1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/bsg.h> 22 #include <linux/smp.h> 23 #include <linux/rcupdate.h> 24 #include <linux/percpu-refcount.h> 25 #include <linux/scatterlist.h> 26 #include <linux/blkzoned.h> 27 #include <linux/pm.h> 28 29 struct module; 30 struct scsi_ioctl_command; 31 32 struct request_queue; 33 struct elevator_queue; 34 struct blk_trace; 35 struct request; 36 struct sg_io_hdr; 37 struct bsg_job; 38 struct blkcg_gq; 39 struct blk_flush_queue; 40 struct pr_ops; 41 struct rq_qos; 42 struct blk_queue_stats; 43 struct blk_stat_callback; 44 struct blk_keyslot_manager; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consistent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* Doing classic polling */ 53 #define BLK_MQ_POLL_CLASSIC -1 54 55 /* 56 * Maximum number of blkcg policies allowed to be registered concurrently. 57 * Defined here to simplify include dependency. 58 */ 59 #define BLKCG_MAX_POLS 5 60 61 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 62 63 /* 64 * request flags */ 65 typedef __u32 __bitwise req_flags_t; 66 67 /* drive already may have started this one */ 68 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 69 /* may not be passed by ioscheduler */ 70 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 71 /* request for flush sequence */ 72 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 73 /* merge of different types, fail separately */ 74 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 75 /* track inflight for MQ */ 76 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 77 /* don't call prep for this one */ 78 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 79 /* vaguely specified driver internal error. Ignored by the block layer */ 80 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 81 /* don't warn about errors */ 82 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 83 /* elevator private data attached */ 84 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 85 /* account into disk and partition IO statistics */ 86 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 87 /* runtime pm request */ 88 #define RQF_PM ((__force req_flags_t)(1 << 15)) 89 /* on IO scheduler merge hash */ 90 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 91 /* track IO completion time */ 92 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 93 /* Look at ->special_vec for the actual data payload instead of the 94 bio chain. */ 95 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 96 /* The per-zone write lock is held for this request */ 97 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 98 /* already slept for hybrid poll */ 99 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 100 /* ->timeout has been called, don't expire again */ 101 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 102 103 /* flags that prevent us from merging requests: */ 104 #define RQF_NOMERGE_FLAGS \ 105 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 106 107 /* 108 * Request state for blk-mq. 109 */ 110 enum mq_rq_state { 111 MQ_RQ_IDLE = 0, 112 MQ_RQ_IN_FLIGHT = 1, 113 MQ_RQ_COMPLETE = 2, 114 }; 115 116 /* 117 * Try to put the fields that are referenced together in the same cacheline. 118 * 119 * If you modify this structure, make sure to update blk_rq_init() and 120 * especially blk_mq_rq_ctx_init() to take care of the added fields. 121 */ 122 struct request { 123 struct request_queue *q; 124 struct blk_mq_ctx *mq_ctx; 125 struct blk_mq_hw_ctx *mq_hctx; 126 127 unsigned int cmd_flags; /* op and common flags */ 128 req_flags_t rq_flags; 129 130 int tag; 131 int internal_tag; 132 133 /* the following two fields are internal, NEVER access directly */ 134 unsigned int __data_len; /* total data len */ 135 sector_t __sector; /* sector cursor */ 136 137 struct bio *bio; 138 struct bio *biotail; 139 140 struct list_head queuelist; 141 142 /* 143 * The hash is used inside the scheduler, and killed once the 144 * request reaches the dispatch list. The ipi_list is only used 145 * to queue the request for softirq completion, which is long 146 * after the request has been unhashed (and even removed from 147 * the dispatch list). 148 */ 149 union { 150 struct hlist_node hash; /* merge hash */ 151 struct llist_node ipi_list; 152 }; 153 154 /* 155 * The rb_node is only used inside the io scheduler, requests 156 * are pruned when moved to the dispatch queue. So let the 157 * completion_data share space with the rb_node. 158 */ 159 union { 160 struct rb_node rb_node; /* sort/lookup */ 161 struct bio_vec special_vec; 162 void *completion_data; 163 int error_count; /* for legacy drivers, don't use */ 164 }; 165 166 /* 167 * Three pointers are available for the IO schedulers, if they need 168 * more they have to dynamically allocate it. Flush requests are 169 * never put on the IO scheduler. So let the flush fields share 170 * space with the elevator data. 171 */ 172 union { 173 struct { 174 struct io_cq *icq; 175 void *priv[2]; 176 } elv; 177 178 struct { 179 unsigned int seq; 180 struct list_head list; 181 rq_end_io_fn *saved_end_io; 182 } flush; 183 }; 184 185 struct gendisk *rq_disk; 186 struct block_device *part; 187 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 188 /* Time that the first bio started allocating this request. */ 189 u64 alloc_time_ns; 190 #endif 191 /* Time that this request was allocated for this IO. */ 192 u64 start_time_ns; 193 /* Time that I/O was submitted to the device. */ 194 u64 io_start_time_ns; 195 196 #ifdef CONFIG_BLK_WBT 197 unsigned short wbt_flags; 198 #endif 199 /* 200 * rq sectors used for blk stats. It has the same value 201 * with blk_rq_sectors(rq), except that it never be zeroed 202 * by completion. 203 */ 204 unsigned short stats_sectors; 205 206 /* 207 * Number of scatter-gather DMA addr+len pairs after 208 * physical address coalescing is performed. 209 */ 210 unsigned short nr_phys_segments; 211 212 #if defined(CONFIG_BLK_DEV_INTEGRITY) 213 unsigned short nr_integrity_segments; 214 #endif 215 216 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 217 struct bio_crypt_ctx *crypt_ctx; 218 struct blk_ksm_keyslot *crypt_keyslot; 219 #endif 220 221 unsigned short write_hint; 222 unsigned short ioprio; 223 224 enum mq_rq_state state; 225 refcount_t ref; 226 227 unsigned int timeout; 228 unsigned long deadline; 229 230 union { 231 struct __call_single_data csd; 232 u64 fifo_time; 233 }; 234 235 /* 236 * completion callback. 237 */ 238 rq_end_io_fn *end_io; 239 void *end_io_data; 240 }; 241 242 static inline bool blk_op_is_scsi(unsigned int op) 243 { 244 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 245 } 246 247 static inline bool blk_op_is_private(unsigned int op) 248 { 249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 250 } 251 252 static inline bool blk_rq_is_scsi(struct request *rq) 253 { 254 return blk_op_is_scsi(req_op(rq)); 255 } 256 257 static inline bool blk_rq_is_private(struct request *rq) 258 { 259 return blk_op_is_private(req_op(rq)); 260 } 261 262 static inline bool blk_rq_is_passthrough(struct request *rq) 263 { 264 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 265 } 266 267 static inline bool bio_is_passthrough(struct bio *bio) 268 { 269 unsigned op = bio_op(bio); 270 271 return blk_op_is_scsi(op) || blk_op_is_private(op); 272 } 273 274 static inline bool blk_op_is_passthrough(unsigned int op) 275 { 276 return (blk_op_is_scsi(op & REQ_OP_MASK) || 277 blk_op_is_private(op & REQ_OP_MASK)); 278 } 279 280 static inline unsigned short req_get_ioprio(struct request *req) 281 { 282 return req->ioprio; 283 } 284 285 #include <linux/elevator.h> 286 287 struct blk_queue_ctx; 288 289 struct bio_vec; 290 291 enum blk_eh_timer_return { 292 BLK_EH_DONE, /* drivers has completed the command */ 293 BLK_EH_RESET_TIMER, /* reset timer and try again */ 294 }; 295 296 enum blk_queue_state { 297 Queue_down, 298 Queue_up, 299 }; 300 301 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 302 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 303 304 #define BLK_SCSI_MAX_CMDS (256) 305 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 306 307 /* 308 * Zoned block device models (zoned limit). 309 * 310 * Note: This needs to be ordered from the least to the most severe 311 * restrictions for the inheritance in blk_stack_limits() to work. 312 */ 313 enum blk_zoned_model { 314 BLK_ZONED_NONE = 0, /* Regular block device */ 315 BLK_ZONED_HA, /* Host-aware zoned block device */ 316 BLK_ZONED_HM, /* Host-managed zoned block device */ 317 }; 318 319 /* 320 * BLK_BOUNCE_NONE: never bounce (default) 321 * BLK_BOUNCE_HIGH: bounce all highmem pages 322 */ 323 enum blk_bounce { 324 BLK_BOUNCE_NONE, 325 BLK_BOUNCE_HIGH, 326 }; 327 328 struct queue_limits { 329 enum blk_bounce bounce; 330 unsigned long seg_boundary_mask; 331 unsigned long virt_boundary_mask; 332 333 unsigned int max_hw_sectors; 334 unsigned int max_dev_sectors; 335 unsigned int chunk_sectors; 336 unsigned int max_sectors; 337 unsigned int max_segment_size; 338 unsigned int physical_block_size; 339 unsigned int logical_block_size; 340 unsigned int alignment_offset; 341 unsigned int io_min; 342 unsigned int io_opt; 343 unsigned int max_discard_sectors; 344 unsigned int max_hw_discard_sectors; 345 unsigned int max_write_same_sectors; 346 unsigned int max_write_zeroes_sectors; 347 unsigned int max_zone_append_sectors; 348 unsigned int discard_granularity; 349 unsigned int discard_alignment; 350 unsigned int zone_write_granularity; 351 352 unsigned short max_segments; 353 unsigned short max_integrity_segments; 354 unsigned short max_discard_segments; 355 356 unsigned char misaligned; 357 unsigned char discard_misaligned; 358 unsigned char raid_partial_stripes_expensive; 359 enum blk_zoned_model zoned; 360 }; 361 362 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 363 void *data); 364 365 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 366 367 #ifdef CONFIG_BLK_DEV_ZONED 368 369 #define BLK_ALL_ZONES ((unsigned int)-1) 370 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 371 unsigned int nr_zones, report_zones_cb cb, void *data); 372 unsigned int blkdev_nr_zones(struct gendisk *disk); 373 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 374 sector_t sectors, sector_t nr_sectors, 375 gfp_t gfp_mask); 376 int blk_revalidate_disk_zones(struct gendisk *disk, 377 void (*update_driver_data)(struct gendisk *disk)); 378 379 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 380 unsigned int cmd, unsigned long arg); 381 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 382 unsigned int cmd, unsigned long arg); 383 384 #else /* CONFIG_BLK_DEV_ZONED */ 385 386 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 387 { 388 return 0; 389 } 390 391 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 392 fmode_t mode, unsigned int cmd, 393 unsigned long arg) 394 { 395 return -ENOTTY; 396 } 397 398 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 399 fmode_t mode, unsigned int cmd, 400 unsigned long arg) 401 { 402 return -ENOTTY; 403 } 404 405 #endif /* CONFIG_BLK_DEV_ZONED */ 406 407 struct request_queue { 408 struct request *last_merge; 409 struct elevator_queue *elevator; 410 411 struct percpu_ref q_usage_counter; 412 413 struct blk_queue_stats *stats; 414 struct rq_qos *rq_qos; 415 416 const struct blk_mq_ops *mq_ops; 417 418 /* sw queues */ 419 struct blk_mq_ctx __percpu *queue_ctx; 420 421 unsigned int queue_depth; 422 423 /* hw dispatch queues */ 424 struct blk_mq_hw_ctx **queue_hw_ctx; 425 unsigned int nr_hw_queues; 426 427 struct backing_dev_info *backing_dev_info; 428 429 /* 430 * The queue owner gets to use this for whatever they like. 431 * ll_rw_blk doesn't touch it. 432 */ 433 void *queuedata; 434 435 /* 436 * various queue flags, see QUEUE_* below 437 */ 438 unsigned long queue_flags; 439 /* 440 * Number of contexts that have called blk_set_pm_only(). If this 441 * counter is above zero then only RQF_PM requests are processed. 442 */ 443 atomic_t pm_only; 444 445 /* 446 * ida allocated id for this queue. Used to index queues from 447 * ioctx. 448 */ 449 int id; 450 451 spinlock_t queue_lock; 452 453 /* 454 * queue kobject 455 */ 456 struct kobject kobj; 457 458 /* 459 * mq queue kobject 460 */ 461 struct kobject *mq_kobj; 462 463 #ifdef CONFIG_BLK_DEV_INTEGRITY 464 struct blk_integrity integrity; 465 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 466 467 #ifdef CONFIG_PM 468 struct device *dev; 469 enum rpm_status rpm_status; 470 #endif 471 472 /* 473 * queue settings 474 */ 475 unsigned long nr_requests; /* Max # of requests */ 476 477 unsigned int dma_pad_mask; 478 unsigned int dma_alignment; 479 480 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 481 /* Inline crypto capabilities */ 482 struct blk_keyslot_manager *ksm; 483 #endif 484 485 unsigned int rq_timeout; 486 int poll_nsec; 487 488 struct blk_stat_callback *poll_cb; 489 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 490 491 struct timer_list timeout; 492 struct work_struct timeout_work; 493 494 atomic_t nr_active_requests_shared_sbitmap; 495 496 struct list_head icq_list; 497 #ifdef CONFIG_BLK_CGROUP 498 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 499 struct blkcg_gq *root_blkg; 500 struct list_head blkg_list; 501 #endif 502 503 struct queue_limits limits; 504 505 unsigned int required_elevator_features; 506 507 #ifdef CONFIG_BLK_DEV_ZONED 508 /* 509 * Zoned block device information for request dispatch control. 510 * nr_zones is the total number of zones of the device. This is always 511 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 512 * bits which indicates if a zone is conventional (bit set) or 513 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 514 * bits which indicates if a zone is write locked, that is, if a write 515 * request targeting the zone was dispatched. All three fields are 516 * initialized by the low level device driver (e.g. scsi/sd.c). 517 * Stacking drivers (device mappers) may or may not initialize 518 * these fields. 519 * 520 * Reads of this information must be protected with blk_queue_enter() / 521 * blk_queue_exit(). Modifying this information is only allowed while 522 * no requests are being processed. See also blk_mq_freeze_queue() and 523 * blk_mq_unfreeze_queue(). 524 */ 525 unsigned int nr_zones; 526 unsigned long *conv_zones_bitmap; 527 unsigned long *seq_zones_wlock; 528 unsigned int max_open_zones; 529 unsigned int max_active_zones; 530 #endif /* CONFIG_BLK_DEV_ZONED */ 531 532 /* 533 * sg stuff 534 */ 535 unsigned int sg_timeout; 536 unsigned int sg_reserved_size; 537 int node; 538 struct mutex debugfs_mutex; 539 #ifdef CONFIG_BLK_DEV_IO_TRACE 540 struct blk_trace __rcu *blk_trace; 541 #endif 542 /* 543 * for flush operations 544 */ 545 struct blk_flush_queue *fq; 546 547 struct list_head requeue_list; 548 spinlock_t requeue_lock; 549 struct delayed_work requeue_work; 550 551 struct mutex sysfs_lock; 552 struct mutex sysfs_dir_lock; 553 554 /* 555 * for reusing dead hctx instance in case of updating 556 * nr_hw_queues 557 */ 558 struct list_head unused_hctx_list; 559 spinlock_t unused_hctx_lock; 560 561 int mq_freeze_depth; 562 563 #if defined(CONFIG_BLK_DEV_BSG) 564 struct bsg_class_device bsg_dev; 565 #endif 566 567 #ifdef CONFIG_BLK_DEV_THROTTLING 568 /* Throttle data */ 569 struct throtl_data *td; 570 #endif 571 struct rcu_head rcu_head; 572 wait_queue_head_t mq_freeze_wq; 573 /* 574 * Protect concurrent access to q_usage_counter by 575 * percpu_ref_kill() and percpu_ref_reinit(). 576 */ 577 struct mutex mq_freeze_lock; 578 579 struct blk_mq_tag_set *tag_set; 580 struct list_head tag_set_list; 581 struct bio_set bio_split; 582 583 struct dentry *debugfs_dir; 584 585 #ifdef CONFIG_BLK_DEBUG_FS 586 struct dentry *sched_debugfs_dir; 587 struct dentry *rqos_debugfs_dir; 588 #endif 589 590 bool mq_sysfs_init_done; 591 592 size_t cmd_size; 593 594 #define BLK_MAX_WRITE_HINTS 5 595 u64 write_hints[BLK_MAX_WRITE_HINTS]; 596 }; 597 598 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 599 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 600 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 601 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 602 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 603 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 604 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 605 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 606 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 607 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 608 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 609 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 610 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 611 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 612 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 613 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 614 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 615 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 616 #define QUEUE_FLAG_WC 17 /* Write back caching */ 617 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 618 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 619 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 620 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 621 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 622 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 623 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 624 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 625 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 626 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 627 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 628 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 629 630 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 631 (1 << QUEUE_FLAG_SAME_COMP) | \ 632 (1 << QUEUE_FLAG_NOWAIT)) 633 634 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 635 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 636 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 637 638 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 639 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 640 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 641 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 642 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 643 #define blk_queue_noxmerges(q) \ 644 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 645 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 646 #define blk_queue_stable_writes(q) \ 647 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 648 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 649 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 650 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 651 #define blk_queue_zone_resetall(q) \ 652 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 653 #define blk_queue_secure_erase(q) \ 654 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 655 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 656 #define blk_queue_scsi_passthrough(q) \ 657 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 658 #define blk_queue_pci_p2pdma(q) \ 659 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 660 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 661 #define blk_queue_rq_alloc_time(q) \ 662 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 663 #else 664 #define blk_queue_rq_alloc_time(q) false 665 #endif 666 667 #define blk_noretry_request(rq) \ 668 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 669 REQ_FAILFAST_DRIVER)) 670 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 671 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 672 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 673 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 674 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 675 676 extern void blk_set_pm_only(struct request_queue *q); 677 extern void blk_clear_pm_only(struct request_queue *q); 678 679 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 680 681 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 682 683 #define rq_dma_dir(rq) \ 684 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 685 686 #define dma_map_bvec(dev, bv, dir, attrs) \ 687 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 688 (dir), (attrs)) 689 690 #define queue_to_disk(q) (dev_to_disk(kobj_to_dev((q)->kobj.parent))) 691 692 static inline bool queue_is_mq(struct request_queue *q) 693 { 694 return q->mq_ops; 695 } 696 697 #ifdef CONFIG_PM 698 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 699 { 700 return q->rpm_status; 701 } 702 #else 703 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 704 { 705 return RPM_ACTIVE; 706 } 707 #endif 708 709 static inline enum blk_zoned_model 710 blk_queue_zoned_model(struct request_queue *q) 711 { 712 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 713 return q->limits.zoned; 714 return BLK_ZONED_NONE; 715 } 716 717 static inline bool blk_queue_is_zoned(struct request_queue *q) 718 { 719 switch (blk_queue_zoned_model(q)) { 720 case BLK_ZONED_HA: 721 case BLK_ZONED_HM: 722 return true; 723 default: 724 return false; 725 } 726 } 727 728 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 729 { 730 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 731 } 732 733 #ifdef CONFIG_BLK_DEV_ZONED 734 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 735 { 736 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 737 } 738 739 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 740 sector_t sector) 741 { 742 if (!blk_queue_is_zoned(q)) 743 return 0; 744 return sector >> ilog2(q->limits.chunk_sectors); 745 } 746 747 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 748 sector_t sector) 749 { 750 if (!blk_queue_is_zoned(q)) 751 return false; 752 if (!q->conv_zones_bitmap) 753 return true; 754 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 755 } 756 757 static inline void blk_queue_max_open_zones(struct request_queue *q, 758 unsigned int max_open_zones) 759 { 760 q->max_open_zones = max_open_zones; 761 } 762 763 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 764 { 765 return q->max_open_zones; 766 } 767 768 static inline void blk_queue_max_active_zones(struct request_queue *q, 769 unsigned int max_active_zones) 770 { 771 q->max_active_zones = max_active_zones; 772 } 773 774 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 775 { 776 return q->max_active_zones; 777 } 778 #else /* CONFIG_BLK_DEV_ZONED */ 779 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 780 { 781 return 0; 782 } 783 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 784 sector_t sector) 785 { 786 return false; 787 } 788 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 789 sector_t sector) 790 { 791 return 0; 792 } 793 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 794 { 795 return 0; 796 } 797 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 798 { 799 return 0; 800 } 801 #endif /* CONFIG_BLK_DEV_ZONED */ 802 803 static inline bool rq_is_sync(struct request *rq) 804 { 805 return op_is_sync(rq->cmd_flags); 806 } 807 808 static inline bool rq_mergeable(struct request *rq) 809 { 810 if (blk_rq_is_passthrough(rq)) 811 return false; 812 813 if (req_op(rq) == REQ_OP_FLUSH) 814 return false; 815 816 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 817 return false; 818 819 if (req_op(rq) == REQ_OP_ZONE_APPEND) 820 return false; 821 822 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 823 return false; 824 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 825 return false; 826 827 return true; 828 } 829 830 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 831 { 832 if (bio_page(a) == bio_page(b) && 833 bio_offset(a) == bio_offset(b)) 834 return true; 835 836 return false; 837 } 838 839 static inline unsigned int blk_queue_depth(struct request_queue *q) 840 { 841 if (q->queue_depth) 842 return q->queue_depth; 843 844 return q->nr_requests; 845 } 846 847 /* 848 * default timeout for SG_IO if none specified 849 */ 850 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 851 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 852 853 struct rq_map_data { 854 struct page **pages; 855 int page_order; 856 int nr_entries; 857 unsigned long offset; 858 int null_mapped; 859 int from_user; 860 }; 861 862 struct req_iterator { 863 struct bvec_iter iter; 864 struct bio *bio; 865 }; 866 867 /* This should not be used directly - use rq_for_each_segment */ 868 #define for_each_bio(_bio) \ 869 for (; _bio; _bio = _bio->bi_next) 870 #define __rq_for_each_bio(_bio, rq) \ 871 if ((rq->bio)) \ 872 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 873 874 #define rq_for_each_segment(bvl, _rq, _iter) \ 875 __rq_for_each_bio(_iter.bio, _rq) \ 876 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 877 878 #define rq_for_each_bvec(bvl, _rq, _iter) \ 879 __rq_for_each_bio(_iter.bio, _rq) \ 880 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 881 882 #define rq_iter_last(bvec, _iter) \ 883 (_iter.bio->bi_next == NULL && \ 884 bio_iter_last(bvec, _iter.iter)) 885 886 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 887 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 888 #endif 889 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 890 extern void rq_flush_dcache_pages(struct request *rq); 891 #else 892 static inline void rq_flush_dcache_pages(struct request *rq) 893 { 894 } 895 #endif 896 897 extern int blk_register_queue(struct gendisk *disk); 898 extern void blk_unregister_queue(struct gendisk *disk); 899 blk_qc_t submit_bio_noacct(struct bio *bio); 900 extern void blk_rq_init(struct request_queue *q, struct request *rq); 901 extern void blk_put_request(struct request *); 902 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 903 blk_mq_req_flags_t flags); 904 extern int blk_lld_busy(struct request_queue *q); 905 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 906 struct bio_set *bs, gfp_t gfp_mask, 907 int (*bio_ctr)(struct bio *, struct bio *, void *), 908 void *data); 909 extern void blk_rq_unprep_clone(struct request *rq); 910 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 911 struct request *rq); 912 int blk_rq_append_bio(struct request *rq, struct bio *bio); 913 extern void blk_queue_split(struct bio **); 914 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 915 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 916 unsigned int, void __user *); 917 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 918 unsigned int, void __user *); 919 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 920 struct scsi_ioctl_command __user *); 921 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 922 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 923 924 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 925 extern void blk_queue_exit(struct request_queue *q); 926 extern void blk_sync_queue(struct request_queue *q); 927 extern int blk_rq_map_user(struct request_queue *, struct request *, 928 struct rq_map_data *, void __user *, unsigned long, 929 gfp_t); 930 extern int blk_rq_unmap_user(struct bio *); 931 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 932 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 933 struct rq_map_data *, const struct iov_iter *, 934 gfp_t); 935 extern void blk_execute_rq(struct gendisk *, struct request *, int); 936 extern void blk_execute_rq_nowait(struct gendisk *, 937 struct request *, int, rq_end_io_fn *); 938 939 /* Helper to convert REQ_OP_XXX to its string format XXX */ 940 extern const char *blk_op_str(unsigned int op); 941 942 int blk_status_to_errno(blk_status_t status); 943 blk_status_t errno_to_blk_status(int errno); 944 945 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 946 947 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 948 { 949 return bdev->bd_disk->queue; /* this is never NULL */ 950 } 951 952 /* 953 * The basic unit of block I/O is a sector. It is used in a number of contexts 954 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 955 * bytes. Variables of type sector_t represent an offset or size that is a 956 * multiple of 512 bytes. Hence these two constants. 957 */ 958 #ifndef SECTOR_SHIFT 959 #define SECTOR_SHIFT 9 960 #endif 961 #ifndef SECTOR_SIZE 962 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 963 #endif 964 965 /* 966 * blk_rq_pos() : the current sector 967 * blk_rq_bytes() : bytes left in the entire request 968 * blk_rq_cur_bytes() : bytes left in the current segment 969 * blk_rq_err_bytes() : bytes left till the next error boundary 970 * blk_rq_sectors() : sectors left in the entire request 971 * blk_rq_cur_sectors() : sectors left in the current segment 972 * blk_rq_stats_sectors() : sectors of the entire request used for stats 973 */ 974 static inline sector_t blk_rq_pos(const struct request *rq) 975 { 976 return rq->__sector; 977 } 978 979 static inline unsigned int blk_rq_bytes(const struct request *rq) 980 { 981 return rq->__data_len; 982 } 983 984 static inline int blk_rq_cur_bytes(const struct request *rq) 985 { 986 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 987 } 988 989 extern unsigned int blk_rq_err_bytes(const struct request *rq); 990 991 static inline unsigned int blk_rq_sectors(const struct request *rq) 992 { 993 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 994 } 995 996 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 997 { 998 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 999 } 1000 1001 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1002 { 1003 return rq->stats_sectors; 1004 } 1005 1006 #ifdef CONFIG_BLK_DEV_ZONED 1007 1008 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1009 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1010 1011 static inline unsigned int blk_rq_zone_no(struct request *rq) 1012 { 1013 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1014 } 1015 1016 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1017 { 1018 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1019 } 1020 #endif /* CONFIG_BLK_DEV_ZONED */ 1021 1022 /* 1023 * Some commands like WRITE SAME have a payload or data transfer size which 1024 * is different from the size of the request. Any driver that supports such 1025 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1026 * calculate the data transfer size. 1027 */ 1028 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1029 { 1030 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1031 return rq->special_vec.bv_len; 1032 return blk_rq_bytes(rq); 1033 } 1034 1035 /* 1036 * Return the first full biovec in the request. The caller needs to check that 1037 * there are any bvecs before calling this helper. 1038 */ 1039 static inline struct bio_vec req_bvec(struct request *rq) 1040 { 1041 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1042 return rq->special_vec; 1043 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1044 } 1045 1046 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1047 int op) 1048 { 1049 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1050 return min(q->limits.max_discard_sectors, 1051 UINT_MAX >> SECTOR_SHIFT); 1052 1053 if (unlikely(op == REQ_OP_WRITE_SAME)) 1054 return q->limits.max_write_same_sectors; 1055 1056 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1057 return q->limits.max_write_zeroes_sectors; 1058 1059 return q->limits.max_sectors; 1060 } 1061 1062 /* 1063 * Return maximum size of a request at given offset. Only valid for 1064 * file system requests. 1065 */ 1066 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1067 sector_t offset, 1068 unsigned int chunk_sectors) 1069 { 1070 if (!chunk_sectors) { 1071 if (q->limits.chunk_sectors) 1072 chunk_sectors = q->limits.chunk_sectors; 1073 else 1074 return q->limits.max_sectors; 1075 } 1076 1077 if (likely(is_power_of_2(chunk_sectors))) 1078 chunk_sectors -= offset & (chunk_sectors - 1); 1079 else 1080 chunk_sectors -= sector_div(offset, chunk_sectors); 1081 1082 return min(q->limits.max_sectors, chunk_sectors); 1083 } 1084 1085 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1086 sector_t offset) 1087 { 1088 struct request_queue *q = rq->q; 1089 1090 if (blk_rq_is_passthrough(rq)) 1091 return q->limits.max_hw_sectors; 1092 1093 if (!q->limits.chunk_sectors || 1094 req_op(rq) == REQ_OP_DISCARD || 1095 req_op(rq) == REQ_OP_SECURE_ERASE) 1096 return blk_queue_get_max_sectors(q, req_op(rq)); 1097 1098 return min(blk_max_size_offset(q, offset, 0), 1099 blk_queue_get_max_sectors(q, req_op(rq))); 1100 } 1101 1102 static inline unsigned int blk_rq_count_bios(struct request *rq) 1103 { 1104 unsigned int nr_bios = 0; 1105 struct bio *bio; 1106 1107 __rq_for_each_bio(bio, rq) 1108 nr_bios++; 1109 1110 return nr_bios; 1111 } 1112 1113 void blk_steal_bios(struct bio_list *list, struct request *rq); 1114 1115 /* 1116 * Request completion related functions. 1117 * 1118 * blk_update_request() completes given number of bytes and updates 1119 * the request without completing it. 1120 */ 1121 extern bool blk_update_request(struct request *rq, blk_status_t error, 1122 unsigned int nr_bytes); 1123 1124 extern void blk_abort_request(struct request *); 1125 1126 /* 1127 * Access functions for manipulating queue properties 1128 */ 1129 extern void blk_cleanup_queue(struct request_queue *); 1130 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 1131 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1132 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1133 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1134 extern void blk_queue_max_discard_segments(struct request_queue *, 1135 unsigned short); 1136 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1137 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1138 unsigned int max_discard_sectors); 1139 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1140 unsigned int max_write_same_sectors); 1141 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1142 unsigned int max_write_same_sectors); 1143 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1144 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1145 unsigned int max_zone_append_sectors); 1146 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1147 void blk_queue_zone_write_granularity(struct request_queue *q, 1148 unsigned int size); 1149 extern void blk_queue_alignment_offset(struct request_queue *q, 1150 unsigned int alignment); 1151 void blk_queue_update_readahead(struct request_queue *q); 1152 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1153 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1154 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1155 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1156 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1157 extern void blk_set_default_limits(struct queue_limits *lim); 1158 extern void blk_set_stacking_limits(struct queue_limits *lim); 1159 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1160 sector_t offset); 1161 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1162 sector_t offset); 1163 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1164 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1165 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1166 extern void blk_queue_dma_alignment(struct request_queue *, int); 1167 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1168 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1169 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1170 extern void blk_queue_required_elevator_features(struct request_queue *q, 1171 unsigned int features); 1172 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1173 struct device *dev); 1174 1175 /* 1176 * Number of physical segments as sent to the device. 1177 * 1178 * Normally this is the number of discontiguous data segments sent by the 1179 * submitter. But for data-less command like discard we might have no 1180 * actual data segments submitted, but the driver might have to add it's 1181 * own special payload. In that case we still return 1 here so that this 1182 * special payload will be mapped. 1183 */ 1184 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1185 { 1186 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1187 return 1; 1188 return rq->nr_phys_segments; 1189 } 1190 1191 /* 1192 * Number of discard segments (or ranges) the driver needs to fill in. 1193 * Each discard bio merged into a request is counted as one segment. 1194 */ 1195 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1196 { 1197 return max_t(unsigned short, rq->nr_phys_segments, 1); 1198 } 1199 1200 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1201 struct scatterlist *sglist, struct scatterlist **last_sg); 1202 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1203 struct scatterlist *sglist) 1204 { 1205 struct scatterlist *last_sg = NULL; 1206 1207 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1208 } 1209 extern void blk_dump_rq_flags(struct request *, char *); 1210 1211 bool __must_check blk_get_queue(struct request_queue *); 1212 struct request_queue *blk_alloc_queue(int node_id); 1213 extern void blk_put_queue(struct request_queue *); 1214 extern void blk_set_queue_dying(struct request_queue *); 1215 1216 #ifdef CONFIG_BLOCK 1217 /* 1218 * blk_plug permits building a queue of related requests by holding the I/O 1219 * fragments for a short period. This allows merging of sequential requests 1220 * into single larger request. As the requests are moved from a per-task list to 1221 * the device's request_queue in a batch, this results in improved scalability 1222 * as the lock contention for request_queue lock is reduced. 1223 * 1224 * It is ok not to disable preemption when adding the request to the plug list 1225 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1226 * the plug list when the task sleeps by itself. For details, please see 1227 * schedule() where blk_schedule_flush_plug() is called. 1228 */ 1229 struct blk_plug { 1230 struct list_head mq_list; /* blk-mq requests */ 1231 struct list_head cb_list; /* md requires an unplug callback */ 1232 unsigned short rq_count; 1233 bool multiple_queues; 1234 bool nowait; 1235 }; 1236 #define BLK_MAX_REQUEST_COUNT 16 1237 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1238 1239 struct blk_plug_cb; 1240 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1241 struct blk_plug_cb { 1242 struct list_head list; 1243 blk_plug_cb_fn callback; 1244 void *data; 1245 }; 1246 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1247 void *data, int size); 1248 extern void blk_start_plug(struct blk_plug *); 1249 extern void blk_finish_plug(struct blk_plug *); 1250 extern void blk_flush_plug_list(struct blk_plug *, bool); 1251 1252 static inline void blk_flush_plug(struct task_struct *tsk) 1253 { 1254 struct blk_plug *plug = tsk->plug; 1255 1256 if (plug) 1257 blk_flush_plug_list(plug, false); 1258 } 1259 1260 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1261 { 1262 struct blk_plug *plug = tsk->plug; 1263 1264 if (plug) 1265 blk_flush_plug_list(plug, true); 1266 } 1267 1268 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1269 { 1270 struct blk_plug *plug = tsk->plug; 1271 1272 return plug && 1273 (!list_empty(&plug->mq_list) || 1274 !list_empty(&plug->cb_list)); 1275 } 1276 1277 int blkdev_issue_flush(struct block_device *bdev); 1278 long nr_blockdev_pages(void); 1279 #else /* CONFIG_BLOCK */ 1280 struct blk_plug { 1281 }; 1282 1283 static inline void blk_start_plug(struct blk_plug *plug) 1284 { 1285 } 1286 1287 static inline void blk_finish_plug(struct blk_plug *plug) 1288 { 1289 } 1290 1291 static inline void blk_flush_plug(struct task_struct *task) 1292 { 1293 } 1294 1295 static inline void blk_schedule_flush_plug(struct task_struct *task) 1296 { 1297 } 1298 1299 1300 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1301 { 1302 return false; 1303 } 1304 1305 static inline int blkdev_issue_flush(struct block_device *bdev) 1306 { 1307 return 0; 1308 } 1309 1310 static inline long nr_blockdev_pages(void) 1311 { 1312 return 0; 1313 } 1314 #endif /* CONFIG_BLOCK */ 1315 1316 extern void blk_io_schedule(void); 1317 1318 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1319 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1320 1321 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1322 1323 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1324 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1325 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1326 sector_t nr_sects, gfp_t gfp_mask, int flags, 1327 struct bio **biop); 1328 1329 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1330 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1331 1332 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1333 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1334 unsigned flags); 1335 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1336 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1337 1338 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1339 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1340 { 1341 return blkdev_issue_discard(sb->s_bdev, 1342 block << (sb->s_blocksize_bits - 1343 SECTOR_SHIFT), 1344 nr_blocks << (sb->s_blocksize_bits - 1345 SECTOR_SHIFT), 1346 gfp_mask, flags); 1347 } 1348 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1349 sector_t nr_blocks, gfp_t gfp_mask) 1350 { 1351 return blkdev_issue_zeroout(sb->s_bdev, 1352 block << (sb->s_blocksize_bits - 1353 SECTOR_SHIFT), 1354 nr_blocks << (sb->s_blocksize_bits - 1355 SECTOR_SHIFT), 1356 gfp_mask, 0); 1357 } 1358 1359 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1360 1361 static inline bool bdev_is_partition(struct block_device *bdev) 1362 { 1363 return bdev->bd_partno; 1364 } 1365 1366 enum blk_default_limits { 1367 BLK_MAX_SEGMENTS = 128, 1368 BLK_SAFE_MAX_SECTORS = 255, 1369 BLK_DEF_MAX_SECTORS = 2560, 1370 BLK_MAX_SEGMENT_SIZE = 65536, 1371 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1372 }; 1373 1374 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1375 { 1376 return q->limits.seg_boundary_mask; 1377 } 1378 1379 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1380 { 1381 return q->limits.virt_boundary_mask; 1382 } 1383 1384 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1385 { 1386 return q->limits.max_sectors; 1387 } 1388 1389 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1390 { 1391 return q->limits.max_hw_sectors; 1392 } 1393 1394 static inline unsigned short queue_max_segments(const struct request_queue *q) 1395 { 1396 return q->limits.max_segments; 1397 } 1398 1399 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1400 { 1401 return q->limits.max_discard_segments; 1402 } 1403 1404 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1405 { 1406 return q->limits.max_segment_size; 1407 } 1408 1409 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1410 { 1411 1412 const struct queue_limits *l = &q->limits; 1413 1414 return min(l->max_zone_append_sectors, l->max_sectors); 1415 } 1416 1417 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1418 { 1419 int retval = 512; 1420 1421 if (q && q->limits.logical_block_size) 1422 retval = q->limits.logical_block_size; 1423 1424 return retval; 1425 } 1426 1427 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1428 { 1429 return queue_logical_block_size(bdev_get_queue(bdev)); 1430 } 1431 1432 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1433 { 1434 return q->limits.physical_block_size; 1435 } 1436 1437 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1438 { 1439 return queue_physical_block_size(bdev_get_queue(bdev)); 1440 } 1441 1442 static inline unsigned int queue_io_min(const struct request_queue *q) 1443 { 1444 return q->limits.io_min; 1445 } 1446 1447 static inline int bdev_io_min(struct block_device *bdev) 1448 { 1449 return queue_io_min(bdev_get_queue(bdev)); 1450 } 1451 1452 static inline unsigned int queue_io_opt(const struct request_queue *q) 1453 { 1454 return q->limits.io_opt; 1455 } 1456 1457 static inline int bdev_io_opt(struct block_device *bdev) 1458 { 1459 return queue_io_opt(bdev_get_queue(bdev)); 1460 } 1461 1462 static inline unsigned int 1463 queue_zone_write_granularity(const struct request_queue *q) 1464 { 1465 return q->limits.zone_write_granularity; 1466 } 1467 1468 static inline unsigned int 1469 bdev_zone_write_granularity(struct block_device *bdev) 1470 { 1471 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1472 } 1473 1474 static inline int queue_alignment_offset(const struct request_queue *q) 1475 { 1476 if (q->limits.misaligned) 1477 return -1; 1478 1479 return q->limits.alignment_offset; 1480 } 1481 1482 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1483 { 1484 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1485 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1486 << SECTOR_SHIFT; 1487 1488 return (granularity + lim->alignment_offset - alignment) % granularity; 1489 } 1490 1491 static inline int bdev_alignment_offset(struct block_device *bdev) 1492 { 1493 struct request_queue *q = bdev_get_queue(bdev); 1494 1495 if (q->limits.misaligned) 1496 return -1; 1497 if (bdev_is_partition(bdev)) 1498 return queue_limit_alignment_offset(&q->limits, 1499 bdev->bd_start_sect); 1500 return q->limits.alignment_offset; 1501 } 1502 1503 static inline int queue_discard_alignment(const struct request_queue *q) 1504 { 1505 if (q->limits.discard_misaligned) 1506 return -1; 1507 1508 return q->limits.discard_alignment; 1509 } 1510 1511 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1512 { 1513 unsigned int alignment, granularity, offset; 1514 1515 if (!lim->max_discard_sectors) 1516 return 0; 1517 1518 /* Why are these in bytes, not sectors? */ 1519 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1520 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1521 if (!granularity) 1522 return 0; 1523 1524 /* Offset of the partition start in 'granularity' sectors */ 1525 offset = sector_div(sector, granularity); 1526 1527 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1528 offset = (granularity + alignment - offset) % granularity; 1529 1530 /* Turn it back into bytes, gaah */ 1531 return offset << SECTOR_SHIFT; 1532 } 1533 1534 static inline int bdev_discard_alignment(struct block_device *bdev) 1535 { 1536 struct request_queue *q = bdev_get_queue(bdev); 1537 1538 if (bdev_is_partition(bdev)) 1539 return queue_limit_discard_alignment(&q->limits, 1540 bdev->bd_start_sect); 1541 return q->limits.discard_alignment; 1542 } 1543 1544 static inline unsigned int bdev_write_same(struct block_device *bdev) 1545 { 1546 struct request_queue *q = bdev_get_queue(bdev); 1547 1548 if (q) 1549 return q->limits.max_write_same_sectors; 1550 1551 return 0; 1552 } 1553 1554 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1555 { 1556 struct request_queue *q = bdev_get_queue(bdev); 1557 1558 if (q) 1559 return q->limits.max_write_zeroes_sectors; 1560 1561 return 0; 1562 } 1563 1564 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1565 { 1566 struct request_queue *q = bdev_get_queue(bdev); 1567 1568 if (q) 1569 return blk_queue_zoned_model(q); 1570 1571 return BLK_ZONED_NONE; 1572 } 1573 1574 static inline bool bdev_is_zoned(struct block_device *bdev) 1575 { 1576 struct request_queue *q = bdev_get_queue(bdev); 1577 1578 if (q) 1579 return blk_queue_is_zoned(q); 1580 1581 return false; 1582 } 1583 1584 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1585 { 1586 struct request_queue *q = bdev_get_queue(bdev); 1587 1588 if (q) 1589 return blk_queue_zone_sectors(q); 1590 return 0; 1591 } 1592 1593 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1594 { 1595 struct request_queue *q = bdev_get_queue(bdev); 1596 1597 if (q) 1598 return queue_max_open_zones(q); 1599 return 0; 1600 } 1601 1602 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1603 { 1604 struct request_queue *q = bdev_get_queue(bdev); 1605 1606 if (q) 1607 return queue_max_active_zones(q); 1608 return 0; 1609 } 1610 1611 static inline int queue_dma_alignment(const struct request_queue *q) 1612 { 1613 return q ? q->dma_alignment : 511; 1614 } 1615 1616 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1617 unsigned int len) 1618 { 1619 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1620 return !(addr & alignment) && !(len & alignment); 1621 } 1622 1623 /* assumes size > 256 */ 1624 static inline unsigned int blksize_bits(unsigned int size) 1625 { 1626 unsigned int bits = 8; 1627 do { 1628 bits++; 1629 size >>= 1; 1630 } while (size > 256); 1631 return bits; 1632 } 1633 1634 static inline unsigned int block_size(struct block_device *bdev) 1635 { 1636 return 1 << bdev->bd_inode->i_blkbits; 1637 } 1638 1639 int kblockd_schedule_work(struct work_struct *work); 1640 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1641 1642 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1643 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1644 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1645 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1646 1647 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1648 1649 enum blk_integrity_flags { 1650 BLK_INTEGRITY_VERIFY = 1 << 0, 1651 BLK_INTEGRITY_GENERATE = 1 << 1, 1652 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1653 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1654 }; 1655 1656 struct blk_integrity_iter { 1657 void *prot_buf; 1658 void *data_buf; 1659 sector_t seed; 1660 unsigned int data_size; 1661 unsigned short interval; 1662 const char *disk_name; 1663 }; 1664 1665 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1666 typedef void (integrity_prepare_fn) (struct request *); 1667 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1668 1669 struct blk_integrity_profile { 1670 integrity_processing_fn *generate_fn; 1671 integrity_processing_fn *verify_fn; 1672 integrity_prepare_fn *prepare_fn; 1673 integrity_complete_fn *complete_fn; 1674 const char *name; 1675 }; 1676 1677 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1678 extern void blk_integrity_unregister(struct gendisk *); 1679 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1680 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1681 struct scatterlist *); 1682 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1683 1684 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1685 { 1686 struct blk_integrity *bi = &disk->queue->integrity; 1687 1688 if (!bi->profile) 1689 return NULL; 1690 1691 return bi; 1692 } 1693 1694 static inline 1695 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1696 { 1697 return blk_get_integrity(bdev->bd_disk); 1698 } 1699 1700 static inline bool 1701 blk_integrity_queue_supports_integrity(struct request_queue *q) 1702 { 1703 return q->integrity.profile; 1704 } 1705 1706 static inline bool blk_integrity_rq(struct request *rq) 1707 { 1708 return rq->cmd_flags & REQ_INTEGRITY; 1709 } 1710 1711 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1712 unsigned int segs) 1713 { 1714 q->limits.max_integrity_segments = segs; 1715 } 1716 1717 static inline unsigned short 1718 queue_max_integrity_segments(const struct request_queue *q) 1719 { 1720 return q->limits.max_integrity_segments; 1721 } 1722 1723 /** 1724 * bio_integrity_intervals - Return number of integrity intervals for a bio 1725 * @bi: blk_integrity profile for device 1726 * @sectors: Size of the bio in 512-byte sectors 1727 * 1728 * Description: The block layer calculates everything in 512 byte 1729 * sectors but integrity metadata is done in terms of the data integrity 1730 * interval size of the storage device. Convert the block layer sectors 1731 * to the appropriate number of integrity intervals. 1732 */ 1733 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1734 unsigned int sectors) 1735 { 1736 return sectors >> (bi->interval_exp - 9); 1737 } 1738 1739 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1740 unsigned int sectors) 1741 { 1742 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1743 } 1744 1745 /* 1746 * Return the first bvec that contains integrity data. Only drivers that are 1747 * limited to a single integrity segment should use this helper. 1748 */ 1749 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1750 { 1751 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1752 return NULL; 1753 return rq->bio->bi_integrity->bip_vec; 1754 } 1755 1756 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1757 1758 struct bio; 1759 struct block_device; 1760 struct gendisk; 1761 struct blk_integrity; 1762 1763 static inline int blk_integrity_rq(struct request *rq) 1764 { 1765 return 0; 1766 } 1767 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1768 struct bio *b) 1769 { 1770 return 0; 1771 } 1772 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1773 struct bio *b, 1774 struct scatterlist *s) 1775 { 1776 return 0; 1777 } 1778 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1779 { 1780 return NULL; 1781 } 1782 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1783 { 1784 return NULL; 1785 } 1786 static inline bool 1787 blk_integrity_queue_supports_integrity(struct request_queue *q) 1788 { 1789 return false; 1790 } 1791 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1792 { 1793 return 0; 1794 } 1795 static inline void blk_integrity_register(struct gendisk *d, 1796 struct blk_integrity *b) 1797 { 1798 } 1799 static inline void blk_integrity_unregister(struct gendisk *d) 1800 { 1801 } 1802 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1803 unsigned int segs) 1804 { 1805 } 1806 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1807 { 1808 return 0; 1809 } 1810 1811 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1812 unsigned int sectors) 1813 { 1814 return 0; 1815 } 1816 1817 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1818 unsigned int sectors) 1819 { 1820 return 0; 1821 } 1822 1823 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1824 { 1825 return NULL; 1826 } 1827 1828 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1829 1830 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1831 1832 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1833 1834 void blk_ksm_unregister(struct request_queue *q); 1835 1836 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1837 1838 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1839 struct request_queue *q) 1840 { 1841 return true; 1842 } 1843 1844 static inline void blk_ksm_unregister(struct request_queue *q) { } 1845 1846 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1847 1848 1849 struct block_device_operations { 1850 blk_qc_t (*submit_bio) (struct bio *bio); 1851 int (*open) (struct block_device *, fmode_t); 1852 void (*release) (struct gendisk *, fmode_t); 1853 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1854 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1855 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1856 unsigned int (*check_events) (struct gendisk *disk, 1857 unsigned int clearing); 1858 void (*unlock_native_capacity) (struct gendisk *); 1859 int (*getgeo)(struct block_device *, struct hd_geometry *); 1860 int (*set_read_only)(struct block_device *bdev, bool ro); 1861 /* this callback is with swap_lock and sometimes page table lock held */ 1862 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1863 int (*report_zones)(struct gendisk *, sector_t sector, 1864 unsigned int nr_zones, report_zones_cb cb, void *data); 1865 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1866 struct module *owner; 1867 const struct pr_ops *pr_ops; 1868 }; 1869 1870 #ifdef CONFIG_COMPAT 1871 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1872 unsigned int, unsigned long); 1873 #else 1874 #define blkdev_compat_ptr_ioctl NULL 1875 #endif 1876 1877 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1878 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1879 struct writeback_control *); 1880 1881 #ifdef CONFIG_BLK_DEV_ZONED 1882 bool blk_req_needs_zone_write_lock(struct request *rq); 1883 bool blk_req_zone_write_trylock(struct request *rq); 1884 void __blk_req_zone_write_lock(struct request *rq); 1885 void __blk_req_zone_write_unlock(struct request *rq); 1886 1887 static inline void blk_req_zone_write_lock(struct request *rq) 1888 { 1889 if (blk_req_needs_zone_write_lock(rq)) 1890 __blk_req_zone_write_lock(rq); 1891 } 1892 1893 static inline void blk_req_zone_write_unlock(struct request *rq) 1894 { 1895 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1896 __blk_req_zone_write_unlock(rq); 1897 } 1898 1899 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1900 { 1901 return rq->q->seq_zones_wlock && 1902 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1903 } 1904 1905 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1906 { 1907 if (!blk_req_needs_zone_write_lock(rq)) 1908 return true; 1909 return !blk_req_zone_is_write_locked(rq); 1910 } 1911 #else 1912 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1913 { 1914 return false; 1915 } 1916 1917 static inline void blk_req_zone_write_lock(struct request *rq) 1918 { 1919 } 1920 1921 static inline void blk_req_zone_write_unlock(struct request *rq) 1922 { 1923 } 1924 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1925 { 1926 return false; 1927 } 1928 1929 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1930 { 1931 return true; 1932 } 1933 #endif /* CONFIG_BLK_DEV_ZONED */ 1934 1935 static inline void blk_wake_io_task(struct task_struct *waiter) 1936 { 1937 /* 1938 * If we're polling, the task itself is doing the completions. For 1939 * that case, we don't need to signal a wakeup, it's enough to just 1940 * mark us as RUNNING. 1941 */ 1942 if (waiter == current) 1943 __set_current_state(TASK_RUNNING); 1944 else 1945 wake_up_process(waiter); 1946 } 1947 1948 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1949 unsigned int op); 1950 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1951 unsigned long start_time); 1952 1953 unsigned long bio_start_io_acct(struct bio *bio); 1954 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1955 struct block_device *orig_bdev); 1956 1957 /** 1958 * bio_end_io_acct - end I/O accounting for bio based drivers 1959 * @bio: bio to end account for 1960 * @start: start time returned by bio_start_io_acct() 1961 */ 1962 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1963 { 1964 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1965 } 1966 1967 int bdev_read_only(struct block_device *bdev); 1968 int set_blocksize(struct block_device *bdev, int size); 1969 1970 const char *bdevname(struct block_device *bdev, char *buffer); 1971 int lookup_bdev(const char *pathname, dev_t *dev); 1972 1973 void blkdev_show(struct seq_file *seqf, off_t offset); 1974 1975 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1976 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1977 #ifdef CONFIG_BLOCK 1978 #define BLKDEV_MAJOR_MAX 512 1979 #else 1980 #define BLKDEV_MAJOR_MAX 0 1981 #endif 1982 1983 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1984 void *holder); 1985 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1986 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1987 void bd_abort_claiming(struct block_device *bdev, void *holder); 1988 void blkdev_put(struct block_device *bdev, fmode_t mode); 1989 1990 /* just for blk-cgroup, don't use elsewhere */ 1991 struct block_device *blkdev_get_no_open(dev_t dev); 1992 void blkdev_put_no_open(struct block_device *bdev); 1993 1994 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1995 void bdev_add(struct block_device *bdev, dev_t dev); 1996 struct block_device *I_BDEV(struct inode *inode); 1997 struct block_device *bdgrab(struct block_device *bdev); 1998 void bdput(struct block_device *); 1999 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2000 loff_t lend); 2001 2002 #ifdef CONFIG_BLOCK 2003 void invalidate_bdev(struct block_device *bdev); 2004 int sync_blockdev(struct block_device *bdev); 2005 #else 2006 static inline void invalidate_bdev(struct block_device *bdev) 2007 { 2008 } 2009 static inline int sync_blockdev(struct block_device *bdev) 2010 { 2011 return 0; 2012 } 2013 #endif 2014 int fsync_bdev(struct block_device *bdev); 2015 2016 int freeze_bdev(struct block_device *bdev); 2017 int thaw_bdev(struct block_device *bdev); 2018 2019 #endif /* _LINUX_BLKDEV_H */ 2020