1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/timer.h> 12 #include <linux/workqueue.h> 13 #include <linux/pagemap.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/bsg.h> 22 #include <linux/smp.h> 23 #include <linux/rcupdate.h> 24 #include <linux/percpu-refcount.h> 25 #include <linux/scatterlist.h> 26 #include <linux/blkzoned.h> 27 #include <linux/pm.h> 28 29 struct module; 30 struct scsi_ioctl_command; 31 32 struct request_queue; 33 struct elevator_queue; 34 struct blk_trace; 35 struct request; 36 struct sg_io_hdr; 37 struct bsg_job; 38 struct blkcg_gq; 39 struct blk_flush_queue; 40 struct pr_ops; 41 struct rq_qos; 42 struct blk_queue_stats; 43 struct blk_stat_callback; 44 struct blk_keyslot_manager; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consistent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* Doing classic polling */ 53 #define BLK_MQ_POLL_CLASSIC -1 54 55 /* 56 * Maximum number of blkcg policies allowed to be registered concurrently. 57 * Defined here to simplify include dependency. 58 */ 59 #define BLKCG_MAX_POLS 5 60 61 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 62 63 /* 64 * request flags */ 65 typedef __u32 __bitwise req_flags_t; 66 67 /* elevator knows about this request */ 68 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 69 /* drive already may have started this one */ 70 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 71 /* may not be passed by ioscheduler */ 72 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 73 /* request for flush sequence */ 74 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 75 /* merge of different types, fail separately */ 76 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 77 /* track inflight for MQ */ 78 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 79 /* don't call prep for this one */ 80 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 81 /* set for "ide_preempt" requests and also for requests for which the SCSI 82 "quiesce" state must be ignored. */ 83 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 84 /* vaguely specified driver internal error. Ignored by the block layer */ 85 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 86 /* don't warn about errors */ 87 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 88 /* elevator private data attached */ 89 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 90 /* account into disk and partition IO statistics */ 91 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 92 /* request came from our alloc pool */ 93 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 94 /* runtime pm request */ 95 #define RQF_PM ((__force req_flags_t)(1 << 15)) 96 /* on IO scheduler merge hash */ 97 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 98 /* track IO completion time */ 99 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 100 /* Look at ->special_vec for the actual data payload instead of the 101 bio chain. */ 102 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 103 /* The per-zone write lock is held for this request */ 104 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 105 /* already slept for hybrid poll */ 106 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 107 /* ->timeout has been called, don't expire again */ 108 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 109 110 /* flags that prevent us from merging requests: */ 111 #define RQF_NOMERGE_FLAGS \ 112 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 113 114 /* 115 * Request state for blk-mq. 116 */ 117 enum mq_rq_state { 118 MQ_RQ_IDLE = 0, 119 MQ_RQ_IN_FLIGHT = 1, 120 MQ_RQ_COMPLETE = 2, 121 }; 122 123 /* 124 * Try to put the fields that are referenced together in the same cacheline. 125 * 126 * If you modify this structure, make sure to update blk_rq_init() and 127 * especially blk_mq_rq_ctx_init() to take care of the added fields. 128 */ 129 struct request { 130 struct request_queue *q; 131 struct blk_mq_ctx *mq_ctx; 132 struct blk_mq_hw_ctx *mq_hctx; 133 134 unsigned int cmd_flags; /* op and common flags */ 135 req_flags_t rq_flags; 136 137 int tag; 138 int internal_tag; 139 140 /* the following two fields are internal, NEVER access directly */ 141 unsigned int __data_len; /* total data len */ 142 sector_t __sector; /* sector cursor */ 143 144 struct bio *bio; 145 struct bio *biotail; 146 147 struct list_head queuelist; 148 149 /* 150 * The hash is used inside the scheduler, and killed once the 151 * request reaches the dispatch list. The ipi_list is only used 152 * to queue the request for softirq completion, which is long 153 * after the request has been unhashed (and even removed from 154 * the dispatch list). 155 */ 156 union { 157 struct hlist_node hash; /* merge hash */ 158 struct list_head ipi_list; 159 }; 160 161 /* 162 * The rb_node is only used inside the io scheduler, requests 163 * are pruned when moved to the dispatch queue. So let the 164 * completion_data share space with the rb_node. 165 */ 166 union { 167 struct rb_node rb_node; /* sort/lookup */ 168 struct bio_vec special_vec; 169 void *completion_data; 170 int error_count; /* for legacy drivers, don't use */ 171 }; 172 173 /* 174 * Three pointers are available for the IO schedulers, if they need 175 * more they have to dynamically allocate it. Flush requests are 176 * never put on the IO scheduler. So let the flush fields share 177 * space with the elevator data. 178 */ 179 union { 180 struct { 181 struct io_cq *icq; 182 void *priv[2]; 183 } elv; 184 185 struct { 186 unsigned int seq; 187 struct list_head list; 188 rq_end_io_fn *saved_end_io; 189 } flush; 190 }; 191 192 struct gendisk *rq_disk; 193 struct hd_struct *part; 194 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 195 /* Time that the first bio started allocating this request. */ 196 u64 alloc_time_ns; 197 #endif 198 /* Time that this request was allocated for this IO. */ 199 u64 start_time_ns; 200 /* Time that I/O was submitted to the device. */ 201 u64 io_start_time_ns; 202 203 #ifdef CONFIG_BLK_WBT 204 unsigned short wbt_flags; 205 #endif 206 /* 207 * rq sectors used for blk stats. It has the same value 208 * with blk_rq_sectors(rq), except that it never be zeroed 209 * by completion. 210 */ 211 unsigned short stats_sectors; 212 213 /* 214 * Number of scatter-gather DMA addr+len pairs after 215 * physical address coalescing is performed. 216 */ 217 unsigned short nr_phys_segments; 218 219 #if defined(CONFIG_BLK_DEV_INTEGRITY) 220 unsigned short nr_integrity_segments; 221 #endif 222 223 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 224 struct bio_crypt_ctx *crypt_ctx; 225 struct blk_ksm_keyslot *crypt_keyslot; 226 #endif 227 228 unsigned short write_hint; 229 unsigned short ioprio; 230 231 enum mq_rq_state state; 232 refcount_t ref; 233 234 unsigned int timeout; 235 unsigned long deadline; 236 237 union { 238 struct __call_single_data csd; 239 u64 fifo_time; 240 }; 241 242 /* 243 * completion callback. 244 */ 245 rq_end_io_fn *end_io; 246 void *end_io_data; 247 }; 248 249 static inline bool blk_op_is_scsi(unsigned int op) 250 { 251 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 252 } 253 254 static inline bool blk_op_is_private(unsigned int op) 255 { 256 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 257 } 258 259 static inline bool blk_rq_is_scsi(struct request *rq) 260 { 261 return blk_op_is_scsi(req_op(rq)); 262 } 263 264 static inline bool blk_rq_is_private(struct request *rq) 265 { 266 return blk_op_is_private(req_op(rq)); 267 } 268 269 static inline bool blk_rq_is_passthrough(struct request *rq) 270 { 271 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 272 } 273 274 static inline bool bio_is_passthrough(struct bio *bio) 275 { 276 unsigned op = bio_op(bio); 277 278 return blk_op_is_scsi(op) || blk_op_is_private(op); 279 } 280 281 static inline unsigned short req_get_ioprio(struct request *req) 282 { 283 return req->ioprio; 284 } 285 286 #include <linux/elevator.h> 287 288 struct blk_queue_ctx; 289 290 struct bio_vec; 291 292 enum blk_eh_timer_return { 293 BLK_EH_DONE, /* drivers has completed the command */ 294 BLK_EH_RESET_TIMER, /* reset timer and try again */ 295 }; 296 297 enum blk_queue_state { 298 Queue_down, 299 Queue_up, 300 }; 301 302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 304 305 #define BLK_SCSI_MAX_CMDS (256) 306 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 307 308 /* 309 * Zoned block device models (zoned limit). 310 * 311 * Note: This needs to be ordered from the least to the most severe 312 * restrictions for the inheritance in blk_stack_limits() to work. 313 */ 314 enum blk_zoned_model { 315 BLK_ZONED_NONE = 0, /* Regular block device */ 316 BLK_ZONED_HA, /* Host-aware zoned block device */ 317 BLK_ZONED_HM, /* Host-managed zoned block device */ 318 }; 319 320 struct queue_limits { 321 unsigned long bounce_pfn; 322 unsigned long seg_boundary_mask; 323 unsigned long virt_boundary_mask; 324 325 unsigned int max_hw_sectors; 326 unsigned int max_dev_sectors; 327 unsigned int chunk_sectors; 328 unsigned int max_sectors; 329 unsigned int max_segment_size; 330 unsigned int physical_block_size; 331 unsigned int logical_block_size; 332 unsigned int alignment_offset; 333 unsigned int io_min; 334 unsigned int io_opt; 335 unsigned int max_discard_sectors; 336 unsigned int max_hw_discard_sectors; 337 unsigned int max_write_same_sectors; 338 unsigned int max_write_zeroes_sectors; 339 unsigned int max_zone_append_sectors; 340 unsigned int discard_granularity; 341 unsigned int discard_alignment; 342 343 unsigned short max_segments; 344 unsigned short max_integrity_segments; 345 unsigned short max_discard_segments; 346 347 unsigned char misaligned; 348 unsigned char discard_misaligned; 349 unsigned char raid_partial_stripes_expensive; 350 enum blk_zoned_model zoned; 351 }; 352 353 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 354 void *data); 355 356 #ifdef CONFIG_BLK_DEV_ZONED 357 358 #define BLK_ALL_ZONES ((unsigned int)-1) 359 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 360 unsigned int nr_zones, report_zones_cb cb, void *data); 361 unsigned int blkdev_nr_zones(struct gendisk *disk); 362 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 363 sector_t sectors, sector_t nr_sectors, 364 gfp_t gfp_mask); 365 int blk_revalidate_disk_zones(struct gendisk *disk, 366 void (*update_driver_data)(struct gendisk *disk)); 367 368 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 369 unsigned int cmd, unsigned long arg); 370 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 371 unsigned int cmd, unsigned long arg); 372 373 #else /* CONFIG_BLK_DEV_ZONED */ 374 375 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 376 { 377 return 0; 378 } 379 380 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 381 fmode_t mode, unsigned int cmd, 382 unsigned long arg) 383 { 384 return -ENOTTY; 385 } 386 387 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 388 fmode_t mode, unsigned int cmd, 389 unsigned long arg) 390 { 391 return -ENOTTY; 392 } 393 394 #endif /* CONFIG_BLK_DEV_ZONED */ 395 396 struct request_queue { 397 struct request *last_merge; 398 struct elevator_queue *elevator; 399 400 struct blk_queue_stats *stats; 401 struct rq_qos *rq_qos; 402 403 const struct blk_mq_ops *mq_ops; 404 405 /* sw queues */ 406 struct blk_mq_ctx __percpu *queue_ctx; 407 408 unsigned int queue_depth; 409 410 /* hw dispatch queues */ 411 struct blk_mq_hw_ctx **queue_hw_ctx; 412 unsigned int nr_hw_queues; 413 414 struct backing_dev_info *backing_dev_info; 415 416 /* 417 * The queue owner gets to use this for whatever they like. 418 * ll_rw_blk doesn't touch it. 419 */ 420 void *queuedata; 421 422 /* 423 * various queue flags, see QUEUE_* below 424 */ 425 unsigned long queue_flags; 426 /* 427 * Number of contexts that have called blk_set_pm_only(). If this 428 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 429 * processed. 430 */ 431 atomic_t pm_only; 432 433 /* 434 * ida allocated id for this queue. Used to index queues from 435 * ioctx. 436 */ 437 int id; 438 439 /* 440 * queue needs bounce pages for pages above this limit 441 */ 442 gfp_t bounce_gfp; 443 444 spinlock_t queue_lock; 445 446 /* 447 * queue kobject 448 */ 449 struct kobject kobj; 450 451 /* 452 * mq queue kobject 453 */ 454 struct kobject *mq_kobj; 455 456 #ifdef CONFIG_BLK_DEV_INTEGRITY 457 struct blk_integrity integrity; 458 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 459 460 #ifdef CONFIG_PM 461 struct device *dev; 462 enum rpm_status rpm_status; 463 unsigned int nr_pending; 464 #endif 465 466 /* 467 * queue settings 468 */ 469 unsigned long nr_requests; /* Max # of requests */ 470 471 unsigned int dma_pad_mask; 472 unsigned int dma_alignment; 473 474 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 475 /* Inline crypto capabilities */ 476 struct blk_keyslot_manager *ksm; 477 #endif 478 479 unsigned int rq_timeout; 480 int poll_nsec; 481 482 struct blk_stat_callback *poll_cb; 483 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 484 485 struct timer_list timeout; 486 struct work_struct timeout_work; 487 488 struct list_head icq_list; 489 #ifdef CONFIG_BLK_CGROUP 490 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 491 struct blkcg_gq *root_blkg; 492 struct list_head blkg_list; 493 #endif 494 495 struct queue_limits limits; 496 497 unsigned int required_elevator_features; 498 499 #ifdef CONFIG_BLK_DEV_ZONED 500 /* 501 * Zoned block device information for request dispatch control. 502 * nr_zones is the total number of zones of the device. This is always 503 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 504 * bits which indicates if a zone is conventional (bit set) or 505 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 506 * bits which indicates if a zone is write locked, that is, if a write 507 * request targeting the zone was dispatched. All three fields are 508 * initialized by the low level device driver (e.g. scsi/sd.c). 509 * Stacking drivers (device mappers) may or may not initialize 510 * these fields. 511 * 512 * Reads of this information must be protected with blk_queue_enter() / 513 * blk_queue_exit(). Modifying this information is only allowed while 514 * no requests are being processed. See also blk_mq_freeze_queue() and 515 * blk_mq_unfreeze_queue(). 516 */ 517 unsigned int nr_zones; 518 unsigned long *conv_zones_bitmap; 519 unsigned long *seq_zones_wlock; 520 unsigned int max_open_zones; 521 unsigned int max_active_zones; 522 #endif /* CONFIG_BLK_DEV_ZONED */ 523 524 /* 525 * sg stuff 526 */ 527 unsigned int sg_timeout; 528 unsigned int sg_reserved_size; 529 int node; 530 struct mutex debugfs_mutex; 531 #ifdef CONFIG_BLK_DEV_IO_TRACE 532 struct blk_trace __rcu *blk_trace; 533 #endif 534 /* 535 * for flush operations 536 */ 537 struct blk_flush_queue *fq; 538 539 struct list_head requeue_list; 540 spinlock_t requeue_lock; 541 struct delayed_work requeue_work; 542 543 struct mutex sysfs_lock; 544 struct mutex sysfs_dir_lock; 545 546 /* 547 * for reusing dead hctx instance in case of updating 548 * nr_hw_queues 549 */ 550 struct list_head unused_hctx_list; 551 spinlock_t unused_hctx_lock; 552 553 int mq_freeze_depth; 554 555 #if defined(CONFIG_BLK_DEV_BSG) 556 struct bsg_class_device bsg_dev; 557 #endif 558 559 #ifdef CONFIG_BLK_DEV_THROTTLING 560 /* Throttle data */ 561 struct throtl_data *td; 562 #endif 563 struct rcu_head rcu_head; 564 wait_queue_head_t mq_freeze_wq; 565 /* 566 * Protect concurrent access to q_usage_counter by 567 * percpu_ref_kill() and percpu_ref_reinit(). 568 */ 569 struct mutex mq_freeze_lock; 570 struct percpu_ref q_usage_counter; 571 572 struct blk_mq_tag_set *tag_set; 573 struct list_head tag_set_list; 574 struct bio_set bio_split; 575 576 struct dentry *debugfs_dir; 577 578 #ifdef CONFIG_BLK_DEBUG_FS 579 struct dentry *sched_debugfs_dir; 580 struct dentry *rqos_debugfs_dir; 581 #endif 582 583 bool mq_sysfs_init_done; 584 585 size_t cmd_size; 586 587 #define BLK_MAX_WRITE_HINTS 5 588 u64 write_hints[BLK_MAX_WRITE_HINTS]; 589 }; 590 591 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 592 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 593 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 594 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 595 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 596 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 597 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 598 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 599 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 600 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 601 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 602 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 603 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 604 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 605 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 606 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 607 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 608 #define QUEUE_FLAG_WC 17 /* Write back caching */ 609 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 610 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 611 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 612 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 613 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 614 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 615 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 616 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 617 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 618 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 619 620 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 621 (1 << QUEUE_FLAG_SAME_COMP)) 622 623 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 624 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 625 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 626 627 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 628 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 629 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 630 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 631 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 632 #define blk_queue_noxmerges(q) \ 633 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 634 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 635 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 636 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 637 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 638 #define blk_queue_zone_resetall(q) \ 639 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 640 #define blk_queue_secure_erase(q) \ 641 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 642 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 643 #define blk_queue_scsi_passthrough(q) \ 644 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 645 #define blk_queue_pci_p2pdma(q) \ 646 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 647 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 648 #define blk_queue_rq_alloc_time(q) \ 649 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 650 #else 651 #define blk_queue_rq_alloc_time(q) false 652 #endif 653 654 #define blk_noretry_request(rq) \ 655 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 656 REQ_FAILFAST_DRIVER)) 657 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 658 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 659 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 660 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 661 662 extern void blk_set_pm_only(struct request_queue *q); 663 extern void blk_clear_pm_only(struct request_queue *q); 664 665 static inline bool blk_account_rq(struct request *rq) 666 { 667 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 668 } 669 670 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 671 672 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 673 674 #define rq_dma_dir(rq) \ 675 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 676 677 #define dma_map_bvec(dev, bv, dir, attrs) \ 678 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 679 (dir), (attrs)) 680 681 static inline bool queue_is_mq(struct request_queue *q) 682 { 683 return q->mq_ops; 684 } 685 686 static inline enum blk_zoned_model 687 blk_queue_zoned_model(struct request_queue *q) 688 { 689 return q->limits.zoned; 690 } 691 692 static inline bool blk_queue_is_zoned(struct request_queue *q) 693 { 694 switch (blk_queue_zoned_model(q)) { 695 case BLK_ZONED_HA: 696 case BLK_ZONED_HM: 697 return true; 698 default: 699 return false; 700 } 701 } 702 703 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 704 { 705 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 706 } 707 708 #ifdef CONFIG_BLK_DEV_ZONED 709 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 710 { 711 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 712 } 713 714 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 715 sector_t sector) 716 { 717 if (!blk_queue_is_zoned(q)) 718 return 0; 719 return sector >> ilog2(q->limits.chunk_sectors); 720 } 721 722 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 723 sector_t sector) 724 { 725 if (!blk_queue_is_zoned(q)) 726 return false; 727 if (!q->conv_zones_bitmap) 728 return true; 729 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 730 } 731 732 static inline void blk_queue_max_open_zones(struct request_queue *q, 733 unsigned int max_open_zones) 734 { 735 q->max_open_zones = max_open_zones; 736 } 737 738 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 739 { 740 return q->max_open_zones; 741 } 742 743 static inline void blk_queue_max_active_zones(struct request_queue *q, 744 unsigned int max_active_zones) 745 { 746 q->max_active_zones = max_active_zones; 747 } 748 749 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 750 { 751 return q->max_active_zones; 752 } 753 #else /* CONFIG_BLK_DEV_ZONED */ 754 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 755 { 756 return 0; 757 } 758 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 759 sector_t sector) 760 { 761 return false; 762 } 763 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 764 sector_t sector) 765 { 766 return 0; 767 } 768 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 769 { 770 return 0; 771 } 772 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 773 { 774 return 0; 775 } 776 #endif /* CONFIG_BLK_DEV_ZONED */ 777 778 static inline bool rq_is_sync(struct request *rq) 779 { 780 return op_is_sync(rq->cmd_flags); 781 } 782 783 static inline bool rq_mergeable(struct request *rq) 784 { 785 if (blk_rq_is_passthrough(rq)) 786 return false; 787 788 if (req_op(rq) == REQ_OP_FLUSH) 789 return false; 790 791 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 792 return false; 793 794 if (req_op(rq) == REQ_OP_ZONE_APPEND) 795 return false; 796 797 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 798 return false; 799 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 800 return false; 801 802 return true; 803 } 804 805 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 806 { 807 if (bio_page(a) == bio_page(b) && 808 bio_offset(a) == bio_offset(b)) 809 return true; 810 811 return false; 812 } 813 814 static inline unsigned int blk_queue_depth(struct request_queue *q) 815 { 816 if (q->queue_depth) 817 return q->queue_depth; 818 819 return q->nr_requests; 820 } 821 822 extern unsigned long blk_max_low_pfn, blk_max_pfn; 823 824 /* 825 * standard bounce addresses: 826 * 827 * BLK_BOUNCE_HIGH : bounce all highmem pages 828 * BLK_BOUNCE_ANY : don't bounce anything 829 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 830 */ 831 832 #if BITS_PER_LONG == 32 833 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 834 #else 835 #define BLK_BOUNCE_HIGH -1ULL 836 #endif 837 #define BLK_BOUNCE_ANY (-1ULL) 838 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 839 840 /* 841 * default timeout for SG_IO if none specified 842 */ 843 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 844 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 845 846 struct rq_map_data { 847 struct page **pages; 848 int page_order; 849 int nr_entries; 850 unsigned long offset; 851 int null_mapped; 852 int from_user; 853 }; 854 855 struct req_iterator { 856 struct bvec_iter iter; 857 struct bio *bio; 858 }; 859 860 /* This should not be used directly - use rq_for_each_segment */ 861 #define for_each_bio(_bio) \ 862 for (; _bio; _bio = _bio->bi_next) 863 #define __rq_for_each_bio(_bio, rq) \ 864 if ((rq->bio)) \ 865 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 866 867 #define rq_for_each_segment(bvl, _rq, _iter) \ 868 __rq_for_each_bio(_iter.bio, _rq) \ 869 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 870 871 #define rq_for_each_bvec(bvl, _rq, _iter) \ 872 __rq_for_each_bio(_iter.bio, _rq) \ 873 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 874 875 #define rq_iter_last(bvec, _iter) \ 876 (_iter.bio->bi_next == NULL && \ 877 bio_iter_last(bvec, _iter.iter)) 878 879 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 880 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 881 #endif 882 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 883 extern void rq_flush_dcache_pages(struct request *rq); 884 #else 885 static inline void rq_flush_dcache_pages(struct request *rq) 886 { 887 } 888 #endif 889 890 extern int blk_register_queue(struct gendisk *disk); 891 extern void blk_unregister_queue(struct gendisk *disk); 892 blk_qc_t submit_bio_noacct(struct bio *bio); 893 extern void blk_rq_init(struct request_queue *q, struct request *rq); 894 extern void blk_put_request(struct request *); 895 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 896 blk_mq_req_flags_t flags); 897 extern int blk_lld_busy(struct request_queue *q); 898 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 899 struct bio_set *bs, gfp_t gfp_mask, 900 int (*bio_ctr)(struct bio *, struct bio *, void *), 901 void *data); 902 extern void blk_rq_unprep_clone(struct request *rq); 903 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 904 struct request *rq); 905 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 906 extern void blk_queue_split(struct bio **); 907 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 908 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 909 unsigned int, void __user *); 910 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 911 unsigned int, void __user *); 912 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 913 struct scsi_ioctl_command __user *); 914 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 915 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 916 917 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 918 extern void blk_queue_exit(struct request_queue *q); 919 extern void blk_sync_queue(struct request_queue *q); 920 extern int blk_rq_map_user(struct request_queue *, struct request *, 921 struct rq_map_data *, void __user *, unsigned long, 922 gfp_t); 923 extern int blk_rq_unmap_user(struct bio *); 924 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 925 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 926 struct rq_map_data *, const struct iov_iter *, 927 gfp_t); 928 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 929 struct request *, int); 930 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 931 struct request *, int, rq_end_io_fn *); 932 933 /* Helper to convert REQ_OP_XXX to its string format XXX */ 934 extern const char *blk_op_str(unsigned int op); 935 936 int blk_status_to_errno(blk_status_t status); 937 blk_status_t errno_to_blk_status(int errno); 938 939 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 940 941 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 942 { 943 return bdev->bd_disk->queue; /* this is never NULL */ 944 } 945 946 /* 947 * The basic unit of block I/O is a sector. It is used in a number of contexts 948 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 949 * bytes. Variables of type sector_t represent an offset or size that is a 950 * multiple of 512 bytes. Hence these two constants. 951 */ 952 #ifndef SECTOR_SHIFT 953 #define SECTOR_SHIFT 9 954 #endif 955 #ifndef SECTOR_SIZE 956 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 957 #endif 958 959 /* 960 * blk_rq_pos() : the current sector 961 * blk_rq_bytes() : bytes left in the entire request 962 * blk_rq_cur_bytes() : bytes left in the current segment 963 * blk_rq_err_bytes() : bytes left till the next error boundary 964 * blk_rq_sectors() : sectors left in the entire request 965 * blk_rq_cur_sectors() : sectors left in the current segment 966 * blk_rq_stats_sectors() : sectors of the entire request used for stats 967 */ 968 static inline sector_t blk_rq_pos(const struct request *rq) 969 { 970 return rq->__sector; 971 } 972 973 static inline unsigned int blk_rq_bytes(const struct request *rq) 974 { 975 return rq->__data_len; 976 } 977 978 static inline int blk_rq_cur_bytes(const struct request *rq) 979 { 980 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 981 } 982 983 extern unsigned int blk_rq_err_bytes(const struct request *rq); 984 985 static inline unsigned int blk_rq_sectors(const struct request *rq) 986 { 987 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 988 } 989 990 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 991 { 992 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 993 } 994 995 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 996 { 997 return rq->stats_sectors; 998 } 999 1000 #ifdef CONFIG_BLK_DEV_ZONED 1001 1002 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1003 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1004 1005 static inline unsigned int blk_rq_zone_no(struct request *rq) 1006 { 1007 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1008 } 1009 1010 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1011 { 1012 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1013 } 1014 #endif /* CONFIG_BLK_DEV_ZONED */ 1015 1016 /* 1017 * Some commands like WRITE SAME have a payload or data transfer size which 1018 * is different from the size of the request. Any driver that supports such 1019 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1020 * calculate the data transfer size. 1021 */ 1022 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1023 { 1024 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1025 return rq->special_vec.bv_len; 1026 return blk_rq_bytes(rq); 1027 } 1028 1029 /* 1030 * Return the first full biovec in the request. The caller needs to check that 1031 * there are any bvecs before calling this helper. 1032 */ 1033 static inline struct bio_vec req_bvec(struct request *rq) 1034 { 1035 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1036 return rq->special_vec; 1037 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1038 } 1039 1040 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1041 int op) 1042 { 1043 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1044 return min(q->limits.max_discard_sectors, 1045 UINT_MAX >> SECTOR_SHIFT); 1046 1047 if (unlikely(op == REQ_OP_WRITE_SAME)) 1048 return q->limits.max_write_same_sectors; 1049 1050 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1051 return q->limits.max_write_zeroes_sectors; 1052 1053 return q->limits.max_sectors; 1054 } 1055 1056 /* 1057 * Return maximum size of a request at given offset. Only valid for 1058 * file system requests. 1059 */ 1060 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1061 sector_t offset) 1062 { 1063 if (!q->limits.chunk_sectors) 1064 return q->limits.max_sectors; 1065 1066 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1067 (offset & (q->limits.chunk_sectors - 1)))); 1068 } 1069 1070 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1071 sector_t offset) 1072 { 1073 struct request_queue *q = rq->q; 1074 1075 if (blk_rq_is_passthrough(rq)) 1076 return q->limits.max_hw_sectors; 1077 1078 if (!q->limits.chunk_sectors || 1079 req_op(rq) == REQ_OP_DISCARD || 1080 req_op(rq) == REQ_OP_SECURE_ERASE) 1081 return blk_queue_get_max_sectors(q, req_op(rq)); 1082 1083 return min(blk_max_size_offset(q, offset), 1084 blk_queue_get_max_sectors(q, req_op(rq))); 1085 } 1086 1087 static inline unsigned int blk_rq_count_bios(struct request *rq) 1088 { 1089 unsigned int nr_bios = 0; 1090 struct bio *bio; 1091 1092 __rq_for_each_bio(bio, rq) 1093 nr_bios++; 1094 1095 return nr_bios; 1096 } 1097 1098 void blk_steal_bios(struct bio_list *list, struct request *rq); 1099 1100 /* 1101 * Request completion related functions. 1102 * 1103 * blk_update_request() completes given number of bytes and updates 1104 * the request without completing it. 1105 */ 1106 extern bool blk_update_request(struct request *rq, blk_status_t error, 1107 unsigned int nr_bytes); 1108 1109 extern void blk_abort_request(struct request *); 1110 1111 /* 1112 * Access functions for manipulating queue properties 1113 */ 1114 extern void blk_cleanup_queue(struct request_queue *); 1115 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1116 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1117 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1118 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1119 extern void blk_queue_max_discard_segments(struct request_queue *, 1120 unsigned short); 1121 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1122 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1123 unsigned int max_discard_sectors); 1124 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1125 unsigned int max_write_same_sectors); 1126 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1127 unsigned int max_write_same_sectors); 1128 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1129 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1130 unsigned int max_zone_append_sectors); 1131 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1132 extern void blk_queue_alignment_offset(struct request_queue *q, 1133 unsigned int alignment); 1134 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1135 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1136 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1137 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1138 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1139 extern void blk_set_default_limits(struct queue_limits *lim); 1140 extern void blk_set_stacking_limits(struct queue_limits *lim); 1141 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1142 sector_t offset); 1143 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1144 sector_t offset); 1145 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1146 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1147 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1148 extern void blk_queue_dma_alignment(struct request_queue *, int); 1149 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1150 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1151 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1152 extern void blk_queue_required_elevator_features(struct request_queue *q, 1153 unsigned int features); 1154 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1155 struct device *dev); 1156 1157 /* 1158 * Number of physical segments as sent to the device. 1159 * 1160 * Normally this is the number of discontiguous data segments sent by the 1161 * submitter. But for data-less command like discard we might have no 1162 * actual data segments submitted, but the driver might have to add it's 1163 * own special payload. In that case we still return 1 here so that this 1164 * special payload will be mapped. 1165 */ 1166 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1167 { 1168 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1169 return 1; 1170 return rq->nr_phys_segments; 1171 } 1172 1173 /* 1174 * Number of discard segments (or ranges) the driver needs to fill in. 1175 * Each discard bio merged into a request is counted as one segment. 1176 */ 1177 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1178 { 1179 return max_t(unsigned short, rq->nr_phys_segments, 1); 1180 } 1181 1182 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1183 struct scatterlist *sglist, struct scatterlist **last_sg); 1184 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1185 struct scatterlist *sglist) 1186 { 1187 struct scatterlist *last_sg = NULL; 1188 1189 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1190 } 1191 extern void blk_dump_rq_flags(struct request *, char *); 1192 1193 bool __must_check blk_get_queue(struct request_queue *); 1194 struct request_queue *blk_alloc_queue(int node_id); 1195 extern void blk_put_queue(struct request_queue *); 1196 extern void blk_set_queue_dying(struct request_queue *); 1197 1198 #ifdef CONFIG_BLOCK 1199 /* 1200 * blk_plug permits building a queue of related requests by holding the I/O 1201 * fragments for a short period. This allows merging of sequential requests 1202 * into single larger request. As the requests are moved from a per-task list to 1203 * the device's request_queue in a batch, this results in improved scalability 1204 * as the lock contention for request_queue lock is reduced. 1205 * 1206 * It is ok not to disable preemption when adding the request to the plug list 1207 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1208 * the plug list when the task sleeps by itself. For details, please see 1209 * schedule() where blk_schedule_flush_plug() is called. 1210 */ 1211 struct blk_plug { 1212 struct list_head mq_list; /* blk-mq requests */ 1213 struct list_head cb_list; /* md requires an unplug callback */ 1214 unsigned short rq_count; 1215 bool multiple_queues; 1216 bool nowait; 1217 }; 1218 #define BLK_MAX_REQUEST_COUNT 16 1219 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1220 1221 struct blk_plug_cb; 1222 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1223 struct blk_plug_cb { 1224 struct list_head list; 1225 blk_plug_cb_fn callback; 1226 void *data; 1227 }; 1228 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1229 void *data, int size); 1230 extern void blk_start_plug(struct blk_plug *); 1231 extern void blk_finish_plug(struct blk_plug *); 1232 extern void blk_flush_plug_list(struct blk_plug *, bool); 1233 1234 static inline void blk_flush_plug(struct task_struct *tsk) 1235 { 1236 struct blk_plug *plug = tsk->plug; 1237 1238 if (plug) 1239 blk_flush_plug_list(plug, false); 1240 } 1241 1242 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1243 { 1244 struct blk_plug *plug = tsk->plug; 1245 1246 if (plug) 1247 blk_flush_plug_list(plug, true); 1248 } 1249 1250 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1251 { 1252 struct blk_plug *plug = tsk->plug; 1253 1254 return plug && 1255 (!list_empty(&plug->mq_list) || 1256 !list_empty(&plug->cb_list)); 1257 } 1258 1259 int blkdev_issue_flush(struct block_device *, gfp_t); 1260 long nr_blockdev_pages(void); 1261 #else /* CONFIG_BLOCK */ 1262 struct blk_plug { 1263 }; 1264 1265 static inline void blk_start_plug(struct blk_plug *plug) 1266 { 1267 } 1268 1269 static inline void blk_finish_plug(struct blk_plug *plug) 1270 { 1271 } 1272 1273 static inline void blk_flush_plug(struct task_struct *task) 1274 { 1275 } 1276 1277 static inline void blk_schedule_flush_plug(struct task_struct *task) 1278 { 1279 } 1280 1281 1282 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1283 { 1284 return false; 1285 } 1286 1287 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1288 { 1289 return 0; 1290 } 1291 1292 static inline long nr_blockdev_pages(void) 1293 { 1294 return 0; 1295 } 1296 #endif /* CONFIG_BLOCK */ 1297 1298 extern void blk_io_schedule(void); 1299 1300 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1301 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1302 1303 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1304 1305 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1306 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1307 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1308 sector_t nr_sects, gfp_t gfp_mask, int flags, 1309 struct bio **biop); 1310 1311 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1312 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1313 1314 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1315 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1316 unsigned flags); 1317 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1318 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1319 1320 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1321 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1322 { 1323 return blkdev_issue_discard(sb->s_bdev, 1324 block << (sb->s_blocksize_bits - 1325 SECTOR_SHIFT), 1326 nr_blocks << (sb->s_blocksize_bits - 1327 SECTOR_SHIFT), 1328 gfp_mask, flags); 1329 } 1330 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1331 sector_t nr_blocks, gfp_t gfp_mask) 1332 { 1333 return blkdev_issue_zeroout(sb->s_bdev, 1334 block << (sb->s_blocksize_bits - 1335 SECTOR_SHIFT), 1336 nr_blocks << (sb->s_blocksize_bits - 1337 SECTOR_SHIFT), 1338 gfp_mask, 0); 1339 } 1340 1341 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1342 1343 enum blk_default_limits { 1344 BLK_MAX_SEGMENTS = 128, 1345 BLK_SAFE_MAX_SECTORS = 255, 1346 BLK_DEF_MAX_SECTORS = 2560, 1347 BLK_MAX_SEGMENT_SIZE = 65536, 1348 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1349 }; 1350 1351 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1352 { 1353 return q->limits.seg_boundary_mask; 1354 } 1355 1356 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1357 { 1358 return q->limits.virt_boundary_mask; 1359 } 1360 1361 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1362 { 1363 return q->limits.max_sectors; 1364 } 1365 1366 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1367 { 1368 return q->limits.max_hw_sectors; 1369 } 1370 1371 static inline unsigned short queue_max_segments(const struct request_queue *q) 1372 { 1373 return q->limits.max_segments; 1374 } 1375 1376 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1377 { 1378 return q->limits.max_discard_segments; 1379 } 1380 1381 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1382 { 1383 return q->limits.max_segment_size; 1384 } 1385 1386 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1387 { 1388 return q->limits.max_zone_append_sectors; 1389 } 1390 1391 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1392 { 1393 int retval = 512; 1394 1395 if (q && q->limits.logical_block_size) 1396 retval = q->limits.logical_block_size; 1397 1398 return retval; 1399 } 1400 1401 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1402 { 1403 return queue_logical_block_size(bdev_get_queue(bdev)); 1404 } 1405 1406 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1407 { 1408 return q->limits.physical_block_size; 1409 } 1410 1411 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1412 { 1413 return queue_physical_block_size(bdev_get_queue(bdev)); 1414 } 1415 1416 static inline unsigned int queue_io_min(const struct request_queue *q) 1417 { 1418 return q->limits.io_min; 1419 } 1420 1421 static inline int bdev_io_min(struct block_device *bdev) 1422 { 1423 return queue_io_min(bdev_get_queue(bdev)); 1424 } 1425 1426 static inline unsigned int queue_io_opt(const struct request_queue *q) 1427 { 1428 return q->limits.io_opt; 1429 } 1430 1431 static inline int bdev_io_opt(struct block_device *bdev) 1432 { 1433 return queue_io_opt(bdev_get_queue(bdev)); 1434 } 1435 1436 static inline int queue_alignment_offset(const struct request_queue *q) 1437 { 1438 if (q->limits.misaligned) 1439 return -1; 1440 1441 return q->limits.alignment_offset; 1442 } 1443 1444 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1445 { 1446 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1447 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1448 << SECTOR_SHIFT; 1449 1450 return (granularity + lim->alignment_offset - alignment) % granularity; 1451 } 1452 1453 static inline int bdev_alignment_offset(struct block_device *bdev) 1454 { 1455 struct request_queue *q = bdev_get_queue(bdev); 1456 1457 if (q->limits.misaligned) 1458 return -1; 1459 if (bdev != bdev->bd_contains) 1460 return queue_limit_alignment_offset(&q->limits, 1461 bdev->bd_part->start_sect); 1462 return q->limits.alignment_offset; 1463 } 1464 1465 static inline int queue_discard_alignment(const struct request_queue *q) 1466 { 1467 if (q->limits.discard_misaligned) 1468 return -1; 1469 1470 return q->limits.discard_alignment; 1471 } 1472 1473 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1474 { 1475 unsigned int alignment, granularity, offset; 1476 1477 if (!lim->max_discard_sectors) 1478 return 0; 1479 1480 /* Why are these in bytes, not sectors? */ 1481 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1482 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1483 if (!granularity) 1484 return 0; 1485 1486 /* Offset of the partition start in 'granularity' sectors */ 1487 offset = sector_div(sector, granularity); 1488 1489 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1490 offset = (granularity + alignment - offset) % granularity; 1491 1492 /* Turn it back into bytes, gaah */ 1493 return offset << SECTOR_SHIFT; 1494 } 1495 1496 static inline int bdev_discard_alignment(struct block_device *bdev) 1497 { 1498 struct request_queue *q = bdev_get_queue(bdev); 1499 1500 if (bdev != bdev->bd_contains) 1501 return queue_limit_discard_alignment(&q->limits, 1502 bdev->bd_part->start_sect); 1503 return q->limits.discard_alignment; 1504 } 1505 1506 static inline unsigned int bdev_write_same(struct block_device *bdev) 1507 { 1508 struct request_queue *q = bdev_get_queue(bdev); 1509 1510 if (q) 1511 return q->limits.max_write_same_sectors; 1512 1513 return 0; 1514 } 1515 1516 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1517 { 1518 struct request_queue *q = bdev_get_queue(bdev); 1519 1520 if (q) 1521 return q->limits.max_write_zeroes_sectors; 1522 1523 return 0; 1524 } 1525 1526 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1527 { 1528 struct request_queue *q = bdev_get_queue(bdev); 1529 1530 if (q) 1531 return blk_queue_zoned_model(q); 1532 1533 return BLK_ZONED_NONE; 1534 } 1535 1536 static inline bool bdev_is_zoned(struct block_device *bdev) 1537 { 1538 struct request_queue *q = bdev_get_queue(bdev); 1539 1540 if (q) 1541 return blk_queue_is_zoned(q); 1542 1543 return false; 1544 } 1545 1546 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1547 { 1548 struct request_queue *q = bdev_get_queue(bdev); 1549 1550 if (q) 1551 return blk_queue_zone_sectors(q); 1552 return 0; 1553 } 1554 1555 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1556 { 1557 struct request_queue *q = bdev_get_queue(bdev); 1558 1559 if (q) 1560 return queue_max_open_zones(q); 1561 return 0; 1562 } 1563 1564 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1565 { 1566 struct request_queue *q = bdev_get_queue(bdev); 1567 1568 if (q) 1569 return queue_max_active_zones(q); 1570 return 0; 1571 } 1572 1573 static inline int queue_dma_alignment(const struct request_queue *q) 1574 { 1575 return q ? q->dma_alignment : 511; 1576 } 1577 1578 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1579 unsigned int len) 1580 { 1581 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1582 return !(addr & alignment) && !(len & alignment); 1583 } 1584 1585 /* assumes size > 256 */ 1586 static inline unsigned int blksize_bits(unsigned int size) 1587 { 1588 unsigned int bits = 8; 1589 do { 1590 bits++; 1591 size >>= 1; 1592 } while (size > 256); 1593 return bits; 1594 } 1595 1596 static inline unsigned int block_size(struct block_device *bdev) 1597 { 1598 return 1 << bdev->bd_inode->i_blkbits; 1599 } 1600 1601 int kblockd_schedule_work(struct work_struct *work); 1602 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1603 1604 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1605 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1606 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1607 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1608 1609 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1610 1611 enum blk_integrity_flags { 1612 BLK_INTEGRITY_VERIFY = 1 << 0, 1613 BLK_INTEGRITY_GENERATE = 1 << 1, 1614 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1615 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1616 }; 1617 1618 struct blk_integrity_iter { 1619 void *prot_buf; 1620 void *data_buf; 1621 sector_t seed; 1622 unsigned int data_size; 1623 unsigned short interval; 1624 const char *disk_name; 1625 }; 1626 1627 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1628 typedef void (integrity_prepare_fn) (struct request *); 1629 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1630 1631 struct blk_integrity_profile { 1632 integrity_processing_fn *generate_fn; 1633 integrity_processing_fn *verify_fn; 1634 integrity_prepare_fn *prepare_fn; 1635 integrity_complete_fn *complete_fn; 1636 const char *name; 1637 }; 1638 1639 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1640 extern void blk_integrity_unregister(struct gendisk *); 1641 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1642 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1643 struct scatterlist *); 1644 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1645 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1646 struct request *); 1647 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1648 struct bio *); 1649 1650 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1651 { 1652 struct blk_integrity *bi = &disk->queue->integrity; 1653 1654 if (!bi->profile) 1655 return NULL; 1656 1657 return bi; 1658 } 1659 1660 static inline 1661 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1662 { 1663 return blk_get_integrity(bdev->bd_disk); 1664 } 1665 1666 static inline bool 1667 blk_integrity_queue_supports_integrity(struct request_queue *q) 1668 { 1669 return q->integrity.profile; 1670 } 1671 1672 static inline bool blk_integrity_rq(struct request *rq) 1673 { 1674 return rq->cmd_flags & REQ_INTEGRITY; 1675 } 1676 1677 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1678 unsigned int segs) 1679 { 1680 q->limits.max_integrity_segments = segs; 1681 } 1682 1683 static inline unsigned short 1684 queue_max_integrity_segments(const struct request_queue *q) 1685 { 1686 return q->limits.max_integrity_segments; 1687 } 1688 1689 /** 1690 * bio_integrity_intervals - Return number of integrity intervals for a bio 1691 * @bi: blk_integrity profile for device 1692 * @sectors: Size of the bio in 512-byte sectors 1693 * 1694 * Description: The block layer calculates everything in 512 byte 1695 * sectors but integrity metadata is done in terms of the data integrity 1696 * interval size of the storage device. Convert the block layer sectors 1697 * to the appropriate number of integrity intervals. 1698 */ 1699 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1700 unsigned int sectors) 1701 { 1702 return sectors >> (bi->interval_exp - 9); 1703 } 1704 1705 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1706 unsigned int sectors) 1707 { 1708 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1709 } 1710 1711 /* 1712 * Return the first bvec that contains integrity data. Only drivers that are 1713 * limited to a single integrity segment should use this helper. 1714 */ 1715 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1716 { 1717 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1718 return NULL; 1719 return rq->bio->bi_integrity->bip_vec; 1720 } 1721 1722 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1723 1724 struct bio; 1725 struct block_device; 1726 struct gendisk; 1727 struct blk_integrity; 1728 1729 static inline int blk_integrity_rq(struct request *rq) 1730 { 1731 return 0; 1732 } 1733 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1734 struct bio *b) 1735 { 1736 return 0; 1737 } 1738 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1739 struct bio *b, 1740 struct scatterlist *s) 1741 { 1742 return 0; 1743 } 1744 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1745 { 1746 return NULL; 1747 } 1748 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1749 { 1750 return NULL; 1751 } 1752 static inline bool 1753 blk_integrity_queue_supports_integrity(struct request_queue *q) 1754 { 1755 return false; 1756 } 1757 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1758 { 1759 return 0; 1760 } 1761 static inline void blk_integrity_register(struct gendisk *d, 1762 struct blk_integrity *b) 1763 { 1764 } 1765 static inline void blk_integrity_unregister(struct gendisk *d) 1766 { 1767 } 1768 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1769 unsigned int segs) 1770 { 1771 } 1772 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1773 { 1774 return 0; 1775 } 1776 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1777 struct request *r1, 1778 struct request *r2) 1779 { 1780 return true; 1781 } 1782 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1783 struct request *r, 1784 struct bio *b) 1785 { 1786 return true; 1787 } 1788 1789 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1790 unsigned int sectors) 1791 { 1792 return 0; 1793 } 1794 1795 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1796 unsigned int sectors) 1797 { 1798 return 0; 1799 } 1800 1801 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1802 { 1803 return NULL; 1804 } 1805 1806 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1807 1808 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1809 1810 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1811 1812 void blk_ksm_unregister(struct request_queue *q); 1813 1814 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1815 1816 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1817 struct request_queue *q) 1818 { 1819 return true; 1820 } 1821 1822 static inline void blk_ksm_unregister(struct request_queue *q) { } 1823 1824 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1825 1826 1827 struct block_device_operations { 1828 blk_qc_t (*submit_bio) (struct bio *bio); 1829 int (*open) (struct block_device *, fmode_t); 1830 void (*release) (struct gendisk *, fmode_t); 1831 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1832 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1833 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1834 unsigned int (*check_events) (struct gendisk *disk, 1835 unsigned int clearing); 1836 void (*unlock_native_capacity) (struct gendisk *); 1837 int (*revalidate_disk) (struct gendisk *); 1838 int (*getgeo)(struct block_device *, struct hd_geometry *); 1839 /* this callback is with swap_lock and sometimes page table lock held */ 1840 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1841 int (*report_zones)(struct gendisk *, sector_t sector, 1842 unsigned int nr_zones, report_zones_cb cb, void *data); 1843 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1844 struct module *owner; 1845 const struct pr_ops *pr_ops; 1846 }; 1847 1848 #ifdef CONFIG_COMPAT 1849 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1850 unsigned int, unsigned long); 1851 #else 1852 #define blkdev_compat_ptr_ioctl NULL 1853 #endif 1854 1855 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1856 unsigned long); 1857 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1858 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1859 struct writeback_control *); 1860 1861 #ifdef CONFIG_BLK_DEV_ZONED 1862 bool blk_req_needs_zone_write_lock(struct request *rq); 1863 bool blk_req_zone_write_trylock(struct request *rq); 1864 void __blk_req_zone_write_lock(struct request *rq); 1865 void __blk_req_zone_write_unlock(struct request *rq); 1866 1867 static inline void blk_req_zone_write_lock(struct request *rq) 1868 { 1869 if (blk_req_needs_zone_write_lock(rq)) 1870 __blk_req_zone_write_lock(rq); 1871 } 1872 1873 static inline void blk_req_zone_write_unlock(struct request *rq) 1874 { 1875 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1876 __blk_req_zone_write_unlock(rq); 1877 } 1878 1879 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1880 { 1881 return rq->q->seq_zones_wlock && 1882 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1883 } 1884 1885 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1886 { 1887 if (!blk_req_needs_zone_write_lock(rq)) 1888 return true; 1889 return !blk_req_zone_is_write_locked(rq); 1890 } 1891 #else 1892 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1893 { 1894 return false; 1895 } 1896 1897 static inline void blk_req_zone_write_lock(struct request *rq) 1898 { 1899 } 1900 1901 static inline void blk_req_zone_write_unlock(struct request *rq) 1902 { 1903 } 1904 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1905 { 1906 return false; 1907 } 1908 1909 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1910 { 1911 return true; 1912 } 1913 #endif /* CONFIG_BLK_DEV_ZONED */ 1914 1915 static inline void blk_wake_io_task(struct task_struct *waiter) 1916 { 1917 /* 1918 * If we're polling, the task itself is doing the completions. For 1919 * that case, we don't need to signal a wakeup, it's enough to just 1920 * mark us as RUNNING. 1921 */ 1922 if (waiter == current) 1923 __set_current_state(TASK_RUNNING); 1924 else 1925 wake_up_process(waiter); 1926 } 1927 1928 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1929 unsigned int op); 1930 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1931 unsigned long start_time); 1932 1933 /** 1934 * bio_start_io_acct - start I/O accounting for bio based drivers 1935 * @bio: bio to start account for 1936 * 1937 * Returns the start time that should be passed back to bio_end_io_acct(). 1938 */ 1939 static inline unsigned long bio_start_io_acct(struct bio *bio) 1940 { 1941 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1942 } 1943 1944 /** 1945 * bio_end_io_acct - end I/O accounting for bio based drivers 1946 * @bio: bio to end account for 1947 * @start: start time returned by bio_start_io_acct() 1948 */ 1949 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1950 { 1951 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1952 } 1953 1954 int bdev_read_only(struct block_device *bdev); 1955 int set_blocksize(struct block_device *bdev, int size); 1956 1957 const char *bdevname(struct block_device *bdev, char *buffer); 1958 struct block_device *lookup_bdev(const char *); 1959 1960 void blkdev_show(struct seq_file *seqf, off_t offset); 1961 1962 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1963 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1964 #ifdef CONFIG_BLOCK 1965 #define BLKDEV_MAJOR_MAX 512 1966 #else 1967 #define BLKDEV_MAJOR_MAX 0 1968 #endif 1969 1970 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder); 1971 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1972 void *holder); 1973 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1974 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1975 void *holder); 1976 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1977 void *holder); 1978 void blkdev_put(struct block_device *bdev, fmode_t mode); 1979 1980 struct block_device *I_BDEV(struct inode *inode); 1981 struct block_device *bdget(dev_t); 1982 struct block_device *bdgrab(struct block_device *bdev); 1983 void bdput(struct block_device *); 1984 1985 #ifdef CONFIG_BLOCK 1986 void invalidate_bdev(struct block_device *bdev); 1987 int sync_blockdev(struct block_device *bdev); 1988 #else 1989 static inline void invalidate_bdev(struct block_device *bdev) 1990 { 1991 } 1992 static inline int sync_blockdev(struct block_device *bdev) 1993 { 1994 return 0; 1995 } 1996 #endif 1997 int fsync_bdev(struct block_device *bdev); 1998 1999 struct super_block *freeze_bdev(struct block_device *bdev); 2000 int thaw_bdev(struct block_device *bdev, struct super_block *sb); 2001 2002 #endif /* _LINUX_BLKDEV_H */ 2003