1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/pagemap.h> 15 #include <linux/backing-dev-defs.h> 16 #include <linux/wait.h> 17 #include <linux/mempool.h> 18 #include <linux/pfn.h> 19 #include <linux/bio.h> 20 #include <linux/stringify.h> 21 #include <linux/gfp.h> 22 #include <linux/bsg.h> 23 #include <linux/smp.h> 24 #include <linux/rcupdate.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/scatterlist.h> 27 #include <linux/blkzoned.h> 28 #include <linux/pm.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_qos; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 struct blk_keyslot_manager; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* elevator knows about this request */ 69 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70 /* drive already may have started this one */ 71 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72 /* may not be passed by ioscheduler */ 73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74 /* request for flush sequence */ 75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76 /* merge of different types, fail separately */ 77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78 /* track inflight for MQ */ 79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80 /* don't call prep for this one */ 81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82 /* vaguely specified driver internal error. Ignored by the block layer */ 83 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 84 /* don't warn about errors */ 85 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 86 /* elevator private data attached */ 87 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 88 /* account into disk and partition IO statistics */ 89 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 90 /* request came from our alloc pool */ 91 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 92 /* runtime pm request */ 93 #define RQF_PM ((__force req_flags_t)(1 << 15)) 94 /* on IO scheduler merge hash */ 95 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 96 /* track IO completion time */ 97 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 98 /* Look at ->special_vec for the actual data payload instead of the 99 bio chain. */ 100 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 101 /* The per-zone write lock is held for this request */ 102 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 103 /* already slept for hybrid poll */ 104 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 105 /* ->timeout has been called, don't expire again */ 106 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 107 108 /* flags that prevent us from merging requests: */ 109 #define RQF_NOMERGE_FLAGS \ 110 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 111 112 /* 113 * Request state for blk-mq. 114 */ 115 enum mq_rq_state { 116 MQ_RQ_IDLE = 0, 117 MQ_RQ_IN_FLIGHT = 1, 118 MQ_RQ_COMPLETE = 2, 119 }; 120 121 /* 122 * Try to put the fields that are referenced together in the same cacheline. 123 * 124 * If you modify this structure, make sure to update blk_rq_init() and 125 * especially blk_mq_rq_ctx_init() to take care of the added fields. 126 */ 127 struct request { 128 struct request_queue *q; 129 struct blk_mq_ctx *mq_ctx; 130 struct blk_mq_hw_ctx *mq_hctx; 131 132 unsigned int cmd_flags; /* op and common flags */ 133 req_flags_t rq_flags; 134 135 int tag; 136 int internal_tag; 137 138 /* the following two fields are internal, NEVER access directly */ 139 unsigned int __data_len; /* total data len */ 140 sector_t __sector; /* sector cursor */ 141 142 struct bio *bio; 143 struct bio *biotail; 144 145 struct list_head queuelist; 146 147 /* 148 * The hash is used inside the scheduler, and killed once the 149 * request reaches the dispatch list. The ipi_list is only used 150 * to queue the request for softirq completion, which is long 151 * after the request has been unhashed (and even removed from 152 * the dispatch list). 153 */ 154 union { 155 struct hlist_node hash; /* merge hash */ 156 struct list_head ipi_list; 157 }; 158 159 /* 160 * The rb_node is only used inside the io scheduler, requests 161 * are pruned when moved to the dispatch queue. So let the 162 * completion_data share space with the rb_node. 163 */ 164 union { 165 struct rb_node rb_node; /* sort/lookup */ 166 struct bio_vec special_vec; 167 void *completion_data; 168 int error_count; /* for legacy drivers, don't use */ 169 }; 170 171 /* 172 * Three pointers are available for the IO schedulers, if they need 173 * more they have to dynamically allocate it. Flush requests are 174 * never put on the IO scheduler. So let the flush fields share 175 * space with the elevator data. 176 */ 177 union { 178 struct { 179 struct io_cq *icq; 180 void *priv[2]; 181 } elv; 182 183 struct { 184 unsigned int seq; 185 struct list_head list; 186 rq_end_io_fn *saved_end_io; 187 } flush; 188 }; 189 190 struct gendisk *rq_disk; 191 struct block_device *part; 192 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 193 /* Time that the first bio started allocating this request. */ 194 u64 alloc_time_ns; 195 #endif 196 /* Time that this request was allocated for this IO. */ 197 u64 start_time_ns; 198 /* Time that I/O was submitted to the device. */ 199 u64 io_start_time_ns; 200 201 #ifdef CONFIG_BLK_WBT 202 unsigned short wbt_flags; 203 #endif 204 /* 205 * rq sectors used for blk stats. It has the same value 206 * with blk_rq_sectors(rq), except that it never be zeroed 207 * by completion. 208 */ 209 unsigned short stats_sectors; 210 211 /* 212 * Number of scatter-gather DMA addr+len pairs after 213 * physical address coalescing is performed. 214 */ 215 unsigned short nr_phys_segments; 216 217 #if defined(CONFIG_BLK_DEV_INTEGRITY) 218 unsigned short nr_integrity_segments; 219 #endif 220 221 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 222 struct bio_crypt_ctx *crypt_ctx; 223 struct blk_ksm_keyslot *crypt_keyslot; 224 #endif 225 226 unsigned short write_hint; 227 unsigned short ioprio; 228 229 enum mq_rq_state state; 230 refcount_t ref; 231 232 unsigned int timeout; 233 unsigned long deadline; 234 235 union { 236 struct __call_single_data csd; 237 u64 fifo_time; 238 }; 239 240 /* 241 * completion callback. 242 */ 243 rq_end_io_fn *end_io; 244 void *end_io_data; 245 }; 246 247 static inline bool blk_op_is_scsi(unsigned int op) 248 { 249 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 250 } 251 252 static inline bool blk_op_is_private(unsigned int op) 253 { 254 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 255 } 256 257 static inline bool blk_rq_is_scsi(struct request *rq) 258 { 259 return blk_op_is_scsi(req_op(rq)); 260 } 261 262 static inline bool blk_rq_is_private(struct request *rq) 263 { 264 return blk_op_is_private(req_op(rq)); 265 } 266 267 static inline bool blk_rq_is_passthrough(struct request *rq) 268 { 269 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 270 } 271 272 static inline bool bio_is_passthrough(struct bio *bio) 273 { 274 unsigned op = bio_op(bio); 275 276 return blk_op_is_scsi(op) || blk_op_is_private(op); 277 } 278 279 static inline unsigned short req_get_ioprio(struct request *req) 280 { 281 return req->ioprio; 282 } 283 284 #include <linux/elevator.h> 285 286 struct blk_queue_ctx; 287 288 struct bio_vec; 289 290 enum blk_eh_timer_return { 291 BLK_EH_DONE, /* drivers has completed the command */ 292 BLK_EH_RESET_TIMER, /* reset timer and try again */ 293 }; 294 295 enum blk_queue_state { 296 Queue_down, 297 Queue_up, 298 }; 299 300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 302 303 #define BLK_SCSI_MAX_CMDS (256) 304 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 305 306 /* 307 * Zoned block device models (zoned limit). 308 * 309 * Note: This needs to be ordered from the least to the most severe 310 * restrictions for the inheritance in blk_stack_limits() to work. 311 */ 312 enum blk_zoned_model { 313 BLK_ZONED_NONE = 0, /* Regular block device */ 314 BLK_ZONED_HA, /* Host-aware zoned block device */ 315 BLK_ZONED_HM, /* Host-managed zoned block device */ 316 }; 317 318 struct queue_limits { 319 unsigned long bounce_pfn; 320 unsigned long seg_boundary_mask; 321 unsigned long virt_boundary_mask; 322 323 unsigned int max_hw_sectors; 324 unsigned int max_dev_sectors; 325 unsigned int chunk_sectors; 326 unsigned int max_sectors; 327 unsigned int max_segment_size; 328 unsigned int physical_block_size; 329 unsigned int logical_block_size; 330 unsigned int alignment_offset; 331 unsigned int io_min; 332 unsigned int io_opt; 333 unsigned int max_discard_sectors; 334 unsigned int max_hw_discard_sectors; 335 unsigned int max_write_same_sectors; 336 unsigned int max_write_zeroes_sectors; 337 unsigned int max_zone_append_sectors; 338 unsigned int discard_granularity; 339 unsigned int discard_alignment; 340 unsigned int zone_write_granularity; 341 342 unsigned short max_segments; 343 unsigned short max_integrity_segments; 344 unsigned short max_discard_segments; 345 346 unsigned char misaligned; 347 unsigned char discard_misaligned; 348 unsigned char raid_partial_stripes_expensive; 349 enum blk_zoned_model zoned; 350 }; 351 352 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 353 void *data); 354 355 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 356 357 #ifdef CONFIG_BLK_DEV_ZONED 358 359 #define BLK_ALL_ZONES ((unsigned int)-1) 360 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 361 unsigned int nr_zones, report_zones_cb cb, void *data); 362 unsigned int blkdev_nr_zones(struct gendisk *disk); 363 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 364 sector_t sectors, sector_t nr_sectors, 365 gfp_t gfp_mask); 366 int blk_revalidate_disk_zones(struct gendisk *disk, 367 void (*update_driver_data)(struct gendisk *disk)); 368 369 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 370 unsigned int cmd, unsigned long arg); 371 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 372 unsigned int cmd, unsigned long arg); 373 374 #else /* CONFIG_BLK_DEV_ZONED */ 375 376 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 377 { 378 return 0; 379 } 380 381 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 382 fmode_t mode, unsigned int cmd, 383 unsigned long arg) 384 { 385 return -ENOTTY; 386 } 387 388 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 389 fmode_t mode, unsigned int cmd, 390 unsigned long arg) 391 { 392 return -ENOTTY; 393 } 394 395 #endif /* CONFIG_BLK_DEV_ZONED */ 396 397 struct request_queue { 398 struct request *last_merge; 399 struct elevator_queue *elevator; 400 401 struct percpu_ref q_usage_counter; 402 403 struct blk_queue_stats *stats; 404 struct rq_qos *rq_qos; 405 406 const struct blk_mq_ops *mq_ops; 407 408 /* sw queues */ 409 struct blk_mq_ctx __percpu *queue_ctx; 410 411 unsigned int queue_depth; 412 413 /* hw dispatch queues */ 414 struct blk_mq_hw_ctx **queue_hw_ctx; 415 unsigned int nr_hw_queues; 416 417 struct backing_dev_info *backing_dev_info; 418 419 /* 420 * The queue owner gets to use this for whatever they like. 421 * ll_rw_blk doesn't touch it. 422 */ 423 void *queuedata; 424 425 /* 426 * various queue flags, see QUEUE_* below 427 */ 428 unsigned long queue_flags; 429 /* 430 * Number of contexts that have called blk_set_pm_only(). If this 431 * counter is above zero then only RQF_PM requests are processed. 432 */ 433 atomic_t pm_only; 434 435 /* 436 * ida allocated id for this queue. Used to index queues from 437 * ioctx. 438 */ 439 int id; 440 441 /* 442 * queue needs bounce pages for pages above this limit 443 */ 444 gfp_t bounce_gfp; 445 446 spinlock_t queue_lock; 447 448 /* 449 * queue kobject 450 */ 451 struct kobject kobj; 452 453 /* 454 * mq queue kobject 455 */ 456 struct kobject *mq_kobj; 457 458 #ifdef CONFIG_BLK_DEV_INTEGRITY 459 struct blk_integrity integrity; 460 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 461 462 #ifdef CONFIG_PM 463 struct device *dev; 464 enum rpm_status rpm_status; 465 unsigned int nr_pending; 466 #endif 467 468 /* 469 * queue settings 470 */ 471 unsigned long nr_requests; /* Max # of requests */ 472 473 unsigned int dma_pad_mask; 474 unsigned int dma_alignment; 475 476 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 477 /* Inline crypto capabilities */ 478 struct blk_keyslot_manager *ksm; 479 #endif 480 481 unsigned int rq_timeout; 482 int poll_nsec; 483 484 struct blk_stat_callback *poll_cb; 485 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 486 487 struct timer_list timeout; 488 struct work_struct timeout_work; 489 490 atomic_t nr_active_requests_shared_sbitmap; 491 492 struct list_head icq_list; 493 #ifdef CONFIG_BLK_CGROUP 494 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 495 struct blkcg_gq *root_blkg; 496 struct list_head blkg_list; 497 #endif 498 499 struct queue_limits limits; 500 501 unsigned int required_elevator_features; 502 503 #ifdef CONFIG_BLK_DEV_ZONED 504 /* 505 * Zoned block device information for request dispatch control. 506 * nr_zones is the total number of zones of the device. This is always 507 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 508 * bits which indicates if a zone is conventional (bit set) or 509 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 510 * bits which indicates if a zone is write locked, that is, if a write 511 * request targeting the zone was dispatched. All three fields are 512 * initialized by the low level device driver (e.g. scsi/sd.c). 513 * Stacking drivers (device mappers) may or may not initialize 514 * these fields. 515 * 516 * Reads of this information must be protected with blk_queue_enter() / 517 * blk_queue_exit(). Modifying this information is only allowed while 518 * no requests are being processed. See also blk_mq_freeze_queue() and 519 * blk_mq_unfreeze_queue(). 520 */ 521 unsigned int nr_zones; 522 unsigned long *conv_zones_bitmap; 523 unsigned long *seq_zones_wlock; 524 unsigned int max_open_zones; 525 unsigned int max_active_zones; 526 #endif /* CONFIG_BLK_DEV_ZONED */ 527 528 /* 529 * sg stuff 530 */ 531 unsigned int sg_timeout; 532 unsigned int sg_reserved_size; 533 int node; 534 struct mutex debugfs_mutex; 535 #ifdef CONFIG_BLK_DEV_IO_TRACE 536 struct blk_trace __rcu *blk_trace; 537 #endif 538 /* 539 * for flush operations 540 */ 541 struct blk_flush_queue *fq; 542 543 struct list_head requeue_list; 544 spinlock_t requeue_lock; 545 struct delayed_work requeue_work; 546 547 struct mutex sysfs_lock; 548 struct mutex sysfs_dir_lock; 549 550 /* 551 * for reusing dead hctx instance in case of updating 552 * nr_hw_queues 553 */ 554 struct list_head unused_hctx_list; 555 spinlock_t unused_hctx_lock; 556 557 int mq_freeze_depth; 558 559 #if defined(CONFIG_BLK_DEV_BSG) 560 struct bsg_class_device bsg_dev; 561 #endif 562 563 #ifdef CONFIG_BLK_DEV_THROTTLING 564 /* Throttle data */ 565 struct throtl_data *td; 566 #endif 567 struct rcu_head rcu_head; 568 wait_queue_head_t mq_freeze_wq; 569 /* 570 * Protect concurrent access to q_usage_counter by 571 * percpu_ref_kill() and percpu_ref_reinit(). 572 */ 573 struct mutex mq_freeze_lock; 574 575 struct blk_mq_tag_set *tag_set; 576 struct list_head tag_set_list; 577 struct bio_set bio_split; 578 579 struct dentry *debugfs_dir; 580 581 #ifdef CONFIG_BLK_DEBUG_FS 582 struct dentry *sched_debugfs_dir; 583 struct dentry *rqos_debugfs_dir; 584 #endif 585 586 bool mq_sysfs_init_done; 587 588 size_t cmd_size; 589 590 #define BLK_MAX_WRITE_HINTS 5 591 u64 write_hints[BLK_MAX_WRITE_HINTS]; 592 }; 593 594 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 595 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 596 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 597 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 598 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 599 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 600 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 601 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 602 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 603 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 604 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 605 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 606 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 607 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 608 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 609 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 610 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 611 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 612 #define QUEUE_FLAG_WC 17 /* Write back caching */ 613 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 614 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 615 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 616 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 617 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 618 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 619 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 620 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 621 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 622 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 623 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 624 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 625 626 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 627 (1 << QUEUE_FLAG_SAME_COMP) | \ 628 (1 << QUEUE_FLAG_NOWAIT)) 629 630 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 631 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 632 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 633 634 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 635 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 636 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 637 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 638 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 639 #define blk_queue_noxmerges(q) \ 640 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 641 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 642 #define blk_queue_stable_writes(q) \ 643 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 644 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 645 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 646 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 647 #define blk_queue_zone_resetall(q) \ 648 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 649 #define blk_queue_secure_erase(q) \ 650 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 651 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 652 #define blk_queue_scsi_passthrough(q) \ 653 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 654 #define blk_queue_pci_p2pdma(q) \ 655 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 656 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 657 #define blk_queue_rq_alloc_time(q) \ 658 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 659 #else 660 #define blk_queue_rq_alloc_time(q) false 661 #endif 662 663 #define blk_noretry_request(rq) \ 664 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 665 REQ_FAILFAST_DRIVER)) 666 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 667 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 668 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 669 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 670 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 671 672 extern void blk_set_pm_only(struct request_queue *q); 673 extern void blk_clear_pm_only(struct request_queue *q); 674 675 static inline bool blk_account_rq(struct request *rq) 676 { 677 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 678 } 679 680 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 681 682 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 683 684 #define rq_dma_dir(rq) \ 685 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 686 687 #define dma_map_bvec(dev, bv, dir, attrs) \ 688 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 689 (dir), (attrs)) 690 691 static inline bool queue_is_mq(struct request_queue *q) 692 { 693 return q->mq_ops; 694 } 695 696 #ifdef CONFIG_PM 697 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 698 { 699 return q->rpm_status; 700 } 701 #else 702 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 703 { 704 return RPM_ACTIVE; 705 } 706 #endif 707 708 static inline enum blk_zoned_model 709 blk_queue_zoned_model(struct request_queue *q) 710 { 711 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 712 return q->limits.zoned; 713 return BLK_ZONED_NONE; 714 } 715 716 static inline bool blk_queue_is_zoned(struct request_queue *q) 717 { 718 switch (blk_queue_zoned_model(q)) { 719 case BLK_ZONED_HA: 720 case BLK_ZONED_HM: 721 return true; 722 default: 723 return false; 724 } 725 } 726 727 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 728 { 729 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 730 } 731 732 #ifdef CONFIG_BLK_DEV_ZONED 733 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 734 { 735 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 736 } 737 738 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 739 sector_t sector) 740 { 741 if (!blk_queue_is_zoned(q)) 742 return 0; 743 return sector >> ilog2(q->limits.chunk_sectors); 744 } 745 746 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 747 sector_t sector) 748 { 749 if (!blk_queue_is_zoned(q)) 750 return false; 751 if (!q->conv_zones_bitmap) 752 return true; 753 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 754 } 755 756 static inline void blk_queue_max_open_zones(struct request_queue *q, 757 unsigned int max_open_zones) 758 { 759 q->max_open_zones = max_open_zones; 760 } 761 762 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 763 { 764 return q->max_open_zones; 765 } 766 767 static inline void blk_queue_max_active_zones(struct request_queue *q, 768 unsigned int max_active_zones) 769 { 770 q->max_active_zones = max_active_zones; 771 } 772 773 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 774 { 775 return q->max_active_zones; 776 } 777 #else /* CONFIG_BLK_DEV_ZONED */ 778 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 779 { 780 return 0; 781 } 782 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 783 sector_t sector) 784 { 785 return false; 786 } 787 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 788 sector_t sector) 789 { 790 return 0; 791 } 792 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 793 { 794 return 0; 795 } 796 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 797 { 798 return 0; 799 } 800 #endif /* CONFIG_BLK_DEV_ZONED */ 801 802 static inline bool rq_is_sync(struct request *rq) 803 { 804 return op_is_sync(rq->cmd_flags); 805 } 806 807 static inline bool rq_mergeable(struct request *rq) 808 { 809 if (blk_rq_is_passthrough(rq)) 810 return false; 811 812 if (req_op(rq) == REQ_OP_FLUSH) 813 return false; 814 815 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 816 return false; 817 818 if (req_op(rq) == REQ_OP_ZONE_APPEND) 819 return false; 820 821 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 822 return false; 823 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 824 return false; 825 826 return true; 827 } 828 829 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 830 { 831 if (bio_page(a) == bio_page(b) && 832 bio_offset(a) == bio_offset(b)) 833 return true; 834 835 return false; 836 } 837 838 static inline unsigned int blk_queue_depth(struct request_queue *q) 839 { 840 if (q->queue_depth) 841 return q->queue_depth; 842 843 return q->nr_requests; 844 } 845 846 extern unsigned long blk_max_low_pfn, blk_max_pfn; 847 848 /* 849 * standard bounce addresses: 850 * 851 * BLK_BOUNCE_HIGH : bounce all highmem pages 852 * BLK_BOUNCE_ANY : don't bounce anything 853 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 854 */ 855 856 #if BITS_PER_LONG == 32 857 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 858 #else 859 #define BLK_BOUNCE_HIGH -1ULL 860 #endif 861 #define BLK_BOUNCE_ANY (-1ULL) 862 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 863 864 /* 865 * default timeout for SG_IO if none specified 866 */ 867 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 868 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 869 870 struct rq_map_data { 871 struct page **pages; 872 int page_order; 873 int nr_entries; 874 unsigned long offset; 875 int null_mapped; 876 int from_user; 877 }; 878 879 struct req_iterator { 880 struct bvec_iter iter; 881 struct bio *bio; 882 }; 883 884 /* This should not be used directly - use rq_for_each_segment */ 885 #define for_each_bio(_bio) \ 886 for (; _bio; _bio = _bio->bi_next) 887 #define __rq_for_each_bio(_bio, rq) \ 888 if ((rq->bio)) \ 889 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 890 891 #define rq_for_each_segment(bvl, _rq, _iter) \ 892 __rq_for_each_bio(_iter.bio, _rq) \ 893 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 894 895 #define rq_for_each_bvec(bvl, _rq, _iter) \ 896 __rq_for_each_bio(_iter.bio, _rq) \ 897 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 898 899 #define rq_iter_last(bvec, _iter) \ 900 (_iter.bio->bi_next == NULL && \ 901 bio_iter_last(bvec, _iter.iter)) 902 903 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 904 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 905 #endif 906 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 907 extern void rq_flush_dcache_pages(struct request *rq); 908 #else 909 static inline void rq_flush_dcache_pages(struct request *rq) 910 { 911 } 912 #endif 913 914 extern int blk_register_queue(struct gendisk *disk); 915 extern void blk_unregister_queue(struct gendisk *disk); 916 blk_qc_t submit_bio_noacct(struct bio *bio); 917 extern void blk_rq_init(struct request_queue *q, struct request *rq); 918 extern void blk_put_request(struct request *); 919 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 920 blk_mq_req_flags_t flags); 921 extern int blk_lld_busy(struct request_queue *q); 922 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 923 struct bio_set *bs, gfp_t gfp_mask, 924 int (*bio_ctr)(struct bio *, struct bio *, void *), 925 void *data); 926 extern void blk_rq_unprep_clone(struct request *rq); 927 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 928 struct request *rq); 929 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 930 extern void blk_queue_split(struct bio **); 931 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 932 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 933 unsigned int, void __user *); 934 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 935 unsigned int, void __user *); 936 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 937 struct scsi_ioctl_command __user *); 938 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 939 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 940 941 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 942 extern void blk_queue_exit(struct request_queue *q); 943 extern void blk_sync_queue(struct request_queue *q); 944 extern int blk_rq_map_user(struct request_queue *, struct request *, 945 struct rq_map_data *, void __user *, unsigned long, 946 gfp_t); 947 extern int blk_rq_unmap_user(struct bio *); 948 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 949 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 950 struct rq_map_data *, const struct iov_iter *, 951 gfp_t); 952 extern void blk_execute_rq(struct gendisk *, struct request *, int); 953 extern void blk_execute_rq_nowait(struct gendisk *, 954 struct request *, int, rq_end_io_fn *); 955 956 /* Helper to convert REQ_OP_XXX to its string format XXX */ 957 extern const char *blk_op_str(unsigned int op); 958 959 int blk_status_to_errno(blk_status_t status); 960 blk_status_t errno_to_blk_status(int errno); 961 962 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 963 964 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 965 { 966 return bdev->bd_disk->queue; /* this is never NULL */ 967 } 968 969 /* 970 * The basic unit of block I/O is a sector. It is used in a number of contexts 971 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 972 * bytes. Variables of type sector_t represent an offset or size that is a 973 * multiple of 512 bytes. Hence these two constants. 974 */ 975 #ifndef SECTOR_SHIFT 976 #define SECTOR_SHIFT 9 977 #endif 978 #ifndef SECTOR_SIZE 979 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 980 #endif 981 982 /* 983 * blk_rq_pos() : the current sector 984 * blk_rq_bytes() : bytes left in the entire request 985 * blk_rq_cur_bytes() : bytes left in the current segment 986 * blk_rq_err_bytes() : bytes left till the next error boundary 987 * blk_rq_sectors() : sectors left in the entire request 988 * blk_rq_cur_sectors() : sectors left in the current segment 989 * blk_rq_stats_sectors() : sectors of the entire request used for stats 990 */ 991 static inline sector_t blk_rq_pos(const struct request *rq) 992 { 993 return rq->__sector; 994 } 995 996 static inline unsigned int blk_rq_bytes(const struct request *rq) 997 { 998 return rq->__data_len; 999 } 1000 1001 static inline int blk_rq_cur_bytes(const struct request *rq) 1002 { 1003 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1004 } 1005 1006 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1007 1008 static inline unsigned int blk_rq_sectors(const struct request *rq) 1009 { 1010 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1011 } 1012 1013 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1014 { 1015 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1016 } 1017 1018 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1019 { 1020 return rq->stats_sectors; 1021 } 1022 1023 #ifdef CONFIG_BLK_DEV_ZONED 1024 1025 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1026 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1027 1028 static inline unsigned int blk_rq_zone_no(struct request *rq) 1029 { 1030 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1031 } 1032 1033 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1034 { 1035 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1036 } 1037 #endif /* CONFIG_BLK_DEV_ZONED */ 1038 1039 /* 1040 * Some commands like WRITE SAME have a payload or data transfer size which 1041 * is different from the size of the request. Any driver that supports such 1042 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1043 * calculate the data transfer size. 1044 */ 1045 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1046 { 1047 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1048 return rq->special_vec.bv_len; 1049 return blk_rq_bytes(rq); 1050 } 1051 1052 /* 1053 * Return the first full biovec in the request. The caller needs to check that 1054 * there are any bvecs before calling this helper. 1055 */ 1056 static inline struct bio_vec req_bvec(struct request *rq) 1057 { 1058 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1059 return rq->special_vec; 1060 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1061 } 1062 1063 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1064 int op) 1065 { 1066 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1067 return min(q->limits.max_discard_sectors, 1068 UINT_MAX >> SECTOR_SHIFT); 1069 1070 if (unlikely(op == REQ_OP_WRITE_SAME)) 1071 return q->limits.max_write_same_sectors; 1072 1073 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1074 return q->limits.max_write_zeroes_sectors; 1075 1076 return q->limits.max_sectors; 1077 } 1078 1079 /* 1080 * Return maximum size of a request at given offset. Only valid for 1081 * file system requests. 1082 */ 1083 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1084 sector_t offset, 1085 unsigned int chunk_sectors) 1086 { 1087 if (!chunk_sectors) { 1088 if (q->limits.chunk_sectors) 1089 chunk_sectors = q->limits.chunk_sectors; 1090 else 1091 return q->limits.max_sectors; 1092 } 1093 1094 if (likely(is_power_of_2(chunk_sectors))) 1095 chunk_sectors -= offset & (chunk_sectors - 1); 1096 else 1097 chunk_sectors -= sector_div(offset, chunk_sectors); 1098 1099 return min(q->limits.max_sectors, chunk_sectors); 1100 } 1101 1102 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1103 sector_t offset) 1104 { 1105 struct request_queue *q = rq->q; 1106 1107 if (blk_rq_is_passthrough(rq)) 1108 return q->limits.max_hw_sectors; 1109 1110 if (!q->limits.chunk_sectors || 1111 req_op(rq) == REQ_OP_DISCARD || 1112 req_op(rq) == REQ_OP_SECURE_ERASE) 1113 return blk_queue_get_max_sectors(q, req_op(rq)); 1114 1115 return min(blk_max_size_offset(q, offset, 0), 1116 blk_queue_get_max_sectors(q, req_op(rq))); 1117 } 1118 1119 static inline unsigned int blk_rq_count_bios(struct request *rq) 1120 { 1121 unsigned int nr_bios = 0; 1122 struct bio *bio; 1123 1124 __rq_for_each_bio(bio, rq) 1125 nr_bios++; 1126 1127 return nr_bios; 1128 } 1129 1130 void blk_steal_bios(struct bio_list *list, struct request *rq); 1131 1132 /* 1133 * Request completion related functions. 1134 * 1135 * blk_update_request() completes given number of bytes and updates 1136 * the request without completing it. 1137 */ 1138 extern bool blk_update_request(struct request *rq, blk_status_t error, 1139 unsigned int nr_bytes); 1140 1141 extern void blk_abort_request(struct request *); 1142 1143 /* 1144 * Access functions for manipulating queue properties 1145 */ 1146 extern void blk_cleanup_queue(struct request_queue *); 1147 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1148 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1149 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1150 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1151 extern void blk_queue_max_discard_segments(struct request_queue *, 1152 unsigned short); 1153 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1154 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1155 unsigned int max_discard_sectors); 1156 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1157 unsigned int max_write_same_sectors); 1158 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1159 unsigned int max_write_same_sectors); 1160 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1161 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1162 unsigned int max_zone_append_sectors); 1163 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1164 void blk_queue_zone_write_granularity(struct request_queue *q, 1165 unsigned int size); 1166 extern void blk_queue_alignment_offset(struct request_queue *q, 1167 unsigned int alignment); 1168 void blk_queue_update_readahead(struct request_queue *q); 1169 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1170 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1171 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1172 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1173 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1174 extern void blk_set_default_limits(struct queue_limits *lim); 1175 extern void blk_set_stacking_limits(struct queue_limits *lim); 1176 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1177 sector_t offset); 1178 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1179 sector_t offset); 1180 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1181 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1182 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1183 extern void blk_queue_dma_alignment(struct request_queue *, int); 1184 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1185 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1186 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1187 extern void blk_queue_required_elevator_features(struct request_queue *q, 1188 unsigned int features); 1189 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1190 struct device *dev); 1191 1192 /* 1193 * Number of physical segments as sent to the device. 1194 * 1195 * Normally this is the number of discontiguous data segments sent by the 1196 * submitter. But for data-less command like discard we might have no 1197 * actual data segments submitted, but the driver might have to add it's 1198 * own special payload. In that case we still return 1 here so that this 1199 * special payload will be mapped. 1200 */ 1201 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1202 { 1203 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1204 return 1; 1205 return rq->nr_phys_segments; 1206 } 1207 1208 /* 1209 * Number of discard segments (or ranges) the driver needs to fill in. 1210 * Each discard bio merged into a request is counted as one segment. 1211 */ 1212 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1213 { 1214 return max_t(unsigned short, rq->nr_phys_segments, 1); 1215 } 1216 1217 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1218 struct scatterlist *sglist, struct scatterlist **last_sg); 1219 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1220 struct scatterlist *sglist) 1221 { 1222 struct scatterlist *last_sg = NULL; 1223 1224 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1225 } 1226 extern void blk_dump_rq_flags(struct request *, char *); 1227 1228 bool __must_check blk_get_queue(struct request_queue *); 1229 struct request_queue *blk_alloc_queue(int node_id); 1230 extern void blk_put_queue(struct request_queue *); 1231 extern void blk_set_queue_dying(struct request_queue *); 1232 1233 #ifdef CONFIG_BLOCK 1234 /* 1235 * blk_plug permits building a queue of related requests by holding the I/O 1236 * fragments for a short period. This allows merging of sequential requests 1237 * into single larger request. As the requests are moved from a per-task list to 1238 * the device's request_queue in a batch, this results in improved scalability 1239 * as the lock contention for request_queue lock is reduced. 1240 * 1241 * It is ok not to disable preemption when adding the request to the plug list 1242 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1243 * the plug list when the task sleeps by itself. For details, please see 1244 * schedule() where blk_schedule_flush_plug() is called. 1245 */ 1246 struct blk_plug { 1247 struct list_head mq_list; /* blk-mq requests */ 1248 struct list_head cb_list; /* md requires an unplug callback */ 1249 unsigned short rq_count; 1250 bool multiple_queues; 1251 bool nowait; 1252 }; 1253 #define BLK_MAX_REQUEST_COUNT 16 1254 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1255 1256 struct blk_plug_cb; 1257 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1258 struct blk_plug_cb { 1259 struct list_head list; 1260 blk_plug_cb_fn callback; 1261 void *data; 1262 }; 1263 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1264 void *data, int size); 1265 extern void blk_start_plug(struct blk_plug *); 1266 extern void blk_finish_plug(struct blk_plug *); 1267 extern void blk_flush_plug_list(struct blk_plug *, bool); 1268 1269 static inline void blk_flush_plug(struct task_struct *tsk) 1270 { 1271 struct blk_plug *plug = tsk->plug; 1272 1273 if (plug) 1274 blk_flush_plug_list(plug, false); 1275 } 1276 1277 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1278 { 1279 struct blk_plug *plug = tsk->plug; 1280 1281 if (plug) 1282 blk_flush_plug_list(plug, true); 1283 } 1284 1285 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1286 { 1287 struct blk_plug *plug = tsk->plug; 1288 1289 return plug && 1290 (!list_empty(&plug->mq_list) || 1291 !list_empty(&plug->cb_list)); 1292 } 1293 1294 int blkdev_issue_flush(struct block_device *bdev); 1295 long nr_blockdev_pages(void); 1296 #else /* CONFIG_BLOCK */ 1297 struct blk_plug { 1298 }; 1299 1300 static inline void blk_start_plug(struct blk_plug *plug) 1301 { 1302 } 1303 1304 static inline void blk_finish_plug(struct blk_plug *plug) 1305 { 1306 } 1307 1308 static inline void blk_flush_plug(struct task_struct *task) 1309 { 1310 } 1311 1312 static inline void blk_schedule_flush_plug(struct task_struct *task) 1313 { 1314 } 1315 1316 1317 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1318 { 1319 return false; 1320 } 1321 1322 static inline int blkdev_issue_flush(struct block_device *bdev) 1323 { 1324 return 0; 1325 } 1326 1327 static inline long nr_blockdev_pages(void) 1328 { 1329 return 0; 1330 } 1331 #endif /* CONFIG_BLOCK */ 1332 1333 extern void blk_io_schedule(void); 1334 1335 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1336 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1337 1338 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1339 1340 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1341 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1342 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1343 sector_t nr_sects, gfp_t gfp_mask, int flags, 1344 struct bio **biop); 1345 1346 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1347 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1348 1349 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1350 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1351 unsigned flags); 1352 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1353 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1354 1355 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1356 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1357 { 1358 return blkdev_issue_discard(sb->s_bdev, 1359 block << (sb->s_blocksize_bits - 1360 SECTOR_SHIFT), 1361 nr_blocks << (sb->s_blocksize_bits - 1362 SECTOR_SHIFT), 1363 gfp_mask, flags); 1364 } 1365 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1366 sector_t nr_blocks, gfp_t gfp_mask) 1367 { 1368 return blkdev_issue_zeroout(sb->s_bdev, 1369 block << (sb->s_blocksize_bits - 1370 SECTOR_SHIFT), 1371 nr_blocks << (sb->s_blocksize_bits - 1372 SECTOR_SHIFT), 1373 gfp_mask, 0); 1374 } 1375 1376 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1377 1378 static inline bool bdev_is_partition(struct block_device *bdev) 1379 { 1380 return bdev->bd_partno; 1381 } 1382 1383 enum blk_default_limits { 1384 BLK_MAX_SEGMENTS = 128, 1385 BLK_SAFE_MAX_SECTORS = 255, 1386 BLK_DEF_MAX_SECTORS = 2560, 1387 BLK_MAX_SEGMENT_SIZE = 65536, 1388 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1389 }; 1390 1391 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1392 { 1393 return q->limits.seg_boundary_mask; 1394 } 1395 1396 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1397 { 1398 return q->limits.virt_boundary_mask; 1399 } 1400 1401 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1402 { 1403 return q->limits.max_sectors; 1404 } 1405 1406 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1407 { 1408 return q->limits.max_hw_sectors; 1409 } 1410 1411 static inline unsigned short queue_max_segments(const struct request_queue *q) 1412 { 1413 return q->limits.max_segments; 1414 } 1415 1416 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1417 { 1418 return q->limits.max_discard_segments; 1419 } 1420 1421 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1422 { 1423 return q->limits.max_segment_size; 1424 } 1425 1426 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1427 { 1428 1429 const struct queue_limits *l = &q->limits; 1430 1431 return min(l->max_zone_append_sectors, l->max_sectors); 1432 } 1433 1434 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1435 { 1436 int retval = 512; 1437 1438 if (q && q->limits.logical_block_size) 1439 retval = q->limits.logical_block_size; 1440 1441 return retval; 1442 } 1443 1444 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1445 { 1446 return queue_logical_block_size(bdev_get_queue(bdev)); 1447 } 1448 1449 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1450 { 1451 return q->limits.physical_block_size; 1452 } 1453 1454 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1455 { 1456 return queue_physical_block_size(bdev_get_queue(bdev)); 1457 } 1458 1459 static inline unsigned int queue_io_min(const struct request_queue *q) 1460 { 1461 return q->limits.io_min; 1462 } 1463 1464 static inline int bdev_io_min(struct block_device *bdev) 1465 { 1466 return queue_io_min(bdev_get_queue(bdev)); 1467 } 1468 1469 static inline unsigned int queue_io_opt(const struct request_queue *q) 1470 { 1471 return q->limits.io_opt; 1472 } 1473 1474 static inline int bdev_io_opt(struct block_device *bdev) 1475 { 1476 return queue_io_opt(bdev_get_queue(bdev)); 1477 } 1478 1479 static inline unsigned int 1480 queue_zone_write_granularity(const struct request_queue *q) 1481 { 1482 return q->limits.zone_write_granularity; 1483 } 1484 1485 static inline unsigned int 1486 bdev_zone_write_granularity(struct block_device *bdev) 1487 { 1488 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1489 } 1490 1491 static inline int queue_alignment_offset(const struct request_queue *q) 1492 { 1493 if (q->limits.misaligned) 1494 return -1; 1495 1496 return q->limits.alignment_offset; 1497 } 1498 1499 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1500 { 1501 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1502 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1503 << SECTOR_SHIFT; 1504 1505 return (granularity + lim->alignment_offset - alignment) % granularity; 1506 } 1507 1508 static inline int bdev_alignment_offset(struct block_device *bdev) 1509 { 1510 struct request_queue *q = bdev_get_queue(bdev); 1511 1512 if (q->limits.misaligned) 1513 return -1; 1514 if (bdev_is_partition(bdev)) 1515 return queue_limit_alignment_offset(&q->limits, 1516 bdev->bd_start_sect); 1517 return q->limits.alignment_offset; 1518 } 1519 1520 static inline int queue_discard_alignment(const struct request_queue *q) 1521 { 1522 if (q->limits.discard_misaligned) 1523 return -1; 1524 1525 return q->limits.discard_alignment; 1526 } 1527 1528 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1529 { 1530 unsigned int alignment, granularity, offset; 1531 1532 if (!lim->max_discard_sectors) 1533 return 0; 1534 1535 /* Why are these in bytes, not sectors? */ 1536 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1537 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1538 if (!granularity) 1539 return 0; 1540 1541 /* Offset of the partition start in 'granularity' sectors */ 1542 offset = sector_div(sector, granularity); 1543 1544 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1545 offset = (granularity + alignment - offset) % granularity; 1546 1547 /* Turn it back into bytes, gaah */ 1548 return offset << SECTOR_SHIFT; 1549 } 1550 1551 static inline int bdev_discard_alignment(struct block_device *bdev) 1552 { 1553 struct request_queue *q = bdev_get_queue(bdev); 1554 1555 if (bdev_is_partition(bdev)) 1556 return queue_limit_discard_alignment(&q->limits, 1557 bdev->bd_start_sect); 1558 return q->limits.discard_alignment; 1559 } 1560 1561 static inline unsigned int bdev_write_same(struct block_device *bdev) 1562 { 1563 struct request_queue *q = bdev_get_queue(bdev); 1564 1565 if (q) 1566 return q->limits.max_write_same_sectors; 1567 1568 return 0; 1569 } 1570 1571 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1572 { 1573 struct request_queue *q = bdev_get_queue(bdev); 1574 1575 if (q) 1576 return q->limits.max_write_zeroes_sectors; 1577 1578 return 0; 1579 } 1580 1581 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1582 { 1583 struct request_queue *q = bdev_get_queue(bdev); 1584 1585 if (q) 1586 return blk_queue_zoned_model(q); 1587 1588 return BLK_ZONED_NONE; 1589 } 1590 1591 static inline bool bdev_is_zoned(struct block_device *bdev) 1592 { 1593 struct request_queue *q = bdev_get_queue(bdev); 1594 1595 if (q) 1596 return blk_queue_is_zoned(q); 1597 1598 return false; 1599 } 1600 1601 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1602 { 1603 struct request_queue *q = bdev_get_queue(bdev); 1604 1605 if (q) 1606 return blk_queue_zone_sectors(q); 1607 return 0; 1608 } 1609 1610 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1611 { 1612 struct request_queue *q = bdev_get_queue(bdev); 1613 1614 if (q) 1615 return queue_max_open_zones(q); 1616 return 0; 1617 } 1618 1619 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1620 { 1621 struct request_queue *q = bdev_get_queue(bdev); 1622 1623 if (q) 1624 return queue_max_active_zones(q); 1625 return 0; 1626 } 1627 1628 static inline int queue_dma_alignment(const struct request_queue *q) 1629 { 1630 return q ? q->dma_alignment : 511; 1631 } 1632 1633 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1634 unsigned int len) 1635 { 1636 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1637 return !(addr & alignment) && !(len & alignment); 1638 } 1639 1640 /* assumes size > 256 */ 1641 static inline unsigned int blksize_bits(unsigned int size) 1642 { 1643 unsigned int bits = 8; 1644 do { 1645 bits++; 1646 size >>= 1; 1647 } while (size > 256); 1648 return bits; 1649 } 1650 1651 static inline unsigned int block_size(struct block_device *bdev) 1652 { 1653 return 1 << bdev->bd_inode->i_blkbits; 1654 } 1655 1656 int kblockd_schedule_work(struct work_struct *work); 1657 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1658 1659 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1660 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1661 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1662 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1663 1664 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1665 1666 enum blk_integrity_flags { 1667 BLK_INTEGRITY_VERIFY = 1 << 0, 1668 BLK_INTEGRITY_GENERATE = 1 << 1, 1669 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1670 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1671 }; 1672 1673 struct blk_integrity_iter { 1674 void *prot_buf; 1675 void *data_buf; 1676 sector_t seed; 1677 unsigned int data_size; 1678 unsigned short interval; 1679 const char *disk_name; 1680 }; 1681 1682 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1683 typedef void (integrity_prepare_fn) (struct request *); 1684 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1685 1686 struct blk_integrity_profile { 1687 integrity_processing_fn *generate_fn; 1688 integrity_processing_fn *verify_fn; 1689 integrity_prepare_fn *prepare_fn; 1690 integrity_complete_fn *complete_fn; 1691 const char *name; 1692 }; 1693 1694 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1695 extern void blk_integrity_unregister(struct gendisk *); 1696 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1697 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1698 struct scatterlist *); 1699 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1700 1701 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1702 { 1703 struct blk_integrity *bi = &disk->queue->integrity; 1704 1705 if (!bi->profile) 1706 return NULL; 1707 1708 return bi; 1709 } 1710 1711 static inline 1712 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1713 { 1714 return blk_get_integrity(bdev->bd_disk); 1715 } 1716 1717 static inline bool 1718 blk_integrity_queue_supports_integrity(struct request_queue *q) 1719 { 1720 return q->integrity.profile; 1721 } 1722 1723 static inline bool blk_integrity_rq(struct request *rq) 1724 { 1725 return rq->cmd_flags & REQ_INTEGRITY; 1726 } 1727 1728 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1729 unsigned int segs) 1730 { 1731 q->limits.max_integrity_segments = segs; 1732 } 1733 1734 static inline unsigned short 1735 queue_max_integrity_segments(const struct request_queue *q) 1736 { 1737 return q->limits.max_integrity_segments; 1738 } 1739 1740 /** 1741 * bio_integrity_intervals - Return number of integrity intervals for a bio 1742 * @bi: blk_integrity profile for device 1743 * @sectors: Size of the bio in 512-byte sectors 1744 * 1745 * Description: The block layer calculates everything in 512 byte 1746 * sectors but integrity metadata is done in terms of the data integrity 1747 * interval size of the storage device. Convert the block layer sectors 1748 * to the appropriate number of integrity intervals. 1749 */ 1750 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1751 unsigned int sectors) 1752 { 1753 return sectors >> (bi->interval_exp - 9); 1754 } 1755 1756 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1757 unsigned int sectors) 1758 { 1759 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1760 } 1761 1762 /* 1763 * Return the first bvec that contains integrity data. Only drivers that are 1764 * limited to a single integrity segment should use this helper. 1765 */ 1766 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1767 { 1768 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1769 return NULL; 1770 return rq->bio->bi_integrity->bip_vec; 1771 } 1772 1773 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1774 1775 struct bio; 1776 struct block_device; 1777 struct gendisk; 1778 struct blk_integrity; 1779 1780 static inline int blk_integrity_rq(struct request *rq) 1781 { 1782 return 0; 1783 } 1784 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1785 struct bio *b) 1786 { 1787 return 0; 1788 } 1789 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1790 struct bio *b, 1791 struct scatterlist *s) 1792 { 1793 return 0; 1794 } 1795 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1796 { 1797 return NULL; 1798 } 1799 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1800 { 1801 return NULL; 1802 } 1803 static inline bool 1804 blk_integrity_queue_supports_integrity(struct request_queue *q) 1805 { 1806 return false; 1807 } 1808 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1809 { 1810 return 0; 1811 } 1812 static inline void blk_integrity_register(struct gendisk *d, 1813 struct blk_integrity *b) 1814 { 1815 } 1816 static inline void blk_integrity_unregister(struct gendisk *d) 1817 { 1818 } 1819 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1820 unsigned int segs) 1821 { 1822 } 1823 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1824 { 1825 return 0; 1826 } 1827 1828 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1829 unsigned int sectors) 1830 { 1831 return 0; 1832 } 1833 1834 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1835 unsigned int sectors) 1836 { 1837 return 0; 1838 } 1839 1840 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1841 { 1842 return NULL; 1843 } 1844 1845 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1846 1847 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1848 1849 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1850 1851 void blk_ksm_unregister(struct request_queue *q); 1852 1853 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1854 1855 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1856 struct request_queue *q) 1857 { 1858 return true; 1859 } 1860 1861 static inline void blk_ksm_unregister(struct request_queue *q) { } 1862 1863 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1864 1865 1866 struct block_device_operations { 1867 blk_qc_t (*submit_bio) (struct bio *bio); 1868 int (*open) (struct block_device *, fmode_t); 1869 void (*release) (struct gendisk *, fmode_t); 1870 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1871 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1872 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1873 unsigned int (*check_events) (struct gendisk *disk, 1874 unsigned int clearing); 1875 void (*unlock_native_capacity) (struct gendisk *); 1876 int (*revalidate_disk) (struct gendisk *); 1877 int (*getgeo)(struct block_device *, struct hd_geometry *); 1878 int (*set_read_only)(struct block_device *bdev, bool ro); 1879 /* this callback is with swap_lock and sometimes page table lock held */ 1880 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1881 int (*report_zones)(struct gendisk *, sector_t sector, 1882 unsigned int nr_zones, report_zones_cb cb, void *data); 1883 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1884 struct module *owner; 1885 const struct pr_ops *pr_ops; 1886 }; 1887 1888 #ifdef CONFIG_COMPAT 1889 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1890 unsigned int, unsigned long); 1891 #else 1892 #define blkdev_compat_ptr_ioctl NULL 1893 #endif 1894 1895 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1896 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1897 struct writeback_control *); 1898 1899 #ifdef CONFIG_BLK_DEV_ZONED 1900 bool blk_req_needs_zone_write_lock(struct request *rq); 1901 bool blk_req_zone_write_trylock(struct request *rq); 1902 void __blk_req_zone_write_lock(struct request *rq); 1903 void __blk_req_zone_write_unlock(struct request *rq); 1904 1905 static inline void blk_req_zone_write_lock(struct request *rq) 1906 { 1907 if (blk_req_needs_zone_write_lock(rq)) 1908 __blk_req_zone_write_lock(rq); 1909 } 1910 1911 static inline void blk_req_zone_write_unlock(struct request *rq) 1912 { 1913 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1914 __blk_req_zone_write_unlock(rq); 1915 } 1916 1917 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1918 { 1919 return rq->q->seq_zones_wlock && 1920 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1921 } 1922 1923 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1924 { 1925 if (!blk_req_needs_zone_write_lock(rq)) 1926 return true; 1927 return !blk_req_zone_is_write_locked(rq); 1928 } 1929 #else 1930 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1931 { 1932 return false; 1933 } 1934 1935 static inline void blk_req_zone_write_lock(struct request *rq) 1936 { 1937 } 1938 1939 static inline void blk_req_zone_write_unlock(struct request *rq) 1940 { 1941 } 1942 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1943 { 1944 return false; 1945 } 1946 1947 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1948 { 1949 return true; 1950 } 1951 #endif /* CONFIG_BLK_DEV_ZONED */ 1952 1953 static inline void blk_wake_io_task(struct task_struct *waiter) 1954 { 1955 /* 1956 * If we're polling, the task itself is doing the completions. For 1957 * that case, we don't need to signal a wakeup, it's enough to just 1958 * mark us as RUNNING. 1959 */ 1960 if (waiter == current) 1961 __set_current_state(TASK_RUNNING); 1962 else 1963 wake_up_process(waiter); 1964 } 1965 1966 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1967 unsigned int op); 1968 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1969 unsigned long start_time); 1970 1971 unsigned long bio_start_io_acct(struct bio *bio); 1972 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1973 struct block_device *orig_bdev); 1974 1975 /** 1976 * bio_end_io_acct - end I/O accounting for bio based drivers 1977 * @bio: bio to end account for 1978 * @start: start time returned by bio_start_io_acct() 1979 */ 1980 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1981 { 1982 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1983 } 1984 1985 int bdev_read_only(struct block_device *bdev); 1986 int set_blocksize(struct block_device *bdev, int size); 1987 1988 const char *bdevname(struct block_device *bdev, char *buffer); 1989 int lookup_bdev(const char *pathname, dev_t *dev); 1990 1991 void blkdev_show(struct seq_file *seqf, off_t offset); 1992 1993 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1994 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1995 #ifdef CONFIG_BLOCK 1996 #define BLKDEV_MAJOR_MAX 512 1997 #else 1998 #define BLKDEV_MAJOR_MAX 0 1999 #endif 2000 2001 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 2002 void *holder); 2003 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 2004 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 2005 void bd_abort_claiming(struct block_device *bdev, void *holder); 2006 void blkdev_put(struct block_device *bdev, fmode_t mode); 2007 2008 /* just for blk-cgroup, don't use elsewhere */ 2009 struct block_device *blkdev_get_no_open(dev_t dev); 2010 void blkdev_put_no_open(struct block_device *bdev); 2011 2012 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 2013 void bdev_add(struct block_device *bdev, dev_t dev); 2014 struct block_device *I_BDEV(struct inode *inode); 2015 struct block_device *bdgrab(struct block_device *bdev); 2016 void bdput(struct block_device *); 2017 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2018 loff_t lend); 2019 2020 #ifdef CONFIG_BLOCK 2021 void invalidate_bdev(struct block_device *bdev); 2022 int sync_blockdev(struct block_device *bdev); 2023 #else 2024 static inline void invalidate_bdev(struct block_device *bdev) 2025 { 2026 } 2027 static inline int sync_blockdev(struct block_device *bdev) 2028 { 2029 return 0; 2030 } 2031 #endif 2032 int fsync_bdev(struct block_device *bdev); 2033 2034 int freeze_bdev(struct block_device *bdev); 2035 int thaw_bdev(struct block_device *bdev); 2036 2037 #endif /* _LINUX_BLKDEV_H */ 2038