } 1889 static inline void blk_integrity_register(struct gendisk *d, 1890 struct blk_integrity *b) 1891 { 1892 } 1893 static inline void blk_integrity_unregister(struct gendisk *d) 1894 { 1895 } 1896 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1897 unsigned int segs) 1898 { 1899 } 1900 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1901 { 1902 return 0; 1903 } 1904 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1905 struct request *r1, 1906 struct request *r2) 1907 { 1908 return true; 1909 } 1910 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1911 struct request *r, 1912 struct bio *b) 1913 { 1914 return true; 1915 } 1916 1917 static inline bool integrity_req_gap_back_merge(struct request *req, 1918 struct bio *next) 1919 { 1920 return false; 1921 } 1922 static inline bool integrity_req_gap_front_merge(struct request *req, 1923 struct bio *bio) 1924 { 1925 return false; 1926 } 1927 1928 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1929 1930 struct block_device_operations { 1931 int (*open) (struct block_device *, fmode_t); 1932 void (*release) (struct gendisk *, fmode_t); 1933 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 1934 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1935 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1936 unsigned int (*check_events) (struct gendisk *disk, 1937 unsigned int clearing); 1938 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1939 int (*media_changed) (struct gendisk *); 1940 void (*unlock_native_capacity) (struct gendisk *); 1941 int (*revalidate_disk) (struct gendisk *); 1942 int (*getgeo)(struct block_device *, struct hd_geometry *); 1943 /* this callback is with swap_lock and sometimes page table lock held */ 1944 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1945 struct module *owner; 1946 const struct pr_ops *pr_ops; 1947 }; 1948 1949 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1950 unsigned long); 1951 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1952 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1953 struct writeback_control *); 1954 #else /* CONFIG_BLOCK */ 1955 1956 struct block_device; 1957 1958 /* 1959 * stubs for when the block layer is configured out 1960 */ 1961 #define buffer_heads_over_limit 0 1962 1963 static inline long nr_blockdev_pages(void) 1964 { 1965 return 0; 1966 } 1967 1968 struct blk_plug { 1969 }; 1970 1971 static inline void blk_start_plug(struct blk_plug *plug) 1972 { 1973 } 1974 1975 static inline void blk_finish_plug(struct blk_plug *plug) 1976 { 1977 } 1978 1979 static inline void blk_flush_plug(struct task_struct *task) 1980 { 1981 } 1982 1983 static inline void blk_schedule_flush_plug(struct task_struct *task) 1984 { 1985 } 1986 1987 1988 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1989 { 1990 return false; 1991 } 1992 1993 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1994 sector_t *error_sector) 1995 { 1996 return 0; 1997 } 1998 1999 #endif /* CONFIG_BLOCK */ 2000 2001 #endif 2002