1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/bsg.h> 22 #include <linux/smp.h> 23 #include <linux/rcupdate.h> 24 #include <linux/percpu-refcount.h> 25 #include <linux/scatterlist.h> 26 #include <linux/blkzoned.h> 27 #include <linux/pm.h> 28 #include <linux/sbitmap.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_qos; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 struct blk_keyslot_manager; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* drive already may have started this one */ 69 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 70 /* may not be passed by ioscheduler */ 71 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 72 /* request for flush sequence */ 73 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 74 /* merge of different types, fail separately */ 75 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 76 /* track inflight for MQ */ 77 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 78 /* don't call prep for this one */ 79 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 80 /* vaguely specified driver internal error. Ignored by the block layer */ 81 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 82 /* don't warn about errors */ 83 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 84 /* elevator private data attached */ 85 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 86 /* account into disk and partition IO statistics */ 87 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 88 /* runtime pm request */ 89 #define RQF_PM ((__force req_flags_t)(1 << 15)) 90 /* on IO scheduler merge hash */ 91 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 92 /* track IO completion time */ 93 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 94 /* Look at ->special_vec for the actual data payload instead of the 95 bio chain. */ 96 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 97 /* The per-zone write lock is held for this request */ 98 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 99 /* already slept for hybrid poll */ 100 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 101 /* ->timeout has been called, don't expire again */ 102 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 103 104 /* flags that prevent us from merging requests: */ 105 #define RQF_NOMERGE_FLAGS \ 106 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 107 108 /* 109 * Request state for blk-mq. 110 */ 111 enum mq_rq_state { 112 MQ_RQ_IDLE = 0, 113 MQ_RQ_IN_FLIGHT = 1, 114 MQ_RQ_COMPLETE = 2, 115 }; 116 117 /* 118 * Try to put the fields that are referenced together in the same cacheline. 119 * 120 * If you modify this structure, make sure to update blk_rq_init() and 121 * especially blk_mq_rq_ctx_init() to take care of the added fields. 122 */ 123 struct request { 124 struct request_queue *q; 125 struct blk_mq_ctx *mq_ctx; 126 struct blk_mq_hw_ctx *mq_hctx; 127 128 unsigned int cmd_flags; /* op and common flags */ 129 req_flags_t rq_flags; 130 131 int tag; 132 int internal_tag; 133 134 /* the following two fields are internal, NEVER access directly */ 135 unsigned int __data_len; /* total data len */ 136 sector_t __sector; /* sector cursor */ 137 138 struct bio *bio; 139 struct bio *biotail; 140 141 struct list_head queuelist; 142 143 /* 144 * The hash is used inside the scheduler, and killed once the 145 * request reaches the dispatch list. The ipi_list is only used 146 * to queue the request for softirq completion, which is long 147 * after the request has been unhashed (and even removed from 148 * the dispatch list). 149 */ 150 union { 151 struct hlist_node hash; /* merge hash */ 152 struct llist_node ipi_list; 153 }; 154 155 /* 156 * The rb_node is only used inside the io scheduler, requests 157 * are pruned when moved to the dispatch queue. So let the 158 * completion_data share space with the rb_node. 159 */ 160 union { 161 struct rb_node rb_node; /* sort/lookup */ 162 struct bio_vec special_vec; 163 void *completion_data; 164 int error_count; /* for legacy drivers, don't use */ 165 }; 166 167 /* 168 * Three pointers are available for the IO schedulers, if they need 169 * more they have to dynamically allocate it. Flush requests are 170 * never put on the IO scheduler. So let the flush fields share 171 * space with the elevator data. 172 */ 173 union { 174 struct { 175 struct io_cq *icq; 176 void *priv[2]; 177 } elv; 178 179 struct { 180 unsigned int seq; 181 struct list_head list; 182 rq_end_io_fn *saved_end_io; 183 } flush; 184 }; 185 186 struct gendisk *rq_disk; 187 struct block_device *part; 188 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 189 /* Time that the first bio started allocating this request. */ 190 u64 alloc_time_ns; 191 #endif 192 /* Time that this request was allocated for this IO. */ 193 u64 start_time_ns; 194 /* Time that I/O was submitted to the device. */ 195 u64 io_start_time_ns; 196 197 #ifdef CONFIG_BLK_WBT 198 unsigned short wbt_flags; 199 #endif 200 /* 201 * rq sectors used for blk stats. It has the same value 202 * with blk_rq_sectors(rq), except that it never be zeroed 203 * by completion. 204 */ 205 unsigned short stats_sectors; 206 207 /* 208 * Number of scatter-gather DMA addr+len pairs after 209 * physical address coalescing is performed. 210 */ 211 unsigned short nr_phys_segments; 212 213 #if defined(CONFIG_BLK_DEV_INTEGRITY) 214 unsigned short nr_integrity_segments; 215 #endif 216 217 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 218 struct bio_crypt_ctx *crypt_ctx; 219 struct blk_ksm_keyslot *crypt_keyslot; 220 #endif 221 222 unsigned short write_hint; 223 unsigned short ioprio; 224 225 enum mq_rq_state state; 226 refcount_t ref; 227 228 unsigned int timeout; 229 unsigned long deadline; 230 231 union { 232 struct __call_single_data csd; 233 u64 fifo_time; 234 }; 235 236 /* 237 * completion callback. 238 */ 239 rq_end_io_fn *end_io; 240 void *end_io_data; 241 }; 242 243 static inline bool blk_op_is_scsi(unsigned int op) 244 { 245 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 246 } 247 248 static inline bool blk_op_is_private(unsigned int op) 249 { 250 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 251 } 252 253 static inline bool blk_rq_is_scsi(struct request *rq) 254 { 255 return blk_op_is_scsi(req_op(rq)); 256 } 257 258 static inline bool blk_rq_is_private(struct request *rq) 259 { 260 return blk_op_is_private(req_op(rq)); 261 } 262 263 static inline bool blk_rq_is_passthrough(struct request *rq) 264 { 265 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 266 } 267 268 static inline bool bio_is_passthrough(struct bio *bio) 269 { 270 unsigned op = bio_op(bio); 271 272 return blk_op_is_scsi(op) || blk_op_is_private(op); 273 } 274 275 static inline bool blk_op_is_passthrough(unsigned int op) 276 { 277 return (blk_op_is_scsi(op & REQ_OP_MASK) || 278 blk_op_is_private(op & REQ_OP_MASK)); 279 } 280 281 static inline unsigned short req_get_ioprio(struct request *req) 282 { 283 return req->ioprio; 284 } 285 286 #include <linux/elevator.h> 287 288 struct blk_queue_ctx; 289 290 struct bio_vec; 291 292 enum blk_eh_timer_return { 293 BLK_EH_DONE, /* drivers has completed the command */ 294 BLK_EH_RESET_TIMER, /* reset timer and try again */ 295 }; 296 297 enum blk_queue_state { 298 Queue_down, 299 Queue_up, 300 }; 301 302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 304 305 #define BLK_SCSI_MAX_CMDS (256) 306 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 307 308 /* 309 * Zoned block device models (zoned limit). 310 * 311 * Note: This needs to be ordered from the least to the most severe 312 * restrictions for the inheritance in blk_stack_limits() to work. 313 */ 314 enum blk_zoned_model { 315 BLK_ZONED_NONE = 0, /* Regular block device */ 316 BLK_ZONED_HA, /* Host-aware zoned block device */ 317 BLK_ZONED_HM, /* Host-managed zoned block device */ 318 }; 319 320 /* 321 * BLK_BOUNCE_NONE: never bounce (default) 322 * BLK_BOUNCE_HIGH: bounce all highmem pages 323 */ 324 enum blk_bounce { 325 BLK_BOUNCE_NONE, 326 BLK_BOUNCE_HIGH, 327 }; 328 329 struct queue_limits { 330 enum blk_bounce bounce; 331 unsigned long seg_boundary_mask; 332 unsigned long virt_boundary_mask; 333 334 unsigned int max_hw_sectors; 335 unsigned int max_dev_sectors; 336 unsigned int chunk_sectors; 337 unsigned int max_sectors; 338 unsigned int max_segment_size; 339 unsigned int physical_block_size; 340 unsigned int logical_block_size; 341 unsigned int alignment_offset; 342 unsigned int io_min; 343 unsigned int io_opt; 344 unsigned int max_discard_sectors; 345 unsigned int max_hw_discard_sectors; 346 unsigned int max_write_same_sectors; 347 unsigned int max_write_zeroes_sectors; 348 unsigned int max_zone_append_sectors; 349 unsigned int discard_granularity; 350 unsigned int discard_alignment; 351 unsigned int zone_write_granularity; 352 353 unsigned short max_segments; 354 unsigned short max_integrity_segments; 355 unsigned short max_discard_segments; 356 357 unsigned char misaligned; 358 unsigned char discard_misaligned; 359 unsigned char raid_partial_stripes_expensive; 360 enum blk_zoned_model zoned; 361 }; 362 363 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 364 void *data); 365 366 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 367 368 #ifdef CONFIG_BLK_DEV_ZONED 369 370 #define BLK_ALL_ZONES ((unsigned int)-1) 371 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 372 unsigned int nr_zones, report_zones_cb cb, void *data); 373 unsigned int blkdev_nr_zones(struct gendisk *disk); 374 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 375 sector_t sectors, sector_t nr_sectors, 376 gfp_t gfp_mask); 377 int blk_revalidate_disk_zones(struct gendisk *disk, 378 void (*update_driver_data)(struct gendisk *disk)); 379 380 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 381 unsigned int cmd, unsigned long arg); 382 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 383 unsigned int cmd, unsigned long arg); 384 385 #else /* CONFIG_BLK_DEV_ZONED */ 386 387 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 388 { 389 return 0; 390 } 391 392 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 393 fmode_t mode, unsigned int cmd, 394 unsigned long arg) 395 { 396 return -ENOTTY; 397 } 398 399 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 400 fmode_t mode, unsigned int cmd, 401 unsigned long arg) 402 { 403 return -ENOTTY; 404 } 405 406 #endif /* CONFIG_BLK_DEV_ZONED */ 407 408 struct request_queue { 409 struct request *last_merge; 410 struct elevator_queue *elevator; 411 412 struct percpu_ref q_usage_counter; 413 414 struct blk_queue_stats *stats; 415 struct rq_qos *rq_qos; 416 417 const struct blk_mq_ops *mq_ops; 418 419 /* sw queues */ 420 struct blk_mq_ctx __percpu *queue_ctx; 421 422 unsigned int queue_depth; 423 424 /* hw dispatch queues */ 425 struct blk_mq_hw_ctx **queue_hw_ctx; 426 unsigned int nr_hw_queues; 427 428 struct backing_dev_info *backing_dev_info; 429 430 /* 431 * The queue owner gets to use this for whatever they like. 432 * ll_rw_blk doesn't touch it. 433 */ 434 void *queuedata; 435 436 /* 437 * various queue flags, see QUEUE_* below 438 */ 439 unsigned long queue_flags; 440 /* 441 * Number of contexts that have called blk_set_pm_only(). If this 442 * counter is above zero then only RQF_PM requests are processed. 443 */ 444 atomic_t pm_only; 445 446 /* 447 * ida allocated id for this queue. Used to index queues from 448 * ioctx. 449 */ 450 int id; 451 452 spinlock_t queue_lock; 453 454 /* 455 * queue kobject 456 */ 457 struct kobject kobj; 458 459 /* 460 * mq queue kobject 461 */ 462 struct kobject *mq_kobj; 463 464 #ifdef CONFIG_BLK_DEV_INTEGRITY 465 struct blk_integrity integrity; 466 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 467 468 #ifdef CONFIG_PM 469 struct device *dev; 470 enum rpm_status rpm_status; 471 #endif 472 473 /* 474 * queue settings 475 */ 476 unsigned long nr_requests; /* Max # of requests */ 477 478 unsigned int dma_pad_mask; 479 unsigned int dma_alignment; 480 481 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 482 /* Inline crypto capabilities */ 483 struct blk_keyslot_manager *ksm; 484 #endif 485 486 unsigned int rq_timeout; 487 int poll_nsec; 488 489 struct blk_stat_callback *poll_cb; 490 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 491 492 struct timer_list timeout; 493 struct work_struct timeout_work; 494 495 atomic_t nr_active_requests_shared_sbitmap; 496 497 struct sbitmap_queue sched_bitmap_tags; 498 struct sbitmap_queue sched_breserved_tags; 499 500 struct list_head icq_list; 501 #ifdef CONFIG_BLK_CGROUP 502 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 503 struct blkcg_gq *root_blkg; 504 struct list_head blkg_list; 505 #endif 506 507 struct queue_limits limits; 508 509 unsigned int required_elevator_features; 510 511 #ifdef CONFIG_BLK_DEV_ZONED 512 /* 513 * Zoned block device information for request dispatch control. 514 * nr_zones is the total number of zones of the device. This is always 515 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 516 * bits which indicates if a zone is conventional (bit set) or 517 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 518 * bits which indicates if a zone is write locked, that is, if a write 519 * request targeting the zone was dispatched. All three fields are 520 * initialized by the low level device driver (e.g. scsi/sd.c). 521 * Stacking drivers (device mappers) may or may not initialize 522 * these fields. 523 * 524 * Reads of this information must be protected with blk_queue_enter() / 525 * blk_queue_exit(). Modifying this information is only allowed while 526 * no requests are being processed. See also blk_mq_freeze_queue() and 527 * blk_mq_unfreeze_queue(). 528 */ 529 unsigned int nr_zones; 530 unsigned long *conv_zones_bitmap; 531 unsigned long *seq_zones_wlock; 532 unsigned int max_open_zones; 533 unsigned int max_active_zones; 534 #endif /* CONFIG_BLK_DEV_ZONED */ 535 536 /* 537 * sg stuff 538 */ 539 unsigned int sg_timeout; 540 unsigned int sg_reserved_size; 541 int node; 542 struct mutex debugfs_mutex; 543 #ifdef CONFIG_BLK_DEV_IO_TRACE 544 struct blk_trace __rcu *blk_trace; 545 #endif 546 /* 547 * for flush operations 548 */ 549 struct blk_flush_queue *fq; 550 551 struct list_head requeue_list; 552 spinlock_t requeue_lock; 553 struct delayed_work requeue_work; 554 555 struct mutex sysfs_lock; 556 struct mutex sysfs_dir_lock; 557 558 /* 559 * for reusing dead hctx instance in case of updating 560 * nr_hw_queues 561 */ 562 struct list_head unused_hctx_list; 563 spinlock_t unused_hctx_lock; 564 565 int mq_freeze_depth; 566 567 #if defined(CONFIG_BLK_DEV_BSG) 568 struct bsg_class_device bsg_dev; 569 #endif 570 571 #ifdef CONFIG_BLK_DEV_THROTTLING 572 /* Throttle data */ 573 struct throtl_data *td; 574 #endif 575 struct rcu_head rcu_head; 576 wait_queue_head_t mq_freeze_wq; 577 /* 578 * Protect concurrent access to q_usage_counter by 579 * percpu_ref_kill() and percpu_ref_reinit(). 580 */ 581 struct mutex mq_freeze_lock; 582 583 struct blk_mq_tag_set *tag_set; 584 struct list_head tag_set_list; 585 struct bio_set bio_split; 586 587 struct dentry *debugfs_dir; 588 589 #ifdef CONFIG_BLK_DEBUG_FS 590 struct dentry *sched_debugfs_dir; 591 struct dentry *rqos_debugfs_dir; 592 #endif 593 594 bool mq_sysfs_init_done; 595 596 size_t cmd_size; 597 598 #define BLK_MAX_WRITE_HINTS 5 599 u64 write_hints[BLK_MAX_WRITE_HINTS]; 600 }; 601 602 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 603 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 604 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 605 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 606 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 607 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 608 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 609 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 610 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 611 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 612 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 613 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 614 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 615 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 616 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 617 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 618 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 619 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 620 #define QUEUE_FLAG_WC 17 /* Write back caching */ 621 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 622 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 623 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 624 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 625 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 626 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 627 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 628 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 629 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 630 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 631 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 632 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 633 634 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 635 (1 << QUEUE_FLAG_SAME_COMP) | \ 636 (1 << QUEUE_FLAG_NOWAIT)) 637 638 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 639 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 640 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 641 642 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 643 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 644 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 645 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 646 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 647 #define blk_queue_noxmerges(q) \ 648 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 649 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 650 #define blk_queue_stable_writes(q) \ 651 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 652 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 653 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 654 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 655 #define blk_queue_zone_resetall(q) \ 656 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 657 #define blk_queue_secure_erase(q) \ 658 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 659 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 660 #define blk_queue_scsi_passthrough(q) \ 661 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 662 #define blk_queue_pci_p2pdma(q) \ 663 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 664 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 665 #define blk_queue_rq_alloc_time(q) \ 666 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 667 #else 668 #define blk_queue_rq_alloc_time(q) false 669 #endif 670 671 #define blk_noretry_request(rq) \ 672 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 673 REQ_FAILFAST_DRIVER)) 674 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 675 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 676 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 677 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 678 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 679 680 extern void blk_set_pm_only(struct request_queue *q); 681 extern void blk_clear_pm_only(struct request_queue *q); 682 683 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 684 685 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 686 687 #define rq_dma_dir(rq) \ 688 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 689 690 #define dma_map_bvec(dev, bv, dir, attrs) \ 691 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 692 (dir), (attrs)) 693 694 #define queue_to_disk(q) (dev_to_disk(kobj_to_dev((q)->kobj.parent))) 695 696 static inline bool queue_is_mq(struct request_queue *q) 697 { 698 return q->mq_ops; 699 } 700 701 #ifdef CONFIG_PM 702 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 703 { 704 return q->rpm_status; 705 } 706 #else 707 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 708 { 709 return RPM_ACTIVE; 710 } 711 #endif 712 713 static inline enum blk_zoned_model 714 blk_queue_zoned_model(struct request_queue *q) 715 { 716 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 717 return q->limits.zoned; 718 return BLK_ZONED_NONE; 719 } 720 721 static inline bool blk_queue_is_zoned(struct request_queue *q) 722 { 723 switch (blk_queue_zoned_model(q)) { 724 case BLK_ZONED_HA: 725 case BLK_ZONED_HM: 726 return true; 727 default: 728 return false; 729 } 730 } 731 732 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 733 { 734 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 735 } 736 737 #ifdef CONFIG_BLK_DEV_ZONED 738 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 739 { 740 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 741 } 742 743 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 744 sector_t sector) 745 { 746 if (!blk_queue_is_zoned(q)) 747 return 0; 748 return sector >> ilog2(q->limits.chunk_sectors); 749 } 750 751 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 752 sector_t sector) 753 { 754 if (!blk_queue_is_zoned(q)) 755 return false; 756 if (!q->conv_zones_bitmap) 757 return true; 758 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 759 } 760 761 static inline void blk_queue_max_open_zones(struct request_queue *q, 762 unsigned int max_open_zones) 763 { 764 q->max_open_zones = max_open_zones; 765 } 766 767 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 768 { 769 return q->max_open_zones; 770 } 771 772 static inline void blk_queue_max_active_zones(struct request_queue *q, 773 unsigned int max_active_zones) 774 { 775 q->max_active_zones = max_active_zones; 776 } 777 778 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 779 { 780 return q->max_active_zones; 781 } 782 #else /* CONFIG_BLK_DEV_ZONED */ 783 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 784 { 785 return 0; 786 } 787 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 788 sector_t sector) 789 { 790 return false; 791 } 792 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 793 sector_t sector) 794 { 795 return 0; 796 } 797 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 798 { 799 return 0; 800 } 801 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 802 { 803 return 0; 804 } 805 #endif /* CONFIG_BLK_DEV_ZONED */ 806 807 static inline bool rq_is_sync(struct request *rq) 808 { 809 return op_is_sync(rq->cmd_flags); 810 } 811 812 static inline bool rq_mergeable(struct request *rq) 813 { 814 if (blk_rq_is_passthrough(rq)) 815 return false; 816 817 if (req_op(rq) == REQ_OP_FLUSH) 818 return false; 819 820 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 821 return false; 822 823 if (req_op(rq) == REQ_OP_ZONE_APPEND) 824 return false; 825 826 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 827 return false; 828 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 829 return false; 830 831 return true; 832 } 833 834 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 835 { 836 if (bio_page(a) == bio_page(b) && 837 bio_offset(a) == bio_offset(b)) 838 return true; 839 840 return false; 841 } 842 843 static inline unsigned int blk_queue_depth(struct request_queue *q) 844 { 845 if (q->queue_depth) 846 return q->queue_depth; 847 848 return q->nr_requests; 849 } 850 851 /* 852 * default timeout for SG_IO if none specified 853 */ 854 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 855 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 856 857 struct rq_map_data { 858 struct page **pages; 859 int page_order; 860 int nr_entries; 861 unsigned long offset; 862 int null_mapped; 863 int from_user; 864 }; 865 866 struct req_iterator { 867 struct bvec_iter iter; 868 struct bio *bio; 869 }; 870 871 /* This should not be used directly - use rq_for_each_segment */ 872 #define for_each_bio(_bio) \ 873 for (; _bio; _bio = _bio->bi_next) 874 #define __rq_for_each_bio(_bio, rq) \ 875 if ((rq->bio)) \ 876 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 877 878 #define rq_for_each_segment(bvl, _rq, _iter) \ 879 __rq_for_each_bio(_iter.bio, _rq) \ 880 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 881 882 #define rq_for_each_bvec(bvl, _rq, _iter) \ 883 __rq_for_each_bio(_iter.bio, _rq) \ 884 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 885 886 #define rq_iter_last(bvec, _iter) \ 887 (_iter.bio->bi_next == NULL && \ 888 bio_iter_last(bvec, _iter.iter)) 889 890 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 891 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 892 #endif 893 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 894 extern void rq_flush_dcache_pages(struct request *rq); 895 #else 896 static inline void rq_flush_dcache_pages(struct request *rq) 897 { 898 } 899 #endif 900 901 extern int blk_register_queue(struct gendisk *disk); 902 extern void blk_unregister_queue(struct gendisk *disk); 903 blk_qc_t submit_bio_noacct(struct bio *bio); 904 extern void blk_rq_init(struct request_queue *q, struct request *rq); 905 extern void blk_put_request(struct request *); 906 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 907 blk_mq_req_flags_t flags); 908 extern int blk_lld_busy(struct request_queue *q); 909 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 910 struct bio_set *bs, gfp_t gfp_mask, 911 int (*bio_ctr)(struct bio *, struct bio *, void *), 912 void *data); 913 extern void blk_rq_unprep_clone(struct request *rq); 914 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 915 struct request *rq); 916 int blk_rq_append_bio(struct request *rq, struct bio *bio); 917 extern void blk_queue_split(struct bio **); 918 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 919 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 920 unsigned int, void __user *); 921 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 922 unsigned int, void __user *); 923 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 924 struct scsi_ioctl_command __user *); 925 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 926 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 927 928 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 929 extern void blk_queue_exit(struct request_queue *q); 930 extern void blk_sync_queue(struct request_queue *q); 931 extern int blk_rq_map_user(struct request_queue *, struct request *, 932 struct rq_map_data *, void __user *, unsigned long, 933 gfp_t); 934 extern int blk_rq_unmap_user(struct bio *); 935 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 936 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 937 struct rq_map_data *, const struct iov_iter *, 938 gfp_t); 939 extern void blk_execute_rq(struct gendisk *, struct request *, int); 940 extern void blk_execute_rq_nowait(struct gendisk *, 941 struct request *, int, rq_end_io_fn *); 942 943 /* Helper to convert REQ_OP_XXX to its string format XXX */ 944 extern const char *blk_op_str(unsigned int op); 945 946 int blk_status_to_errno(blk_status_t status); 947 blk_status_t errno_to_blk_status(int errno); 948 949 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 950 951 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 952 { 953 return bdev->bd_disk->queue; /* this is never NULL */ 954 } 955 956 /* 957 * The basic unit of block I/O is a sector. It is used in a number of contexts 958 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 959 * bytes. Variables of type sector_t represent an offset or size that is a 960 * multiple of 512 bytes. Hence these two constants. 961 */ 962 #ifndef SECTOR_SHIFT 963 #define SECTOR_SHIFT 9 964 #endif 965 #ifndef SECTOR_SIZE 966 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 967 #endif 968 969 /* 970 * blk_rq_pos() : the current sector 971 * blk_rq_bytes() : bytes left in the entire request 972 * blk_rq_cur_bytes() : bytes left in the current segment 973 * blk_rq_err_bytes() : bytes left till the next error boundary 974 * blk_rq_sectors() : sectors left in the entire request 975 * blk_rq_cur_sectors() : sectors left in the current segment 976 * blk_rq_stats_sectors() : sectors of the entire request used for stats 977 */ 978 static inline sector_t blk_rq_pos(const struct request *rq) 979 { 980 return rq->__sector; 981 } 982 983 static inline unsigned int blk_rq_bytes(const struct request *rq) 984 { 985 return rq->__data_len; 986 } 987 988 static inline int blk_rq_cur_bytes(const struct request *rq) 989 { 990 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 991 } 992 993 extern unsigned int blk_rq_err_bytes(const struct request *rq); 994 995 static inline unsigned int blk_rq_sectors(const struct request *rq) 996 { 997 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 998 } 999 1000 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1001 { 1002 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1003 } 1004 1005 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1006 { 1007 return rq->stats_sectors; 1008 } 1009 1010 #ifdef CONFIG_BLK_DEV_ZONED 1011 1012 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1013 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1014 1015 static inline unsigned int bio_zone_no(struct bio *bio) 1016 { 1017 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 1018 bio->bi_iter.bi_sector); 1019 } 1020 1021 static inline unsigned int bio_zone_is_seq(struct bio *bio) 1022 { 1023 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 1024 bio->bi_iter.bi_sector); 1025 } 1026 1027 static inline unsigned int blk_rq_zone_no(struct request *rq) 1028 { 1029 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1030 } 1031 1032 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1033 { 1034 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1035 } 1036 #endif /* CONFIG_BLK_DEV_ZONED */ 1037 1038 /* 1039 * Some commands like WRITE SAME have a payload or data transfer size which 1040 * is different from the size of the request. Any driver that supports such 1041 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1042 * calculate the data transfer size. 1043 */ 1044 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1045 { 1046 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1047 return rq->special_vec.bv_len; 1048 return blk_rq_bytes(rq); 1049 } 1050 1051 /* 1052 * Return the first full biovec in the request. The caller needs to check that 1053 * there are any bvecs before calling this helper. 1054 */ 1055 static inline struct bio_vec req_bvec(struct request *rq) 1056 { 1057 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1058 return rq->special_vec; 1059 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1060 } 1061 1062 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1063 int op) 1064 { 1065 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1066 return min(q->limits.max_discard_sectors, 1067 UINT_MAX >> SECTOR_SHIFT); 1068 1069 if (unlikely(op == REQ_OP_WRITE_SAME)) 1070 return q->limits.max_write_same_sectors; 1071 1072 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1073 return q->limits.max_write_zeroes_sectors; 1074 1075 return q->limits.max_sectors; 1076 } 1077 1078 /* 1079 * Return maximum size of a request at given offset. Only valid for 1080 * file system requests. 1081 */ 1082 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1083 sector_t offset, 1084 unsigned int chunk_sectors) 1085 { 1086 if (!chunk_sectors) { 1087 if (q->limits.chunk_sectors) 1088 chunk_sectors = q->limits.chunk_sectors; 1089 else 1090 return q->limits.max_sectors; 1091 } 1092 1093 if (likely(is_power_of_2(chunk_sectors))) 1094 chunk_sectors -= offset & (chunk_sectors - 1); 1095 else 1096 chunk_sectors -= sector_div(offset, chunk_sectors); 1097 1098 return min(q->limits.max_sectors, chunk_sectors); 1099 } 1100 1101 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1102 sector_t offset) 1103 { 1104 struct request_queue *q = rq->q; 1105 1106 if (blk_rq_is_passthrough(rq)) 1107 return q->limits.max_hw_sectors; 1108 1109 if (!q->limits.chunk_sectors || 1110 req_op(rq) == REQ_OP_DISCARD || 1111 req_op(rq) == REQ_OP_SECURE_ERASE) 1112 return blk_queue_get_max_sectors(q, req_op(rq)); 1113 1114 return min(blk_max_size_offset(q, offset, 0), 1115 blk_queue_get_max_sectors(q, req_op(rq))); 1116 } 1117 1118 static inline unsigned int blk_rq_count_bios(struct request *rq) 1119 { 1120 unsigned int nr_bios = 0; 1121 struct bio *bio; 1122 1123 __rq_for_each_bio(bio, rq) 1124 nr_bios++; 1125 1126 return nr_bios; 1127 } 1128 1129 void blk_steal_bios(struct bio_list *list, struct request *rq); 1130 1131 /* 1132 * Request completion related functions. 1133 * 1134 * blk_update_request() completes given number of bytes and updates 1135 * the request without completing it. 1136 */ 1137 extern bool blk_update_request(struct request *rq, blk_status_t error, 1138 unsigned int nr_bytes); 1139 1140 extern void blk_abort_request(struct request *); 1141 1142 /* 1143 * Access functions for manipulating queue properties 1144 */ 1145 extern void blk_cleanup_queue(struct request_queue *); 1146 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 1147 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1148 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1149 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1150 extern void blk_queue_max_discard_segments(struct request_queue *, 1151 unsigned short); 1152 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1153 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1154 unsigned int max_discard_sectors); 1155 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1156 unsigned int max_write_same_sectors); 1157 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1158 unsigned int max_write_same_sectors); 1159 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1160 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1161 unsigned int max_zone_append_sectors); 1162 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1163 void blk_queue_zone_write_granularity(struct request_queue *q, 1164 unsigned int size); 1165 extern void blk_queue_alignment_offset(struct request_queue *q, 1166 unsigned int alignment); 1167 void blk_queue_update_readahead(struct request_queue *q); 1168 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1169 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1170 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1171 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1172 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1173 extern void blk_set_default_limits(struct queue_limits *lim); 1174 extern void blk_set_stacking_limits(struct queue_limits *lim); 1175 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1176 sector_t offset); 1177 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1178 sector_t offset); 1179 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1180 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1181 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1182 extern void blk_queue_dma_alignment(struct request_queue *, int); 1183 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1184 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1185 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1186 extern void blk_queue_required_elevator_features(struct request_queue *q, 1187 unsigned int features); 1188 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1189 struct device *dev); 1190 1191 /* 1192 * Number of physical segments as sent to the device. 1193 * 1194 * Normally this is the number of discontiguous data segments sent by the 1195 * submitter. But for data-less command like discard we might have no 1196 * actual data segments submitted, but the driver might have to add it's 1197 * own special payload. In that case we still return 1 here so that this 1198 * special payload will be mapped. 1199 */ 1200 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1201 { 1202 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1203 return 1; 1204 return rq->nr_phys_segments; 1205 } 1206 1207 /* 1208 * Number of discard segments (or ranges) the driver needs to fill in. 1209 * Each discard bio merged into a request is counted as one segment. 1210 */ 1211 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1212 { 1213 return max_t(unsigned short, rq->nr_phys_segments, 1); 1214 } 1215 1216 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1217 struct scatterlist *sglist, struct scatterlist **last_sg); 1218 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1219 struct scatterlist *sglist) 1220 { 1221 struct scatterlist *last_sg = NULL; 1222 1223 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1224 } 1225 extern void blk_dump_rq_flags(struct request *, char *); 1226 1227 bool __must_check blk_get_queue(struct request_queue *); 1228 extern void blk_put_queue(struct request_queue *); 1229 extern void blk_set_queue_dying(struct request_queue *); 1230 1231 #ifdef CONFIG_BLOCK 1232 /* 1233 * blk_plug permits building a queue of related requests by holding the I/O 1234 * fragments for a short period. This allows merging of sequential requests 1235 * into single larger request. As the requests are moved from a per-task list to 1236 * the device's request_queue in a batch, this results in improved scalability 1237 * as the lock contention for request_queue lock is reduced. 1238 * 1239 * It is ok not to disable preemption when adding the request to the plug list 1240 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1241 * the plug list when the task sleeps by itself. For details, please see 1242 * schedule() where blk_schedule_flush_plug() is called. 1243 */ 1244 struct blk_plug { 1245 struct list_head mq_list; /* blk-mq requests */ 1246 struct list_head cb_list; /* md requires an unplug callback */ 1247 unsigned short rq_count; 1248 bool multiple_queues; 1249 bool nowait; 1250 }; 1251 #define BLK_MAX_REQUEST_COUNT 16 1252 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1253 1254 struct blk_plug_cb; 1255 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1256 struct blk_plug_cb { 1257 struct list_head list; 1258 blk_plug_cb_fn callback; 1259 void *data; 1260 }; 1261 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1262 void *data, int size); 1263 extern void blk_start_plug(struct blk_plug *); 1264 extern void blk_finish_plug(struct blk_plug *); 1265 extern void blk_flush_plug_list(struct blk_plug *, bool); 1266 1267 static inline void blk_flush_plug(struct task_struct *tsk) 1268 { 1269 struct blk_plug *plug = tsk->plug; 1270 1271 if (plug) 1272 blk_flush_plug_list(plug, false); 1273 } 1274 1275 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1276 { 1277 struct blk_plug *plug = tsk->plug; 1278 1279 if (plug) 1280 blk_flush_plug_list(plug, true); 1281 } 1282 1283 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1284 { 1285 struct blk_plug *plug = tsk->plug; 1286 1287 return plug && 1288 (!list_empty(&plug->mq_list) || 1289 !list_empty(&plug->cb_list)); 1290 } 1291 1292 int blkdev_issue_flush(struct block_device *bdev); 1293 long nr_blockdev_pages(void); 1294 #else /* CONFIG_BLOCK */ 1295 struct blk_plug { 1296 }; 1297 1298 static inline void blk_start_plug(struct blk_plug *plug) 1299 { 1300 } 1301 1302 static inline void blk_finish_plug(struct blk_plug *plug) 1303 { 1304 } 1305 1306 static inline void blk_flush_plug(struct task_struct *task) 1307 { 1308 } 1309 1310 static inline void blk_schedule_flush_plug(struct task_struct *task) 1311 { 1312 } 1313 1314 1315 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1316 { 1317 return false; 1318 } 1319 1320 static inline int blkdev_issue_flush(struct block_device *bdev) 1321 { 1322 return 0; 1323 } 1324 1325 static inline long nr_blockdev_pages(void) 1326 { 1327 return 0; 1328 } 1329 #endif /* CONFIG_BLOCK */ 1330 1331 extern void blk_io_schedule(void); 1332 1333 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1334 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1335 1336 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1337 1338 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1339 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1340 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1341 sector_t nr_sects, gfp_t gfp_mask, int flags, 1342 struct bio **biop); 1343 1344 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1345 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1346 1347 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1348 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1349 unsigned flags); 1350 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1351 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1352 1353 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1354 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1355 { 1356 return blkdev_issue_discard(sb->s_bdev, 1357 block << (sb->s_blocksize_bits - 1358 SECTOR_SHIFT), 1359 nr_blocks << (sb->s_blocksize_bits - 1360 SECTOR_SHIFT), 1361 gfp_mask, flags); 1362 } 1363 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1364 sector_t nr_blocks, gfp_t gfp_mask) 1365 { 1366 return blkdev_issue_zeroout(sb->s_bdev, 1367 block << (sb->s_blocksize_bits - 1368 SECTOR_SHIFT), 1369 nr_blocks << (sb->s_blocksize_bits - 1370 SECTOR_SHIFT), 1371 gfp_mask, 0); 1372 } 1373 1374 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1375 1376 static inline bool bdev_is_partition(struct block_device *bdev) 1377 { 1378 return bdev->bd_partno; 1379 } 1380 1381 enum blk_default_limits { 1382 BLK_MAX_SEGMENTS = 128, 1383 BLK_SAFE_MAX_SECTORS = 255, 1384 BLK_DEF_MAX_SECTORS = 2560, 1385 BLK_MAX_SEGMENT_SIZE = 65536, 1386 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1387 }; 1388 1389 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1390 { 1391 return q->limits.seg_boundary_mask; 1392 } 1393 1394 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1395 { 1396 return q->limits.virt_boundary_mask; 1397 } 1398 1399 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1400 { 1401 return q->limits.max_sectors; 1402 } 1403 1404 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1405 { 1406 return q->limits.max_hw_sectors; 1407 } 1408 1409 static inline unsigned short queue_max_segments(const struct request_queue *q) 1410 { 1411 return q->limits.max_segments; 1412 } 1413 1414 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1415 { 1416 return q->limits.max_discard_segments; 1417 } 1418 1419 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1420 { 1421 return q->limits.max_segment_size; 1422 } 1423 1424 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1425 { 1426 1427 const struct queue_limits *l = &q->limits; 1428 1429 return min(l->max_zone_append_sectors, l->max_sectors); 1430 } 1431 1432 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1433 { 1434 int retval = 512; 1435 1436 if (q && q->limits.logical_block_size) 1437 retval = q->limits.logical_block_size; 1438 1439 return retval; 1440 } 1441 1442 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1443 { 1444 return queue_logical_block_size(bdev_get_queue(bdev)); 1445 } 1446 1447 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1448 { 1449 return q->limits.physical_block_size; 1450 } 1451 1452 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1453 { 1454 return queue_physical_block_size(bdev_get_queue(bdev)); 1455 } 1456 1457 static inline unsigned int queue_io_min(const struct request_queue *q) 1458 { 1459 return q->limits.io_min; 1460 } 1461 1462 static inline int bdev_io_min(struct block_device *bdev) 1463 { 1464 return queue_io_min(bdev_get_queue(bdev)); 1465 } 1466 1467 static inline unsigned int queue_io_opt(const struct request_queue *q) 1468 { 1469 return q->limits.io_opt; 1470 } 1471 1472 static inline int bdev_io_opt(struct block_device *bdev) 1473 { 1474 return queue_io_opt(bdev_get_queue(bdev)); 1475 } 1476 1477 static inline unsigned int 1478 queue_zone_write_granularity(const struct request_queue *q) 1479 { 1480 return q->limits.zone_write_granularity; 1481 } 1482 1483 static inline unsigned int 1484 bdev_zone_write_granularity(struct block_device *bdev) 1485 { 1486 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1487 } 1488 1489 static inline int queue_alignment_offset(const struct request_queue *q) 1490 { 1491 if (q->limits.misaligned) 1492 return -1; 1493 1494 return q->limits.alignment_offset; 1495 } 1496 1497 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1498 { 1499 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1500 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1501 << SECTOR_SHIFT; 1502 1503 return (granularity + lim->alignment_offset - alignment) % granularity; 1504 } 1505 1506 static inline int bdev_alignment_offset(struct block_device *bdev) 1507 { 1508 struct request_queue *q = bdev_get_queue(bdev); 1509 1510 if (q->limits.misaligned) 1511 return -1; 1512 if (bdev_is_partition(bdev)) 1513 return queue_limit_alignment_offset(&q->limits, 1514 bdev->bd_start_sect); 1515 return q->limits.alignment_offset; 1516 } 1517 1518 static inline int queue_discard_alignment(const struct request_queue *q) 1519 { 1520 if (q->limits.discard_misaligned) 1521 return -1; 1522 1523 return q->limits.discard_alignment; 1524 } 1525 1526 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1527 { 1528 unsigned int alignment, granularity, offset; 1529 1530 if (!lim->max_discard_sectors) 1531 return 0; 1532 1533 /* Why are these in bytes, not sectors? */ 1534 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1535 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1536 if (!granularity) 1537 return 0; 1538 1539 /* Offset of the partition start in 'granularity' sectors */ 1540 offset = sector_div(sector, granularity); 1541 1542 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1543 offset = (granularity + alignment - offset) % granularity; 1544 1545 /* Turn it back into bytes, gaah */ 1546 return offset << SECTOR_SHIFT; 1547 } 1548 1549 static inline int bdev_discard_alignment(struct block_device *bdev) 1550 { 1551 struct request_queue *q = bdev_get_queue(bdev); 1552 1553 if (bdev_is_partition(bdev)) 1554 return queue_limit_discard_alignment(&q->limits, 1555 bdev->bd_start_sect); 1556 return q->limits.discard_alignment; 1557 } 1558 1559 static inline unsigned int bdev_write_same(struct block_device *bdev) 1560 { 1561 struct request_queue *q = bdev_get_queue(bdev); 1562 1563 if (q) 1564 return q->limits.max_write_same_sectors; 1565 1566 return 0; 1567 } 1568 1569 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1570 { 1571 struct request_queue *q = bdev_get_queue(bdev); 1572 1573 if (q) 1574 return q->limits.max_write_zeroes_sectors; 1575 1576 return 0; 1577 } 1578 1579 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1580 { 1581 struct request_queue *q = bdev_get_queue(bdev); 1582 1583 if (q) 1584 return blk_queue_zoned_model(q); 1585 1586 return BLK_ZONED_NONE; 1587 } 1588 1589 static inline bool bdev_is_zoned(struct block_device *bdev) 1590 { 1591 struct request_queue *q = bdev_get_queue(bdev); 1592 1593 if (q) 1594 return blk_queue_is_zoned(q); 1595 1596 return false; 1597 } 1598 1599 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1600 { 1601 struct request_queue *q = bdev_get_queue(bdev); 1602 1603 if (q) 1604 return blk_queue_zone_sectors(q); 1605 return 0; 1606 } 1607 1608 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1609 { 1610 struct request_queue *q = bdev_get_queue(bdev); 1611 1612 if (q) 1613 return queue_max_open_zones(q); 1614 return 0; 1615 } 1616 1617 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1618 { 1619 struct request_queue *q = bdev_get_queue(bdev); 1620 1621 if (q) 1622 return queue_max_active_zones(q); 1623 return 0; 1624 } 1625 1626 static inline int queue_dma_alignment(const struct request_queue *q) 1627 { 1628 return q ? q->dma_alignment : 511; 1629 } 1630 1631 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1632 unsigned int len) 1633 { 1634 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1635 return !(addr & alignment) && !(len & alignment); 1636 } 1637 1638 /* assumes size > 256 */ 1639 static inline unsigned int blksize_bits(unsigned int size) 1640 { 1641 unsigned int bits = 8; 1642 do { 1643 bits++; 1644 size >>= 1; 1645 } while (size > 256); 1646 return bits; 1647 } 1648 1649 static inline unsigned int block_size(struct block_device *bdev) 1650 { 1651 return 1 << bdev->bd_inode->i_blkbits; 1652 } 1653 1654 int kblockd_schedule_work(struct work_struct *work); 1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1656 1657 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1658 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1659 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1660 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1661 1662 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1663 1664 enum blk_integrity_flags { 1665 BLK_INTEGRITY_VERIFY = 1 << 0, 1666 BLK_INTEGRITY_GENERATE = 1 << 1, 1667 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1668 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1669 }; 1670 1671 struct blk_integrity_iter { 1672 void *prot_buf; 1673 void *data_buf; 1674 sector_t seed; 1675 unsigned int data_size; 1676 unsigned short interval; 1677 const char *disk_name; 1678 }; 1679 1680 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1681 typedef void (integrity_prepare_fn) (struct request *); 1682 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1683 1684 struct blk_integrity_profile { 1685 integrity_processing_fn *generate_fn; 1686 integrity_processing_fn *verify_fn; 1687 integrity_prepare_fn *prepare_fn; 1688 integrity_complete_fn *complete_fn; 1689 const char *name; 1690 }; 1691 1692 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1693 extern void blk_integrity_unregister(struct gendisk *); 1694 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1695 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1696 struct scatterlist *); 1697 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1698 1699 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1700 { 1701 struct blk_integrity *bi = &disk->queue->integrity; 1702 1703 if (!bi->profile) 1704 return NULL; 1705 1706 return bi; 1707 } 1708 1709 static inline 1710 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1711 { 1712 return blk_get_integrity(bdev->bd_disk); 1713 } 1714 1715 static inline bool 1716 blk_integrity_queue_supports_integrity(struct request_queue *q) 1717 { 1718 return q->integrity.profile; 1719 } 1720 1721 static inline bool blk_integrity_rq(struct request *rq) 1722 { 1723 return rq->cmd_flags & REQ_INTEGRITY; 1724 } 1725 1726 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1727 unsigned int segs) 1728 { 1729 q->limits.max_integrity_segments = segs; 1730 } 1731 1732 static inline unsigned short 1733 queue_max_integrity_segments(const struct request_queue *q) 1734 { 1735 return q->limits.max_integrity_segments; 1736 } 1737 1738 /** 1739 * bio_integrity_intervals - Return number of integrity intervals for a bio 1740 * @bi: blk_integrity profile for device 1741 * @sectors: Size of the bio in 512-byte sectors 1742 * 1743 * Description: The block layer calculates everything in 512 byte 1744 * sectors but integrity metadata is done in terms of the data integrity 1745 * interval size of the storage device. Convert the block layer sectors 1746 * to the appropriate number of integrity intervals. 1747 */ 1748 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1749 unsigned int sectors) 1750 { 1751 return sectors >> (bi->interval_exp - 9); 1752 } 1753 1754 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1755 unsigned int sectors) 1756 { 1757 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1758 } 1759 1760 /* 1761 * Return the first bvec that contains integrity data. Only drivers that are 1762 * limited to a single integrity segment should use this helper. 1763 */ 1764 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1765 { 1766 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1767 return NULL; 1768 return rq->bio->bi_integrity->bip_vec; 1769 } 1770 1771 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1772 1773 struct bio; 1774 struct block_device; 1775 struct gendisk; 1776 struct blk_integrity; 1777 1778 static inline int blk_integrity_rq(struct request *rq) 1779 { 1780 return 0; 1781 } 1782 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1783 struct bio *b) 1784 { 1785 return 0; 1786 } 1787 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1788 struct bio *b, 1789 struct scatterlist *s) 1790 { 1791 return 0; 1792 } 1793 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1794 { 1795 return NULL; 1796 } 1797 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1798 { 1799 return NULL; 1800 } 1801 static inline bool 1802 blk_integrity_queue_supports_integrity(struct request_queue *q) 1803 { 1804 return false; 1805 } 1806 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1807 { 1808 return 0; 1809 } 1810 static inline void blk_integrity_register(struct gendisk *d, 1811 struct blk_integrity *b) 1812 { 1813 } 1814 static inline void blk_integrity_unregister(struct gendisk *d) 1815 { 1816 } 1817 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1818 unsigned int segs) 1819 { 1820 } 1821 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1822 { 1823 return 0; 1824 } 1825 1826 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1827 unsigned int sectors) 1828 { 1829 return 0; 1830 } 1831 1832 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1833 unsigned int sectors) 1834 { 1835 return 0; 1836 } 1837 1838 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1839 { 1840 return NULL; 1841 } 1842 1843 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1844 1845 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1846 1847 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1848 1849 void blk_ksm_unregister(struct request_queue *q); 1850 1851 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1852 1853 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1854 struct request_queue *q) 1855 { 1856 return true; 1857 } 1858 1859 static inline void blk_ksm_unregister(struct request_queue *q) { } 1860 1861 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1862 1863 1864 struct block_device_operations { 1865 blk_qc_t (*submit_bio) (struct bio *bio); 1866 int (*open) (struct block_device *, fmode_t); 1867 void (*release) (struct gendisk *, fmode_t); 1868 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1869 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1870 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1871 unsigned int (*check_events) (struct gendisk *disk, 1872 unsigned int clearing); 1873 void (*unlock_native_capacity) (struct gendisk *); 1874 int (*getgeo)(struct block_device *, struct hd_geometry *); 1875 int (*set_read_only)(struct block_device *bdev, bool ro); 1876 /* this callback is with swap_lock and sometimes page table lock held */ 1877 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1878 int (*report_zones)(struct gendisk *, sector_t sector, 1879 unsigned int nr_zones, report_zones_cb cb, void *data); 1880 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1881 struct module *owner; 1882 const struct pr_ops *pr_ops; 1883 }; 1884 1885 #ifdef CONFIG_COMPAT 1886 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1887 unsigned int, unsigned long); 1888 #else 1889 #define blkdev_compat_ptr_ioctl NULL 1890 #endif 1891 1892 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1893 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1894 struct writeback_control *); 1895 1896 #ifdef CONFIG_BLK_DEV_ZONED 1897 bool blk_req_needs_zone_write_lock(struct request *rq); 1898 bool blk_req_zone_write_trylock(struct request *rq); 1899 void __blk_req_zone_write_lock(struct request *rq); 1900 void __blk_req_zone_write_unlock(struct request *rq); 1901 1902 static inline void blk_req_zone_write_lock(struct request *rq) 1903 { 1904 if (blk_req_needs_zone_write_lock(rq)) 1905 __blk_req_zone_write_lock(rq); 1906 } 1907 1908 static inline void blk_req_zone_write_unlock(struct request *rq) 1909 { 1910 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1911 __blk_req_zone_write_unlock(rq); 1912 } 1913 1914 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1915 { 1916 return rq->q->seq_zones_wlock && 1917 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1918 } 1919 1920 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1921 { 1922 if (!blk_req_needs_zone_write_lock(rq)) 1923 return true; 1924 return !blk_req_zone_is_write_locked(rq); 1925 } 1926 #else 1927 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1928 { 1929 return false; 1930 } 1931 1932 static inline void blk_req_zone_write_lock(struct request *rq) 1933 { 1934 } 1935 1936 static inline void blk_req_zone_write_unlock(struct request *rq) 1937 { 1938 } 1939 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1940 { 1941 return false; 1942 } 1943 1944 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1945 { 1946 return true; 1947 } 1948 #endif /* CONFIG_BLK_DEV_ZONED */ 1949 1950 static inline void blk_wake_io_task(struct task_struct *waiter) 1951 { 1952 /* 1953 * If we're polling, the task itself is doing the completions. For 1954 * that case, we don't need to signal a wakeup, it's enough to just 1955 * mark us as RUNNING. 1956 */ 1957 if (waiter == current) 1958 __set_current_state(TASK_RUNNING); 1959 else 1960 wake_up_process(waiter); 1961 } 1962 1963 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1964 unsigned int op); 1965 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1966 unsigned long start_time); 1967 1968 unsigned long bio_start_io_acct(struct bio *bio); 1969 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1970 struct block_device *orig_bdev); 1971 1972 /** 1973 * bio_end_io_acct - end I/O accounting for bio based drivers 1974 * @bio: bio to end account for 1975 * @start: start time returned by bio_start_io_acct() 1976 */ 1977 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1978 { 1979 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1980 } 1981 1982 int bdev_read_only(struct block_device *bdev); 1983 int set_blocksize(struct block_device *bdev, int size); 1984 1985 const char *bdevname(struct block_device *bdev, char *buffer); 1986 int lookup_bdev(const char *pathname, dev_t *dev); 1987 1988 void blkdev_show(struct seq_file *seqf, off_t offset); 1989 1990 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1991 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1992 #ifdef CONFIG_BLOCK 1993 #define BLKDEV_MAJOR_MAX 512 1994 #else 1995 #define BLKDEV_MAJOR_MAX 0 1996 #endif 1997 1998 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1999 void *holder); 2000 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 2001 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 2002 void bd_abort_claiming(struct block_device *bdev, void *holder); 2003 void blkdev_put(struct block_device *bdev, fmode_t mode); 2004 2005 /* just for blk-cgroup, don't use elsewhere */ 2006 struct block_device *blkdev_get_no_open(dev_t dev); 2007 void blkdev_put_no_open(struct block_device *bdev); 2008 2009 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 2010 void bdev_add(struct block_device *bdev, dev_t dev); 2011 struct block_device *I_BDEV(struct inode *inode); 2012 struct block_device *bdgrab(struct block_device *bdev); 2013 void bdput(struct block_device *); 2014 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2015 loff_t lend); 2016 2017 #ifdef CONFIG_BLOCK 2018 void invalidate_bdev(struct block_device *bdev); 2019 int sync_blockdev(struct block_device *bdev); 2020 #else 2021 static inline void invalidate_bdev(struct block_device *bdev) 2022 { 2023 } 2024 static inline int sync_blockdev(struct block_device *bdev) 2025 { 2026 return 0; 2027 } 2028 #endif 2029 int fsync_bdev(struct block_device *bdev); 2030 2031 int freeze_bdev(struct block_device *bdev); 2032 int thaw_bdev(struct block_device *bdev); 2033 2034 #endif /* _LINUX_BLKDEV_H */ 2035