xref: /linux-6.15/include/linux/blkdev.h (revision a5359ddd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/srcu.h>
26 #include <linux/uuid.h>
27 #include <linux/xarray.h>
28 
29 struct module;
30 struct request_queue;
31 struct elevator_queue;
32 struct blk_trace;
33 struct request;
34 struct sg_io_hdr;
35 struct blkcg_gq;
36 struct blk_flush_queue;
37 struct kiocb;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43 
44 extern const struct device_type disk_type;
45 extern struct device_type part_type;
46 extern struct class block_class;
47 
48 /* Must be consistent with blk_mq_poll_stats_bkt() */
49 #define BLK_MQ_POLL_STATS_BKTS 16
50 
51 /* Doing classic polling */
52 #define BLK_MQ_POLL_CLASSIC -1
53 
54 /*
55  * Maximum number of blkcg policies allowed to be registered concurrently.
56  * Defined here to simplify include dependency.
57  */
58 #define BLKCG_MAX_POLS		6
59 
60 #define DISK_MAX_PARTS			256
61 #define DISK_NAME_LEN			32
62 
63 #define PARTITION_META_INFO_VOLNAMELTH	64
64 /*
65  * Enough for the string representation of any kind of UUID plus NULL.
66  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
67  */
68 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
69 
70 struct partition_meta_info {
71 	char uuid[PARTITION_META_INFO_UUIDLTH];
72 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
73 };
74 
75 /**
76  * DOC: genhd capability flags
77  *
78  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
79  * removable media.  When set, the device remains present even when media is not
80  * inserted.  Shall not be set for devices which are removed entirely when the
81  * media is removed.
82  *
83  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
84  * doesn't appear in sysfs, and can't be opened from userspace or using
85  * blkdev_get*. Used for the underlying components of multipath devices.
86  *
87  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
88  * scan for partitions from add_disk, and users can't add partitions manually.
89  *
90  */
91 enum {
92 	GENHD_FL_REMOVABLE			= 1 << 0,
93 	GENHD_FL_HIDDEN				= 1 << 1,
94 	GENHD_FL_NO_PART			= 1 << 2,
95 };
96 
97 enum {
98 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
99 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
100 };
101 
102 enum {
103 	/* Poll even if events_poll_msecs is unset */
104 	DISK_EVENT_FLAG_POLL			= 1 << 0,
105 	/* Forward events to udev */
106 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
107 	/* Block event polling when open for exclusive write */
108 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
109 };
110 
111 struct disk_events;
112 struct badblocks;
113 
114 struct blk_integrity {
115 	const struct blk_integrity_profile	*profile;
116 	unsigned char				flags;
117 	unsigned char				tuple_size;
118 	unsigned char				interval_exp;
119 	unsigned char				tag_size;
120 };
121 
122 struct gendisk {
123 	/*
124 	 * major/first_minor/minors should not be set by any new driver, the
125 	 * block core will take care of allocating them automatically.
126 	 */
127 	int major;
128 	int first_minor;
129 	int minors;
130 
131 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
132 
133 	unsigned short events;		/* supported events */
134 	unsigned short event_flags;	/* flags related to event processing */
135 
136 	struct xarray part_tbl;
137 	struct block_device *part0;
138 
139 	const struct block_device_operations *fops;
140 	struct request_queue *queue;
141 	void *private_data;
142 
143 	int flags;
144 	unsigned long state;
145 #define GD_NEED_PART_SCAN		0
146 #define GD_READ_ONLY			1
147 #define GD_DEAD				2
148 #define GD_NATIVE_CAPACITY		3
149 #define GD_ADDED			4
150 
151 	struct mutex open_mutex;	/* open/close mutex */
152 	unsigned open_partitions;	/* number of open partitions */
153 
154 	struct backing_dev_info	*bdi;
155 	struct kobject *slave_dir;
156 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
157 	struct list_head slave_bdevs;
158 #endif
159 	struct timer_rand_state *random;
160 	atomic_t sync_io;		/* RAID */
161 	struct disk_events *ev;
162 #ifdef  CONFIG_BLK_DEV_INTEGRITY
163 	struct kobject integrity_kobj;
164 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
165 #if IS_ENABLED(CONFIG_CDROM)
166 	struct cdrom_device_info *cdi;
167 #endif
168 	int node_id;
169 	struct badblocks *bb;
170 	struct lockdep_map lockdep_map;
171 	u64 diskseq;
172 };
173 
174 static inline bool disk_live(struct gendisk *disk)
175 {
176 	return !inode_unhashed(disk->part0->bd_inode);
177 }
178 
179 /*
180  * The gendisk is refcounted by the part0 block_device, and the bd_device
181  * therein is also used for device model presentation in sysfs.
182  */
183 #define dev_to_disk(device) \
184 	(dev_to_bdev(device)->bd_disk)
185 #define disk_to_dev(disk) \
186 	(&((disk)->part0->bd_device))
187 
188 #if IS_REACHABLE(CONFIG_CDROM)
189 #define disk_to_cdi(disk)	((disk)->cdi)
190 #else
191 #define disk_to_cdi(disk)	NULL
192 #endif
193 
194 static inline dev_t disk_devt(struct gendisk *disk)
195 {
196 	return MKDEV(disk->major, disk->first_minor);
197 }
198 
199 static inline int blk_validate_block_size(unsigned long bsize)
200 {
201 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 static inline bool blk_op_is_passthrough(unsigned int op)
208 {
209 	op &= REQ_OP_MASK;
210 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
211 }
212 
213 /*
214  * Zoned block device models (zoned limit).
215  *
216  * Note: This needs to be ordered from the least to the most severe
217  * restrictions for the inheritance in blk_stack_limits() to work.
218  */
219 enum blk_zoned_model {
220 	BLK_ZONED_NONE = 0,	/* Regular block device */
221 	BLK_ZONED_HA,		/* Host-aware zoned block device */
222 	BLK_ZONED_HM,		/* Host-managed zoned block device */
223 };
224 
225 /*
226  * BLK_BOUNCE_NONE:	never bounce (default)
227  * BLK_BOUNCE_HIGH:	bounce all highmem pages
228  */
229 enum blk_bounce {
230 	BLK_BOUNCE_NONE,
231 	BLK_BOUNCE_HIGH,
232 };
233 
234 struct queue_limits {
235 	enum blk_bounce		bounce;
236 	unsigned long		seg_boundary_mask;
237 	unsigned long		virt_boundary_mask;
238 
239 	unsigned int		max_hw_sectors;
240 	unsigned int		max_dev_sectors;
241 	unsigned int		chunk_sectors;
242 	unsigned int		max_sectors;
243 	unsigned int		max_segment_size;
244 	unsigned int		physical_block_size;
245 	unsigned int		logical_block_size;
246 	unsigned int		alignment_offset;
247 	unsigned int		io_min;
248 	unsigned int		io_opt;
249 	unsigned int		max_discard_sectors;
250 	unsigned int		max_hw_discard_sectors;
251 	unsigned int		max_write_same_sectors;
252 	unsigned int		max_write_zeroes_sectors;
253 	unsigned int		max_zone_append_sectors;
254 	unsigned int		discard_granularity;
255 	unsigned int		discard_alignment;
256 	unsigned int		zone_write_granularity;
257 
258 	unsigned short		max_segments;
259 	unsigned short		max_integrity_segments;
260 	unsigned short		max_discard_segments;
261 
262 	unsigned char		misaligned;
263 	unsigned char		discard_misaligned;
264 	unsigned char		raid_partial_stripes_expensive;
265 	enum blk_zoned_model	zoned;
266 };
267 
268 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
269 			       void *data);
270 
271 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
272 
273 #ifdef CONFIG_BLK_DEV_ZONED
274 
275 #define BLK_ALL_ZONES  ((unsigned int)-1)
276 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
277 			unsigned int nr_zones, report_zones_cb cb, void *data);
278 unsigned int blkdev_nr_zones(struct gendisk *disk);
279 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
280 			    sector_t sectors, sector_t nr_sectors,
281 			    gfp_t gfp_mask);
282 int blk_revalidate_disk_zones(struct gendisk *disk,
283 			      void (*update_driver_data)(struct gendisk *disk));
284 
285 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
286 				     unsigned int cmd, unsigned long arg);
287 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
288 				  unsigned int cmd, unsigned long arg);
289 
290 #else /* CONFIG_BLK_DEV_ZONED */
291 
292 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
293 {
294 	return 0;
295 }
296 
297 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
298 					    fmode_t mode, unsigned int cmd,
299 					    unsigned long arg)
300 {
301 	return -ENOTTY;
302 }
303 
304 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
305 					 fmode_t mode, unsigned int cmd,
306 					 unsigned long arg)
307 {
308 	return -ENOTTY;
309 }
310 
311 #endif /* CONFIG_BLK_DEV_ZONED */
312 
313 /*
314  * Independent access ranges: struct blk_independent_access_range describes
315  * a range of contiguous sectors that can be accessed using device command
316  * execution resources that are independent from the resources used for
317  * other access ranges. This is typically found with single-LUN multi-actuator
318  * HDDs where each access range is served by a different set of heads.
319  * The set of independent ranges supported by the device is defined using
320  * struct blk_independent_access_ranges. The independent ranges must not overlap
321  * and must include all sectors within the disk capacity (no sector holes
322  * allowed).
323  * For a device with multiple ranges, requests targeting sectors in different
324  * ranges can be executed in parallel. A request can straddle an access range
325  * boundary.
326  */
327 struct blk_independent_access_range {
328 	struct kobject		kobj;
329 	struct request_queue	*queue;
330 	sector_t		sector;
331 	sector_t		nr_sectors;
332 };
333 
334 struct blk_independent_access_ranges {
335 	struct kobject				kobj;
336 	bool					sysfs_registered;
337 	unsigned int				nr_ia_ranges;
338 	struct blk_independent_access_range	ia_range[];
339 };
340 
341 struct request_queue {
342 	struct request		*last_merge;
343 	struct elevator_queue	*elevator;
344 
345 	struct percpu_ref	q_usage_counter;
346 
347 	struct blk_queue_stats	*stats;
348 	struct rq_qos		*rq_qos;
349 
350 	const struct blk_mq_ops	*mq_ops;
351 
352 	/* sw queues */
353 	struct blk_mq_ctx __percpu	*queue_ctx;
354 
355 	unsigned int		queue_depth;
356 
357 	/* hw dispatch queues */
358 	struct blk_mq_hw_ctx	**queue_hw_ctx;
359 	unsigned int		nr_hw_queues;
360 
361 	/*
362 	 * The queue owner gets to use this for whatever they like.
363 	 * ll_rw_blk doesn't touch it.
364 	 */
365 	void			*queuedata;
366 
367 	/*
368 	 * various queue flags, see QUEUE_* below
369 	 */
370 	unsigned long		queue_flags;
371 	/*
372 	 * Number of contexts that have called blk_set_pm_only(). If this
373 	 * counter is above zero then only RQF_PM requests are processed.
374 	 */
375 	atomic_t		pm_only;
376 
377 	/*
378 	 * ida allocated id for this queue.  Used to index queues from
379 	 * ioctx.
380 	 */
381 	int			id;
382 
383 	spinlock_t		queue_lock;
384 
385 	struct gendisk		*disk;
386 
387 	/*
388 	 * queue kobject
389 	 */
390 	struct kobject kobj;
391 
392 	/*
393 	 * mq queue kobject
394 	 */
395 	struct kobject *mq_kobj;
396 
397 #ifdef  CONFIG_BLK_DEV_INTEGRITY
398 	struct blk_integrity integrity;
399 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
400 
401 #ifdef CONFIG_PM
402 	struct device		*dev;
403 	enum rpm_status		rpm_status;
404 #endif
405 
406 	/*
407 	 * queue settings
408 	 */
409 	unsigned long		nr_requests;	/* Max # of requests */
410 
411 	unsigned int		dma_pad_mask;
412 	unsigned int		dma_alignment;
413 
414 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
415 	struct blk_crypto_profile *crypto_profile;
416 #endif
417 
418 	unsigned int		rq_timeout;
419 	int			poll_nsec;
420 
421 	struct blk_stat_callback	*poll_cb;
422 	struct blk_rq_stat	*poll_stat;
423 
424 	struct timer_list	timeout;
425 	struct work_struct	timeout_work;
426 
427 	atomic_t		nr_active_requests_shared_tags;
428 
429 	struct blk_mq_tags	*sched_shared_tags;
430 
431 	struct list_head	icq_list;
432 #ifdef CONFIG_BLK_CGROUP
433 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
434 	struct blkcg_gq		*root_blkg;
435 	struct list_head	blkg_list;
436 #endif
437 
438 	struct queue_limits	limits;
439 
440 	unsigned int		required_elevator_features;
441 
442 #ifdef CONFIG_BLK_DEV_ZONED
443 	/*
444 	 * Zoned block device information for request dispatch control.
445 	 * nr_zones is the total number of zones of the device. This is always
446 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
447 	 * bits which indicates if a zone is conventional (bit set) or
448 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
449 	 * bits which indicates if a zone is write locked, that is, if a write
450 	 * request targeting the zone was dispatched. All three fields are
451 	 * initialized by the low level device driver (e.g. scsi/sd.c).
452 	 * Stacking drivers (device mappers) may or may not initialize
453 	 * these fields.
454 	 *
455 	 * Reads of this information must be protected with blk_queue_enter() /
456 	 * blk_queue_exit(). Modifying this information is only allowed while
457 	 * no requests are being processed. See also blk_mq_freeze_queue() and
458 	 * blk_mq_unfreeze_queue().
459 	 */
460 	unsigned int		nr_zones;
461 	unsigned long		*conv_zones_bitmap;
462 	unsigned long		*seq_zones_wlock;
463 	unsigned int		max_open_zones;
464 	unsigned int		max_active_zones;
465 #endif /* CONFIG_BLK_DEV_ZONED */
466 
467 	int			node;
468 	struct mutex		debugfs_mutex;
469 #ifdef CONFIG_BLK_DEV_IO_TRACE
470 	struct blk_trace __rcu	*blk_trace;
471 #endif
472 	/*
473 	 * for flush operations
474 	 */
475 	struct blk_flush_queue	*fq;
476 
477 	struct list_head	requeue_list;
478 	spinlock_t		requeue_lock;
479 	struct delayed_work	requeue_work;
480 
481 	struct mutex		sysfs_lock;
482 	struct mutex		sysfs_dir_lock;
483 
484 	/*
485 	 * for reusing dead hctx instance in case of updating
486 	 * nr_hw_queues
487 	 */
488 	struct list_head	unused_hctx_list;
489 	spinlock_t		unused_hctx_lock;
490 
491 	int			mq_freeze_depth;
492 
493 #ifdef CONFIG_BLK_DEV_THROTTLING
494 	/* Throttle data */
495 	struct throtl_data *td;
496 #endif
497 	struct rcu_head		rcu_head;
498 	wait_queue_head_t	mq_freeze_wq;
499 	/*
500 	 * Protect concurrent access to q_usage_counter by
501 	 * percpu_ref_kill() and percpu_ref_reinit().
502 	 */
503 	struct mutex		mq_freeze_lock;
504 
505 	int			quiesce_depth;
506 
507 	struct blk_mq_tag_set	*tag_set;
508 	struct list_head	tag_set_list;
509 	struct bio_set		bio_split;
510 
511 	struct dentry		*debugfs_dir;
512 
513 #ifdef CONFIG_BLK_DEBUG_FS
514 	struct dentry		*sched_debugfs_dir;
515 	struct dentry		*rqos_debugfs_dir;
516 #endif
517 
518 	bool			mq_sysfs_init_done;
519 
520 #define BLK_MAX_WRITE_HINTS	5
521 	u64			write_hints[BLK_MAX_WRITE_HINTS];
522 
523 	/*
524 	 * Independent sector access ranges. This is always NULL for
525 	 * devices that do not have multiple independent access ranges.
526 	 */
527 	struct blk_independent_access_ranges *ia_ranges;
528 
529 	/**
530 	 * @srcu: Sleepable RCU. Use as lock when type of the request queue
531 	 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member
532 	 */
533 	struct srcu_struct	srcu[];
534 };
535 
536 /* Keep blk_queue_flag_name[] in sync with the definitions below */
537 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
538 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
539 #define QUEUE_FLAG_HAS_SRCU	2	/* SRCU is allocated */
540 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
541 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
542 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
543 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
544 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
545 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
546 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
547 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
548 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
549 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
550 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
551 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
552 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
553 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
554 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
555 #define QUEUE_FLAG_WC		17	/* Write back caching */
556 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
557 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
558 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
559 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
560 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
561 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
562 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
563 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
564 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
565 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
566 
567 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
568 				 (1 << QUEUE_FLAG_SAME_COMP) |		\
569 				 (1 << QUEUE_FLAG_NOWAIT))
570 
571 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
572 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
573 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
574 
575 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
576 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
577 #define blk_queue_has_srcu(q)	test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags)
578 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
579 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
580 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
581 #define blk_queue_noxmerges(q)	\
582 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
583 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
584 #define blk_queue_stable_writes(q) \
585 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
586 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
587 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
588 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
589 #define blk_queue_zone_resetall(q)	\
590 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
591 #define blk_queue_secure_erase(q) \
592 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
593 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
594 #define blk_queue_pci_p2pdma(q)	\
595 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
596 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
597 #define blk_queue_rq_alloc_time(q)	\
598 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
599 #else
600 #define blk_queue_rq_alloc_time(q)	false
601 #endif
602 
603 #define blk_noretry_request(rq) \
604 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
605 			     REQ_FAILFAST_DRIVER))
606 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
607 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
608 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
609 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
610 #define blk_queue_nowait(q)	test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
611 
612 extern void blk_set_pm_only(struct request_queue *q);
613 extern void blk_clear_pm_only(struct request_queue *q);
614 
615 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
616 
617 #define dma_map_bvec(dev, bv, dir, attrs) \
618 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
619 	(dir), (attrs))
620 
621 static inline bool queue_is_mq(struct request_queue *q)
622 {
623 	return q->mq_ops;
624 }
625 
626 #ifdef CONFIG_PM
627 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
628 {
629 	return q->rpm_status;
630 }
631 #else
632 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
633 {
634 	return RPM_ACTIVE;
635 }
636 #endif
637 
638 static inline enum blk_zoned_model
639 blk_queue_zoned_model(struct request_queue *q)
640 {
641 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
642 		return q->limits.zoned;
643 	return BLK_ZONED_NONE;
644 }
645 
646 static inline bool blk_queue_is_zoned(struct request_queue *q)
647 {
648 	switch (blk_queue_zoned_model(q)) {
649 	case BLK_ZONED_HA:
650 	case BLK_ZONED_HM:
651 		return true;
652 	default:
653 		return false;
654 	}
655 }
656 
657 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
658 {
659 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
660 }
661 
662 #ifdef CONFIG_BLK_DEV_ZONED
663 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
664 {
665 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
666 }
667 
668 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
669 					     sector_t sector)
670 {
671 	if (!blk_queue_is_zoned(q))
672 		return 0;
673 	return sector >> ilog2(q->limits.chunk_sectors);
674 }
675 
676 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
677 					 sector_t sector)
678 {
679 	if (!blk_queue_is_zoned(q))
680 		return false;
681 	if (!q->conv_zones_bitmap)
682 		return true;
683 	return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
684 }
685 
686 static inline void blk_queue_max_open_zones(struct request_queue *q,
687 		unsigned int max_open_zones)
688 {
689 	q->max_open_zones = max_open_zones;
690 }
691 
692 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
693 {
694 	return q->max_open_zones;
695 }
696 
697 static inline void blk_queue_max_active_zones(struct request_queue *q,
698 		unsigned int max_active_zones)
699 {
700 	q->max_active_zones = max_active_zones;
701 }
702 
703 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
704 {
705 	return q->max_active_zones;
706 }
707 #else /* CONFIG_BLK_DEV_ZONED */
708 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
709 {
710 	return 0;
711 }
712 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
713 					 sector_t sector)
714 {
715 	return false;
716 }
717 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
718 					     sector_t sector)
719 {
720 	return 0;
721 }
722 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
723 {
724 	return 0;
725 }
726 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
727 {
728 	return 0;
729 }
730 #endif /* CONFIG_BLK_DEV_ZONED */
731 
732 static inline unsigned int blk_queue_depth(struct request_queue *q)
733 {
734 	if (q->queue_depth)
735 		return q->queue_depth;
736 
737 	return q->nr_requests;
738 }
739 
740 /*
741  * default timeout for SG_IO if none specified
742  */
743 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
744 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
745 
746 /* This should not be used directly - use rq_for_each_segment */
747 #define for_each_bio(_bio)		\
748 	for (; _bio; _bio = _bio->bi_next)
749 
750 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
751 				 const struct attribute_group **groups);
752 static inline int __must_check add_disk(struct gendisk *disk)
753 {
754 	return device_add_disk(NULL, disk, NULL);
755 }
756 void del_gendisk(struct gendisk *gp);
757 void invalidate_disk(struct gendisk *disk);
758 void set_disk_ro(struct gendisk *disk, bool read_only);
759 void disk_uevent(struct gendisk *disk, enum kobject_action action);
760 
761 static inline int get_disk_ro(struct gendisk *disk)
762 {
763 	return disk->part0->bd_read_only ||
764 		test_bit(GD_READ_ONLY, &disk->state);
765 }
766 
767 static inline int bdev_read_only(struct block_device *bdev)
768 {
769 	return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
770 }
771 
772 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
773 bool disk_force_media_change(struct gendisk *disk, unsigned int events);
774 
775 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
776 void rand_initialize_disk(struct gendisk *disk);
777 
778 static inline sector_t get_start_sect(struct block_device *bdev)
779 {
780 	return bdev->bd_start_sect;
781 }
782 
783 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
784 {
785 	return bdev->bd_nr_sectors;
786 }
787 
788 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
789 {
790 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
791 }
792 
793 static inline sector_t get_capacity(struct gendisk *disk)
794 {
795 	return bdev_nr_sectors(disk->part0);
796 }
797 
798 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
799 {
800 	return bdev_nr_sectors(sb->s_bdev) >>
801 		(sb->s_blocksize_bits - SECTOR_SHIFT);
802 }
803 
804 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
805 
806 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
807 		struct lock_class_key *lkclass);
808 void put_disk(struct gendisk *disk);
809 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
810 
811 /**
812  * blk_alloc_disk - allocate a gendisk structure
813  * @node_id: numa node to allocate on
814  *
815  * Allocate and pre-initialize a gendisk structure for use with BIO based
816  * drivers.
817  *
818  * Context: can sleep
819  */
820 #define blk_alloc_disk(node_id)						\
821 ({									\
822 	static struct lock_class_key __key;				\
823 									\
824 	__blk_alloc_disk(node_id, &__key);				\
825 })
826 void blk_cleanup_disk(struct gendisk *disk);
827 
828 int __register_blkdev(unsigned int major, const char *name,
829 		void (*probe)(dev_t devt));
830 #define register_blkdev(major, name) \
831 	__register_blkdev(major, name, NULL)
832 void unregister_blkdev(unsigned int major, const char *name);
833 
834 bool bdev_check_media_change(struct block_device *bdev);
835 int __invalidate_device(struct block_device *bdev, bool kill_dirty);
836 void set_capacity(struct gendisk *disk, sector_t size);
837 
838 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
839 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
840 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
841 int bd_register_pending_holders(struct gendisk *disk);
842 #else
843 static inline int bd_link_disk_holder(struct block_device *bdev,
844 				      struct gendisk *disk)
845 {
846 	return 0;
847 }
848 static inline void bd_unlink_disk_holder(struct block_device *bdev,
849 					 struct gendisk *disk)
850 {
851 }
852 static inline int bd_register_pending_holders(struct gendisk *disk)
853 {
854 	return 0;
855 }
856 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
857 
858 dev_t part_devt(struct gendisk *disk, u8 partno);
859 void inc_diskseq(struct gendisk *disk);
860 dev_t blk_lookup_devt(const char *name, int partno);
861 void blk_request_module(dev_t devt);
862 
863 extern int blk_register_queue(struct gendisk *disk);
864 extern void blk_unregister_queue(struct gendisk *disk);
865 void submit_bio_noacct(struct bio *bio);
866 
867 extern int blk_lld_busy(struct request_queue *q);
868 extern void blk_queue_split(struct bio **);
869 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
870 extern void blk_queue_exit(struct request_queue *q);
871 extern void blk_sync_queue(struct request_queue *q);
872 
873 /* Helper to convert REQ_OP_XXX to its string format XXX */
874 extern const char *blk_op_str(unsigned int op);
875 
876 int blk_status_to_errno(blk_status_t status);
877 blk_status_t errno_to_blk_status(int errno);
878 
879 /* only poll the hardware once, don't continue until a completion was found */
880 #define BLK_POLL_ONESHOT		(1 << 0)
881 /* do not sleep to wait for the expected completion time */
882 #define BLK_POLL_NOSLEEP		(1 << 1)
883 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
884 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
885 			unsigned int flags);
886 
887 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
888 {
889 	return bdev->bd_queue;	/* this is never NULL */
890 }
891 
892 #ifdef CONFIG_BLK_DEV_ZONED
893 
894 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
895 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
896 
897 static inline unsigned int bio_zone_no(struct bio *bio)
898 {
899 	return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev),
900 				 bio->bi_iter.bi_sector);
901 }
902 
903 static inline unsigned int bio_zone_is_seq(struct bio *bio)
904 {
905 	return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev),
906 				     bio->bi_iter.bi_sector);
907 }
908 #endif /* CONFIG_BLK_DEV_ZONED */
909 
910 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
911 						     int op)
912 {
913 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
914 		return min(q->limits.max_discard_sectors,
915 			   UINT_MAX >> SECTOR_SHIFT);
916 
917 	if (unlikely(op == REQ_OP_WRITE_SAME))
918 		return q->limits.max_write_same_sectors;
919 
920 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
921 		return q->limits.max_write_zeroes_sectors;
922 
923 	return q->limits.max_sectors;
924 }
925 
926 /*
927  * Return maximum size of a request at given offset. Only valid for
928  * file system requests.
929  */
930 static inline unsigned int blk_max_size_offset(struct request_queue *q,
931 					       sector_t offset,
932 					       unsigned int chunk_sectors)
933 {
934 	if (!chunk_sectors) {
935 		if (q->limits.chunk_sectors)
936 			chunk_sectors = q->limits.chunk_sectors;
937 		else
938 			return q->limits.max_sectors;
939 	}
940 
941 	if (likely(is_power_of_2(chunk_sectors)))
942 		chunk_sectors -= offset & (chunk_sectors - 1);
943 	else
944 		chunk_sectors -= sector_div(offset, chunk_sectors);
945 
946 	return min(q->limits.max_sectors, chunk_sectors);
947 }
948 
949 /*
950  * Access functions for manipulating queue properties
951  */
952 extern void blk_cleanup_queue(struct request_queue *);
953 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
954 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
955 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
956 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
957 extern void blk_queue_max_discard_segments(struct request_queue *,
958 		unsigned short);
959 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
960 extern void blk_queue_max_discard_sectors(struct request_queue *q,
961 		unsigned int max_discard_sectors);
962 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
963 		unsigned int max_write_same_sectors);
964 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
965 		unsigned int max_write_same_sectors);
966 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
967 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
968 		unsigned int max_zone_append_sectors);
969 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
970 void blk_queue_zone_write_granularity(struct request_queue *q,
971 				      unsigned int size);
972 extern void blk_queue_alignment_offset(struct request_queue *q,
973 				       unsigned int alignment);
974 void disk_update_readahead(struct gendisk *disk);
975 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
976 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
977 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
978 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
979 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
980 extern void blk_set_default_limits(struct queue_limits *lim);
981 extern void blk_set_stacking_limits(struct queue_limits *lim);
982 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
983 			    sector_t offset);
984 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
985 			      sector_t offset);
986 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
987 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
988 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
989 extern void blk_queue_dma_alignment(struct request_queue *, int);
990 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
991 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
992 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
993 
994 struct blk_independent_access_ranges *
995 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
996 void disk_set_independent_access_ranges(struct gendisk *disk,
997 				struct blk_independent_access_ranges *iars);
998 
999 /*
1000  * Elevator features for blk_queue_required_elevator_features:
1001  */
1002 /* Supports zoned block devices sequential write constraint */
1003 #define ELEVATOR_F_ZBD_SEQ_WRITE	(1U << 0)
1004 /* Supports scheduling on multiple hardware queues */
1005 #define ELEVATOR_F_MQ_AWARE		(1U << 1)
1006 
1007 extern void blk_queue_required_elevator_features(struct request_queue *q,
1008 						 unsigned int features);
1009 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1010 					      struct device *dev);
1011 
1012 bool __must_check blk_get_queue(struct request_queue *);
1013 extern void blk_put_queue(struct request_queue *);
1014 extern void blk_set_queue_dying(struct request_queue *);
1015 
1016 #ifdef CONFIG_BLOCK
1017 /*
1018  * blk_plug permits building a queue of related requests by holding the I/O
1019  * fragments for a short period. This allows merging of sequential requests
1020  * into single larger request. As the requests are moved from a per-task list to
1021  * the device's request_queue in a batch, this results in improved scalability
1022  * as the lock contention for request_queue lock is reduced.
1023  *
1024  * It is ok not to disable preemption when adding the request to the plug list
1025  * or when attempting a merge. For details, please see schedule() where
1026  * blk_flush_plug() is called.
1027  */
1028 struct blk_plug {
1029 	struct request *mq_list; /* blk-mq requests */
1030 
1031 	/* if ios_left is > 1, we can batch tag/rq allocations */
1032 	struct request *cached_rq;
1033 	unsigned short nr_ios;
1034 
1035 	unsigned short rq_count;
1036 
1037 	bool multiple_queues;
1038 	bool has_elevator;
1039 	bool nowait;
1040 
1041 	struct list_head cb_list; /* md requires an unplug callback */
1042 };
1043 
1044 struct blk_plug_cb;
1045 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1046 struct blk_plug_cb {
1047 	struct list_head list;
1048 	blk_plug_cb_fn callback;
1049 	void *data;
1050 };
1051 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1052 					     void *data, int size);
1053 extern void blk_start_plug(struct blk_plug *);
1054 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1055 extern void blk_finish_plug(struct blk_plug *);
1056 
1057 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
1058 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1059 {
1060 	if (plug)
1061 		__blk_flush_plug(plug, async);
1062 }
1063 
1064 int blkdev_issue_flush(struct block_device *bdev);
1065 long nr_blockdev_pages(void);
1066 #else /* CONFIG_BLOCK */
1067 struct blk_plug {
1068 };
1069 
1070 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1071 					 unsigned short nr_ios)
1072 {
1073 }
1074 
1075 static inline void blk_start_plug(struct blk_plug *plug)
1076 {
1077 }
1078 
1079 static inline void blk_finish_plug(struct blk_plug *plug)
1080 {
1081 }
1082 
1083 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1084 {
1085 }
1086 
1087 static inline int blkdev_issue_flush(struct block_device *bdev)
1088 {
1089 	return 0;
1090 }
1091 
1092 static inline long nr_blockdev_pages(void)
1093 {
1094 	return 0;
1095 }
1096 #endif /* CONFIG_BLOCK */
1097 
1098 extern void blk_io_schedule(void);
1099 
1100 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1101 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1102 
1103 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1104 
1105 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1106 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1107 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1108 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1109 		struct bio **biop);
1110 
1111 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1112 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1113 
1114 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1115 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1116 		unsigned flags);
1117 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1118 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1119 
1120 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1121 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1122 {
1123 	return blkdev_issue_discard(sb->s_bdev,
1124 				    block << (sb->s_blocksize_bits -
1125 					      SECTOR_SHIFT),
1126 				    nr_blocks << (sb->s_blocksize_bits -
1127 						  SECTOR_SHIFT),
1128 				    gfp_mask, flags);
1129 }
1130 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1131 		sector_t nr_blocks, gfp_t gfp_mask)
1132 {
1133 	return blkdev_issue_zeroout(sb->s_bdev,
1134 				    block << (sb->s_blocksize_bits -
1135 					      SECTOR_SHIFT),
1136 				    nr_blocks << (sb->s_blocksize_bits -
1137 						  SECTOR_SHIFT),
1138 				    gfp_mask, 0);
1139 }
1140 
1141 static inline bool bdev_is_partition(struct block_device *bdev)
1142 {
1143 	return bdev->bd_partno;
1144 }
1145 
1146 enum blk_default_limits {
1147 	BLK_MAX_SEGMENTS	= 128,
1148 	BLK_SAFE_MAX_SECTORS	= 255,
1149 	BLK_DEF_MAX_SECTORS	= 2560,
1150 	BLK_MAX_SEGMENT_SIZE	= 65536,
1151 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1152 };
1153 
1154 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1155 {
1156 	return q->limits.seg_boundary_mask;
1157 }
1158 
1159 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1160 {
1161 	return q->limits.virt_boundary_mask;
1162 }
1163 
1164 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1165 {
1166 	return q->limits.max_sectors;
1167 }
1168 
1169 static inline unsigned int queue_max_bytes(struct request_queue *q)
1170 {
1171 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1172 }
1173 
1174 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1175 {
1176 	return q->limits.max_hw_sectors;
1177 }
1178 
1179 static inline unsigned short queue_max_segments(const struct request_queue *q)
1180 {
1181 	return q->limits.max_segments;
1182 }
1183 
1184 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1185 {
1186 	return q->limits.max_discard_segments;
1187 }
1188 
1189 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1190 {
1191 	return q->limits.max_segment_size;
1192 }
1193 
1194 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1195 {
1196 
1197 	const struct queue_limits *l = &q->limits;
1198 
1199 	return min(l->max_zone_append_sectors, l->max_sectors);
1200 }
1201 
1202 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1203 {
1204 	int retval = 512;
1205 
1206 	if (q && q->limits.logical_block_size)
1207 		retval = q->limits.logical_block_size;
1208 
1209 	return retval;
1210 }
1211 
1212 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1213 {
1214 	return queue_logical_block_size(bdev_get_queue(bdev));
1215 }
1216 
1217 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1218 {
1219 	return q->limits.physical_block_size;
1220 }
1221 
1222 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1223 {
1224 	return queue_physical_block_size(bdev_get_queue(bdev));
1225 }
1226 
1227 static inline unsigned int queue_io_min(const struct request_queue *q)
1228 {
1229 	return q->limits.io_min;
1230 }
1231 
1232 static inline int bdev_io_min(struct block_device *bdev)
1233 {
1234 	return queue_io_min(bdev_get_queue(bdev));
1235 }
1236 
1237 static inline unsigned int queue_io_opt(const struct request_queue *q)
1238 {
1239 	return q->limits.io_opt;
1240 }
1241 
1242 static inline int bdev_io_opt(struct block_device *bdev)
1243 {
1244 	return queue_io_opt(bdev_get_queue(bdev));
1245 }
1246 
1247 static inline unsigned int
1248 queue_zone_write_granularity(const struct request_queue *q)
1249 {
1250 	return q->limits.zone_write_granularity;
1251 }
1252 
1253 static inline unsigned int
1254 bdev_zone_write_granularity(struct block_device *bdev)
1255 {
1256 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1257 }
1258 
1259 static inline int queue_alignment_offset(const struct request_queue *q)
1260 {
1261 	if (q->limits.misaligned)
1262 		return -1;
1263 
1264 	return q->limits.alignment_offset;
1265 }
1266 
1267 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1268 {
1269 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1270 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1271 		<< SECTOR_SHIFT;
1272 
1273 	return (granularity + lim->alignment_offset - alignment) % granularity;
1274 }
1275 
1276 static inline int bdev_alignment_offset(struct block_device *bdev)
1277 {
1278 	struct request_queue *q = bdev_get_queue(bdev);
1279 
1280 	if (q->limits.misaligned)
1281 		return -1;
1282 	if (bdev_is_partition(bdev))
1283 		return queue_limit_alignment_offset(&q->limits,
1284 				bdev->bd_start_sect);
1285 	return q->limits.alignment_offset;
1286 }
1287 
1288 static inline int queue_discard_alignment(const struct request_queue *q)
1289 {
1290 	if (q->limits.discard_misaligned)
1291 		return -1;
1292 
1293 	return q->limits.discard_alignment;
1294 }
1295 
1296 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1297 {
1298 	unsigned int alignment, granularity, offset;
1299 
1300 	if (!lim->max_discard_sectors)
1301 		return 0;
1302 
1303 	/* Why are these in bytes, not sectors? */
1304 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1305 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1306 	if (!granularity)
1307 		return 0;
1308 
1309 	/* Offset of the partition start in 'granularity' sectors */
1310 	offset = sector_div(sector, granularity);
1311 
1312 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1313 	offset = (granularity + alignment - offset) % granularity;
1314 
1315 	/* Turn it back into bytes, gaah */
1316 	return offset << SECTOR_SHIFT;
1317 }
1318 
1319 static inline int bdev_discard_alignment(struct block_device *bdev)
1320 {
1321 	struct request_queue *q = bdev_get_queue(bdev);
1322 
1323 	if (bdev_is_partition(bdev))
1324 		return queue_limit_discard_alignment(&q->limits,
1325 				bdev->bd_start_sect);
1326 	return q->limits.discard_alignment;
1327 }
1328 
1329 static inline unsigned int bdev_write_same(struct block_device *bdev)
1330 {
1331 	struct request_queue *q = bdev_get_queue(bdev);
1332 
1333 	if (q)
1334 		return q->limits.max_write_same_sectors;
1335 
1336 	return 0;
1337 }
1338 
1339 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1340 {
1341 	struct request_queue *q = bdev_get_queue(bdev);
1342 
1343 	if (q)
1344 		return q->limits.max_write_zeroes_sectors;
1345 
1346 	return 0;
1347 }
1348 
1349 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1350 {
1351 	struct request_queue *q = bdev_get_queue(bdev);
1352 
1353 	if (q)
1354 		return blk_queue_zoned_model(q);
1355 
1356 	return BLK_ZONED_NONE;
1357 }
1358 
1359 static inline bool bdev_is_zoned(struct block_device *bdev)
1360 {
1361 	struct request_queue *q = bdev_get_queue(bdev);
1362 
1363 	if (q)
1364 		return blk_queue_is_zoned(q);
1365 
1366 	return false;
1367 }
1368 
1369 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1370 {
1371 	struct request_queue *q = bdev_get_queue(bdev);
1372 
1373 	if (q)
1374 		return blk_queue_zone_sectors(q);
1375 	return 0;
1376 }
1377 
1378 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1379 {
1380 	struct request_queue *q = bdev_get_queue(bdev);
1381 
1382 	if (q)
1383 		return queue_max_open_zones(q);
1384 	return 0;
1385 }
1386 
1387 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1388 {
1389 	struct request_queue *q = bdev_get_queue(bdev);
1390 
1391 	if (q)
1392 		return queue_max_active_zones(q);
1393 	return 0;
1394 }
1395 
1396 static inline int queue_dma_alignment(const struct request_queue *q)
1397 {
1398 	return q ? q->dma_alignment : 511;
1399 }
1400 
1401 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1402 				 unsigned int len)
1403 {
1404 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1405 	return !(addr & alignment) && !(len & alignment);
1406 }
1407 
1408 /* assumes size > 256 */
1409 static inline unsigned int blksize_bits(unsigned int size)
1410 {
1411 	unsigned int bits = 8;
1412 	do {
1413 		bits++;
1414 		size >>= 1;
1415 	} while (size > 256);
1416 	return bits;
1417 }
1418 
1419 static inline unsigned int block_size(struct block_device *bdev)
1420 {
1421 	return 1 << bdev->bd_inode->i_blkbits;
1422 }
1423 
1424 int kblockd_schedule_work(struct work_struct *work);
1425 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1426 
1427 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1428 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1429 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1430 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1431 
1432 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1433 
1434 bool blk_crypto_register(struct blk_crypto_profile *profile,
1435 			 struct request_queue *q);
1436 
1437 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1438 
1439 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1440 				       struct request_queue *q)
1441 {
1442 	return true;
1443 }
1444 
1445 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1446 
1447 enum blk_unique_id {
1448 	/* these match the Designator Types specified in SPC */
1449 	BLK_UID_T10	= 1,
1450 	BLK_UID_EUI64	= 2,
1451 	BLK_UID_NAA	= 3,
1452 };
1453 
1454 #define NFL4_UFLG_MASK			0x0000003F
1455 
1456 struct block_device_operations {
1457 	void (*submit_bio)(struct bio *bio);
1458 	int (*open) (struct block_device *, fmode_t);
1459 	void (*release) (struct gendisk *, fmode_t);
1460 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1461 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1462 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1463 	unsigned int (*check_events) (struct gendisk *disk,
1464 				      unsigned int clearing);
1465 	void (*unlock_native_capacity) (struct gendisk *);
1466 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1467 	int (*set_read_only)(struct block_device *bdev, bool ro);
1468 	void (*free_disk)(struct gendisk *disk);
1469 	/* this callback is with swap_lock and sometimes page table lock held */
1470 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1471 	int (*report_zones)(struct gendisk *, sector_t sector,
1472 			unsigned int nr_zones, report_zones_cb cb, void *data);
1473 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1474 	/* returns the length of the identifier or a negative errno: */
1475 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1476 			enum blk_unique_id id_type);
1477 	struct module *owner;
1478 	const struct pr_ops *pr_ops;
1479 
1480 	/*
1481 	 * Special callback for probing GPT entry at a given sector.
1482 	 * Needed by Android devices, used by GPT scanner and MMC blk
1483 	 * driver.
1484 	 */
1485 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1486 };
1487 
1488 #ifdef CONFIG_COMPAT
1489 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1490 				      unsigned int, unsigned long);
1491 #else
1492 #define blkdev_compat_ptr_ioctl NULL
1493 #endif
1494 
1495 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1496 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1497 						struct writeback_control *);
1498 
1499 static inline void blk_wake_io_task(struct task_struct *waiter)
1500 {
1501 	/*
1502 	 * If we're polling, the task itself is doing the completions. For
1503 	 * that case, we don't need to signal a wakeup, it's enough to just
1504 	 * mark us as RUNNING.
1505 	 */
1506 	if (waiter == current)
1507 		__set_current_state(TASK_RUNNING);
1508 	else
1509 		wake_up_process(waiter);
1510 }
1511 
1512 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1513 		unsigned int op);
1514 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1515 		unsigned long start_time);
1516 
1517 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time);
1518 unsigned long bio_start_io_acct(struct bio *bio);
1519 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1520 		struct block_device *orig_bdev);
1521 
1522 /**
1523  * bio_end_io_acct - end I/O accounting for bio based drivers
1524  * @bio:	bio to end account for
1525  * @start_time:	start time returned by bio_start_io_acct()
1526  */
1527 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1528 {
1529 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1530 }
1531 
1532 int bdev_read_only(struct block_device *bdev);
1533 int set_blocksize(struct block_device *bdev, int size);
1534 
1535 const char *bdevname(struct block_device *bdev, char *buffer);
1536 int lookup_bdev(const char *pathname, dev_t *dev);
1537 
1538 void blkdev_show(struct seq_file *seqf, off_t offset);
1539 
1540 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1541 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1542 #ifdef CONFIG_BLOCK
1543 #define BLKDEV_MAJOR_MAX	512
1544 #else
1545 #define BLKDEV_MAJOR_MAX	0
1546 #endif
1547 
1548 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1549 		void *holder);
1550 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1551 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
1552 void bd_abort_claiming(struct block_device *bdev, void *holder);
1553 void blkdev_put(struct block_device *bdev, fmode_t mode);
1554 
1555 /* just for blk-cgroup, don't use elsewhere */
1556 struct block_device *blkdev_get_no_open(dev_t dev);
1557 void blkdev_put_no_open(struct block_device *bdev);
1558 
1559 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
1560 void bdev_add(struct block_device *bdev, dev_t dev);
1561 struct block_device *I_BDEV(struct inode *inode);
1562 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
1563 		loff_t lend);
1564 
1565 #ifdef CONFIG_BLOCK
1566 void invalidate_bdev(struct block_device *bdev);
1567 int sync_blockdev(struct block_device *bdev);
1568 int sync_blockdev_nowait(struct block_device *bdev);
1569 void sync_bdevs(bool wait);
1570 void printk_all_partitions(void);
1571 #else
1572 static inline void invalidate_bdev(struct block_device *bdev)
1573 {
1574 }
1575 static inline int sync_blockdev(struct block_device *bdev)
1576 {
1577 	return 0;
1578 }
1579 static inline int sync_blockdev_nowait(struct block_device *bdev)
1580 {
1581 	return 0;
1582 }
1583 static inline void sync_bdevs(bool wait)
1584 {
1585 }
1586 static inline void printk_all_partitions(void)
1587 {
1588 }
1589 #endif /* CONFIG_BLOCK */
1590 
1591 int fsync_bdev(struct block_device *bdev);
1592 
1593 int freeze_bdev(struct block_device *bdev);
1594 int thaw_bdev(struct block_device *bdev);
1595 
1596 struct io_comp_batch {
1597 	struct request *req_list;
1598 	bool need_ts;
1599 	void (*complete)(struct io_comp_batch *);
1600 };
1601 
1602 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1603 
1604 #endif /* _LINUX_BLKDEV_H */
1605