xref: /linux-6.15/include/linux/blkdev.h (revision 9dbbc3b9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/backing-dev-defs.h>
15 #include <linux/wait.h>
16 #include <linux/mempool.h>
17 #include <linux/pfn.h>
18 #include <linux/bio.h>
19 #include <linux/stringify.h>
20 #include <linux/gfp.h>
21 #include <linux/bsg.h>
22 #include <linux/smp.h>
23 #include <linux/rcupdate.h>
24 #include <linux/percpu-refcount.h>
25 #include <linux/scatterlist.h>
26 #include <linux/blkzoned.h>
27 #include <linux/pm.h>
28 #include <linux/sbitmap.h>
29 
30 struct module;
31 struct scsi_ioctl_command;
32 
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_keyslot_manager;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* drive already may have started this one */
69 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
70 /* may not be passed by ioscheduler */
71 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
72 /* request for flush sequence */
73 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
74 /* merge of different types, fail separately */
75 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
76 /* track inflight for MQ */
77 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
78 /* don't call prep for this one */
79 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
80 /* vaguely specified driver internal error.  Ignored by the block layer */
81 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
82 /* don't warn about errors */
83 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
84 /* elevator private data attached */
85 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
86 /* account into disk and partition IO statistics */
87 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
88 /* runtime pm request */
89 #define RQF_PM			((__force req_flags_t)(1 << 15))
90 /* on IO scheduler merge hash */
91 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
92 /* track IO completion time */
93 #define RQF_STATS		((__force req_flags_t)(1 << 17))
94 /* Look at ->special_vec for the actual data payload instead of the
95    bio chain. */
96 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
97 /* The per-zone write lock is held for this request */
98 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
99 /* already slept for hybrid poll */
100 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
101 /* ->timeout has been called, don't expire again */
102 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
103 
104 /* flags that prevent us from merging requests: */
105 #define RQF_NOMERGE_FLAGS \
106 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
107 
108 /*
109  * Request state for blk-mq.
110  */
111 enum mq_rq_state {
112 	MQ_RQ_IDLE		= 0,
113 	MQ_RQ_IN_FLIGHT		= 1,
114 	MQ_RQ_COMPLETE		= 2,
115 };
116 
117 /*
118  * Try to put the fields that are referenced together in the same cacheline.
119  *
120  * If you modify this structure, make sure to update blk_rq_init() and
121  * especially blk_mq_rq_ctx_init() to take care of the added fields.
122  */
123 struct request {
124 	struct request_queue *q;
125 	struct blk_mq_ctx *mq_ctx;
126 	struct blk_mq_hw_ctx *mq_hctx;
127 
128 	unsigned int cmd_flags;		/* op and common flags */
129 	req_flags_t rq_flags;
130 
131 	int tag;
132 	int internal_tag;
133 
134 	/* the following two fields are internal, NEVER access directly */
135 	unsigned int __data_len;	/* total data len */
136 	sector_t __sector;		/* sector cursor */
137 
138 	struct bio *bio;
139 	struct bio *biotail;
140 
141 	struct list_head queuelist;
142 
143 	/*
144 	 * The hash is used inside the scheduler, and killed once the
145 	 * request reaches the dispatch list. The ipi_list is only used
146 	 * to queue the request for softirq completion, which is long
147 	 * after the request has been unhashed (and even removed from
148 	 * the dispatch list).
149 	 */
150 	union {
151 		struct hlist_node hash;	/* merge hash */
152 		struct llist_node ipi_list;
153 	};
154 
155 	/*
156 	 * The rb_node is only used inside the io scheduler, requests
157 	 * are pruned when moved to the dispatch queue. So let the
158 	 * completion_data share space with the rb_node.
159 	 */
160 	union {
161 		struct rb_node rb_node;	/* sort/lookup */
162 		struct bio_vec special_vec;
163 		void *completion_data;
164 		int error_count; /* for legacy drivers, don't use */
165 	};
166 
167 	/*
168 	 * Three pointers are available for the IO schedulers, if they need
169 	 * more they have to dynamically allocate it.  Flush requests are
170 	 * never put on the IO scheduler. So let the flush fields share
171 	 * space with the elevator data.
172 	 */
173 	union {
174 		struct {
175 			struct io_cq		*icq;
176 			void			*priv[2];
177 		} elv;
178 
179 		struct {
180 			unsigned int		seq;
181 			struct list_head	list;
182 			rq_end_io_fn		*saved_end_io;
183 		} flush;
184 	};
185 
186 	struct gendisk *rq_disk;
187 	struct block_device *part;
188 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
189 	/* Time that the first bio started allocating this request. */
190 	u64 alloc_time_ns;
191 #endif
192 	/* Time that this request was allocated for this IO. */
193 	u64 start_time_ns;
194 	/* Time that I/O was submitted to the device. */
195 	u64 io_start_time_ns;
196 
197 #ifdef CONFIG_BLK_WBT
198 	unsigned short wbt_flags;
199 #endif
200 	/*
201 	 * rq sectors used for blk stats. It has the same value
202 	 * with blk_rq_sectors(rq), except that it never be zeroed
203 	 * by completion.
204 	 */
205 	unsigned short stats_sectors;
206 
207 	/*
208 	 * Number of scatter-gather DMA addr+len pairs after
209 	 * physical address coalescing is performed.
210 	 */
211 	unsigned short nr_phys_segments;
212 
213 #if defined(CONFIG_BLK_DEV_INTEGRITY)
214 	unsigned short nr_integrity_segments;
215 #endif
216 
217 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
218 	struct bio_crypt_ctx *crypt_ctx;
219 	struct blk_ksm_keyslot *crypt_keyslot;
220 #endif
221 
222 	unsigned short write_hint;
223 	unsigned short ioprio;
224 
225 	enum mq_rq_state state;
226 	refcount_t ref;
227 
228 	unsigned int timeout;
229 	unsigned long deadline;
230 
231 	union {
232 		struct __call_single_data csd;
233 		u64 fifo_time;
234 	};
235 
236 	/*
237 	 * completion callback.
238 	 */
239 	rq_end_io_fn *end_io;
240 	void *end_io_data;
241 };
242 
243 static inline bool blk_op_is_scsi(unsigned int op)
244 {
245 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
246 }
247 
248 static inline bool blk_op_is_private(unsigned int op)
249 {
250 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
251 }
252 
253 static inline bool blk_rq_is_scsi(struct request *rq)
254 {
255 	return blk_op_is_scsi(req_op(rq));
256 }
257 
258 static inline bool blk_rq_is_private(struct request *rq)
259 {
260 	return blk_op_is_private(req_op(rq));
261 }
262 
263 static inline bool blk_rq_is_passthrough(struct request *rq)
264 {
265 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
266 }
267 
268 static inline bool bio_is_passthrough(struct bio *bio)
269 {
270 	unsigned op = bio_op(bio);
271 
272 	return blk_op_is_scsi(op) || blk_op_is_private(op);
273 }
274 
275 static inline bool blk_op_is_passthrough(unsigned int op)
276 {
277 	return (blk_op_is_scsi(op & REQ_OP_MASK) ||
278 			blk_op_is_private(op & REQ_OP_MASK));
279 }
280 
281 static inline unsigned short req_get_ioprio(struct request *req)
282 {
283 	return req->ioprio;
284 }
285 
286 #include <linux/elevator.h>
287 
288 struct blk_queue_ctx;
289 
290 struct bio_vec;
291 
292 enum blk_eh_timer_return {
293 	BLK_EH_DONE,		/* drivers has completed the command */
294 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
295 };
296 
297 enum blk_queue_state {
298 	Queue_down,
299 	Queue_up,
300 };
301 
302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
304 
305 #define BLK_SCSI_MAX_CMDS	(256)
306 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
307 
308 /*
309  * Zoned block device models (zoned limit).
310  *
311  * Note: This needs to be ordered from the least to the most severe
312  * restrictions for the inheritance in blk_stack_limits() to work.
313  */
314 enum blk_zoned_model {
315 	BLK_ZONED_NONE = 0,	/* Regular block device */
316 	BLK_ZONED_HA,		/* Host-aware zoned block device */
317 	BLK_ZONED_HM,		/* Host-managed zoned block device */
318 };
319 
320 /*
321  * BLK_BOUNCE_NONE:	never bounce (default)
322  * BLK_BOUNCE_HIGH:	bounce all highmem pages
323  */
324 enum blk_bounce {
325 	BLK_BOUNCE_NONE,
326 	BLK_BOUNCE_HIGH,
327 };
328 
329 struct queue_limits {
330 	enum blk_bounce		bounce;
331 	unsigned long		seg_boundary_mask;
332 	unsigned long		virt_boundary_mask;
333 
334 	unsigned int		max_hw_sectors;
335 	unsigned int		max_dev_sectors;
336 	unsigned int		chunk_sectors;
337 	unsigned int		max_sectors;
338 	unsigned int		max_segment_size;
339 	unsigned int		physical_block_size;
340 	unsigned int		logical_block_size;
341 	unsigned int		alignment_offset;
342 	unsigned int		io_min;
343 	unsigned int		io_opt;
344 	unsigned int		max_discard_sectors;
345 	unsigned int		max_hw_discard_sectors;
346 	unsigned int		max_write_same_sectors;
347 	unsigned int		max_write_zeroes_sectors;
348 	unsigned int		max_zone_append_sectors;
349 	unsigned int		discard_granularity;
350 	unsigned int		discard_alignment;
351 	unsigned int		zone_write_granularity;
352 
353 	unsigned short		max_segments;
354 	unsigned short		max_integrity_segments;
355 	unsigned short		max_discard_segments;
356 
357 	unsigned char		misaligned;
358 	unsigned char		discard_misaligned;
359 	unsigned char		raid_partial_stripes_expensive;
360 	enum blk_zoned_model	zoned;
361 };
362 
363 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
364 			       void *data);
365 
366 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
367 
368 #ifdef CONFIG_BLK_DEV_ZONED
369 
370 #define BLK_ALL_ZONES  ((unsigned int)-1)
371 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
372 			unsigned int nr_zones, report_zones_cb cb, void *data);
373 unsigned int blkdev_nr_zones(struct gendisk *disk);
374 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
375 			    sector_t sectors, sector_t nr_sectors,
376 			    gfp_t gfp_mask);
377 int blk_revalidate_disk_zones(struct gendisk *disk,
378 			      void (*update_driver_data)(struct gendisk *disk));
379 
380 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
381 				     unsigned int cmd, unsigned long arg);
382 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
383 				  unsigned int cmd, unsigned long arg);
384 
385 #else /* CONFIG_BLK_DEV_ZONED */
386 
387 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
388 {
389 	return 0;
390 }
391 
392 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
393 					    fmode_t mode, unsigned int cmd,
394 					    unsigned long arg)
395 {
396 	return -ENOTTY;
397 }
398 
399 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
400 					 fmode_t mode, unsigned int cmd,
401 					 unsigned long arg)
402 {
403 	return -ENOTTY;
404 }
405 
406 #endif /* CONFIG_BLK_DEV_ZONED */
407 
408 struct request_queue {
409 	struct request		*last_merge;
410 	struct elevator_queue	*elevator;
411 
412 	struct percpu_ref	q_usage_counter;
413 
414 	struct blk_queue_stats	*stats;
415 	struct rq_qos		*rq_qos;
416 
417 	const struct blk_mq_ops	*mq_ops;
418 
419 	/* sw queues */
420 	struct blk_mq_ctx __percpu	*queue_ctx;
421 
422 	unsigned int		queue_depth;
423 
424 	/* hw dispatch queues */
425 	struct blk_mq_hw_ctx	**queue_hw_ctx;
426 	unsigned int		nr_hw_queues;
427 
428 	struct backing_dev_info	*backing_dev_info;
429 
430 	/*
431 	 * The queue owner gets to use this for whatever they like.
432 	 * ll_rw_blk doesn't touch it.
433 	 */
434 	void			*queuedata;
435 
436 	/*
437 	 * various queue flags, see QUEUE_* below
438 	 */
439 	unsigned long		queue_flags;
440 	/*
441 	 * Number of contexts that have called blk_set_pm_only(). If this
442 	 * counter is above zero then only RQF_PM requests are processed.
443 	 */
444 	atomic_t		pm_only;
445 
446 	/*
447 	 * ida allocated id for this queue.  Used to index queues from
448 	 * ioctx.
449 	 */
450 	int			id;
451 
452 	spinlock_t		queue_lock;
453 
454 	/*
455 	 * queue kobject
456 	 */
457 	struct kobject kobj;
458 
459 	/*
460 	 * mq queue kobject
461 	 */
462 	struct kobject *mq_kobj;
463 
464 #ifdef  CONFIG_BLK_DEV_INTEGRITY
465 	struct blk_integrity integrity;
466 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
467 
468 #ifdef CONFIG_PM
469 	struct device		*dev;
470 	enum rpm_status		rpm_status;
471 #endif
472 
473 	/*
474 	 * queue settings
475 	 */
476 	unsigned long		nr_requests;	/* Max # of requests */
477 
478 	unsigned int		dma_pad_mask;
479 	unsigned int		dma_alignment;
480 
481 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
482 	/* Inline crypto capabilities */
483 	struct blk_keyslot_manager *ksm;
484 #endif
485 
486 	unsigned int		rq_timeout;
487 	int			poll_nsec;
488 
489 	struct blk_stat_callback	*poll_cb;
490 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
491 
492 	struct timer_list	timeout;
493 	struct work_struct	timeout_work;
494 
495 	atomic_t		nr_active_requests_shared_sbitmap;
496 
497 	struct sbitmap_queue	sched_bitmap_tags;
498 	struct sbitmap_queue	sched_breserved_tags;
499 
500 	struct list_head	icq_list;
501 #ifdef CONFIG_BLK_CGROUP
502 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
503 	struct blkcg_gq		*root_blkg;
504 	struct list_head	blkg_list;
505 #endif
506 
507 	struct queue_limits	limits;
508 
509 	unsigned int		required_elevator_features;
510 
511 #ifdef CONFIG_BLK_DEV_ZONED
512 	/*
513 	 * Zoned block device information for request dispatch control.
514 	 * nr_zones is the total number of zones of the device. This is always
515 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
516 	 * bits which indicates if a zone is conventional (bit set) or
517 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
518 	 * bits which indicates if a zone is write locked, that is, if a write
519 	 * request targeting the zone was dispatched. All three fields are
520 	 * initialized by the low level device driver (e.g. scsi/sd.c).
521 	 * Stacking drivers (device mappers) may or may not initialize
522 	 * these fields.
523 	 *
524 	 * Reads of this information must be protected with blk_queue_enter() /
525 	 * blk_queue_exit(). Modifying this information is only allowed while
526 	 * no requests are being processed. See also blk_mq_freeze_queue() and
527 	 * blk_mq_unfreeze_queue().
528 	 */
529 	unsigned int		nr_zones;
530 	unsigned long		*conv_zones_bitmap;
531 	unsigned long		*seq_zones_wlock;
532 	unsigned int		max_open_zones;
533 	unsigned int		max_active_zones;
534 #endif /* CONFIG_BLK_DEV_ZONED */
535 
536 	/*
537 	 * sg stuff
538 	 */
539 	unsigned int		sg_timeout;
540 	unsigned int		sg_reserved_size;
541 	int			node;
542 	struct mutex		debugfs_mutex;
543 #ifdef CONFIG_BLK_DEV_IO_TRACE
544 	struct blk_trace __rcu	*blk_trace;
545 #endif
546 	/*
547 	 * for flush operations
548 	 */
549 	struct blk_flush_queue	*fq;
550 
551 	struct list_head	requeue_list;
552 	spinlock_t		requeue_lock;
553 	struct delayed_work	requeue_work;
554 
555 	struct mutex		sysfs_lock;
556 	struct mutex		sysfs_dir_lock;
557 
558 	/*
559 	 * for reusing dead hctx instance in case of updating
560 	 * nr_hw_queues
561 	 */
562 	struct list_head	unused_hctx_list;
563 	spinlock_t		unused_hctx_lock;
564 
565 	int			mq_freeze_depth;
566 
567 #if defined(CONFIG_BLK_DEV_BSG)
568 	struct bsg_class_device bsg_dev;
569 #endif
570 
571 #ifdef CONFIG_BLK_DEV_THROTTLING
572 	/* Throttle data */
573 	struct throtl_data *td;
574 #endif
575 	struct rcu_head		rcu_head;
576 	wait_queue_head_t	mq_freeze_wq;
577 	/*
578 	 * Protect concurrent access to q_usage_counter by
579 	 * percpu_ref_kill() and percpu_ref_reinit().
580 	 */
581 	struct mutex		mq_freeze_lock;
582 
583 	struct blk_mq_tag_set	*tag_set;
584 	struct list_head	tag_set_list;
585 	struct bio_set		bio_split;
586 
587 	struct dentry		*debugfs_dir;
588 
589 #ifdef CONFIG_BLK_DEBUG_FS
590 	struct dentry		*sched_debugfs_dir;
591 	struct dentry		*rqos_debugfs_dir;
592 #endif
593 
594 	bool			mq_sysfs_init_done;
595 
596 	size_t			cmd_size;
597 
598 #define BLK_MAX_WRITE_HINTS	5
599 	u64			write_hints[BLK_MAX_WRITE_HINTS];
600 };
601 
602 /* Keep blk_queue_flag_name[] in sync with the definitions below */
603 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
604 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
605 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
606 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
607 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
608 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
609 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
610 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
611 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
612 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
613 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
614 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
615 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
616 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
617 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
618 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
619 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
620 #define QUEUE_FLAG_WC		17	/* Write back caching */
621 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
622 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
623 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
624 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
625 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
626 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
627 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
628 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
629 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
630 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
631 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
632 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
633 
634 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
635 				 (1 << QUEUE_FLAG_SAME_COMP) |		\
636 				 (1 << QUEUE_FLAG_NOWAIT))
637 
638 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
639 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
640 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
641 
642 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
643 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
644 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
645 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
646 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
647 #define blk_queue_noxmerges(q)	\
648 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
649 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
650 #define blk_queue_stable_writes(q) \
651 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
652 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
653 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
654 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
655 #define blk_queue_zone_resetall(q)	\
656 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
657 #define blk_queue_secure_erase(q) \
658 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
659 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
660 #define blk_queue_scsi_passthrough(q)	\
661 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
662 #define blk_queue_pci_p2pdma(q)	\
663 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
664 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
665 #define blk_queue_rq_alloc_time(q)	\
666 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
667 #else
668 #define blk_queue_rq_alloc_time(q)	false
669 #endif
670 
671 #define blk_noretry_request(rq) \
672 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
673 			     REQ_FAILFAST_DRIVER))
674 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
675 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
676 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
677 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
678 #define blk_queue_nowait(q)	test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
679 
680 extern void blk_set_pm_only(struct request_queue *q);
681 extern void blk_clear_pm_only(struct request_queue *q);
682 
683 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
684 
685 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
686 
687 #define rq_dma_dir(rq) \
688 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
689 
690 #define dma_map_bvec(dev, bv, dir, attrs) \
691 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
692 	(dir), (attrs))
693 
694 #define queue_to_disk(q)	(dev_to_disk(kobj_to_dev((q)->kobj.parent)))
695 
696 static inline bool queue_is_mq(struct request_queue *q)
697 {
698 	return q->mq_ops;
699 }
700 
701 #ifdef CONFIG_PM
702 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
703 {
704 	return q->rpm_status;
705 }
706 #else
707 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
708 {
709 	return RPM_ACTIVE;
710 }
711 #endif
712 
713 static inline enum blk_zoned_model
714 blk_queue_zoned_model(struct request_queue *q)
715 {
716 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
717 		return q->limits.zoned;
718 	return BLK_ZONED_NONE;
719 }
720 
721 static inline bool blk_queue_is_zoned(struct request_queue *q)
722 {
723 	switch (blk_queue_zoned_model(q)) {
724 	case BLK_ZONED_HA:
725 	case BLK_ZONED_HM:
726 		return true;
727 	default:
728 		return false;
729 	}
730 }
731 
732 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
733 {
734 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
735 }
736 
737 #ifdef CONFIG_BLK_DEV_ZONED
738 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
739 {
740 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
741 }
742 
743 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
744 					     sector_t sector)
745 {
746 	if (!blk_queue_is_zoned(q))
747 		return 0;
748 	return sector >> ilog2(q->limits.chunk_sectors);
749 }
750 
751 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
752 					 sector_t sector)
753 {
754 	if (!blk_queue_is_zoned(q))
755 		return false;
756 	if (!q->conv_zones_bitmap)
757 		return true;
758 	return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
759 }
760 
761 static inline void blk_queue_max_open_zones(struct request_queue *q,
762 		unsigned int max_open_zones)
763 {
764 	q->max_open_zones = max_open_zones;
765 }
766 
767 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
768 {
769 	return q->max_open_zones;
770 }
771 
772 static inline void blk_queue_max_active_zones(struct request_queue *q,
773 		unsigned int max_active_zones)
774 {
775 	q->max_active_zones = max_active_zones;
776 }
777 
778 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
779 {
780 	return q->max_active_zones;
781 }
782 #else /* CONFIG_BLK_DEV_ZONED */
783 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
784 {
785 	return 0;
786 }
787 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
788 					 sector_t sector)
789 {
790 	return false;
791 }
792 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
793 					     sector_t sector)
794 {
795 	return 0;
796 }
797 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
798 {
799 	return 0;
800 }
801 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
802 {
803 	return 0;
804 }
805 #endif /* CONFIG_BLK_DEV_ZONED */
806 
807 static inline bool rq_is_sync(struct request *rq)
808 {
809 	return op_is_sync(rq->cmd_flags);
810 }
811 
812 static inline bool rq_mergeable(struct request *rq)
813 {
814 	if (blk_rq_is_passthrough(rq))
815 		return false;
816 
817 	if (req_op(rq) == REQ_OP_FLUSH)
818 		return false;
819 
820 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
821 		return false;
822 
823 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
824 		return false;
825 
826 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
827 		return false;
828 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
829 		return false;
830 
831 	return true;
832 }
833 
834 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
835 {
836 	if (bio_page(a) == bio_page(b) &&
837 	    bio_offset(a) == bio_offset(b))
838 		return true;
839 
840 	return false;
841 }
842 
843 static inline unsigned int blk_queue_depth(struct request_queue *q)
844 {
845 	if (q->queue_depth)
846 		return q->queue_depth;
847 
848 	return q->nr_requests;
849 }
850 
851 /*
852  * default timeout for SG_IO if none specified
853  */
854 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
855 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
856 
857 struct rq_map_data {
858 	struct page **pages;
859 	int page_order;
860 	int nr_entries;
861 	unsigned long offset;
862 	int null_mapped;
863 	int from_user;
864 };
865 
866 struct req_iterator {
867 	struct bvec_iter iter;
868 	struct bio *bio;
869 };
870 
871 /* This should not be used directly - use rq_for_each_segment */
872 #define for_each_bio(_bio)		\
873 	for (; _bio; _bio = _bio->bi_next)
874 #define __rq_for_each_bio(_bio, rq)	\
875 	if ((rq->bio))			\
876 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
877 
878 #define rq_for_each_segment(bvl, _rq, _iter)			\
879 	__rq_for_each_bio(_iter.bio, _rq)			\
880 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
881 
882 #define rq_for_each_bvec(bvl, _rq, _iter)			\
883 	__rq_for_each_bio(_iter.bio, _rq)			\
884 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
885 
886 #define rq_iter_last(bvec, _iter)				\
887 		(_iter.bio->bi_next == NULL &&			\
888 		 bio_iter_last(bvec, _iter.iter))
889 
890 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
891 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
892 #endif
893 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
894 extern void rq_flush_dcache_pages(struct request *rq);
895 #else
896 static inline void rq_flush_dcache_pages(struct request *rq)
897 {
898 }
899 #endif
900 
901 extern int blk_register_queue(struct gendisk *disk);
902 extern void blk_unregister_queue(struct gendisk *disk);
903 blk_qc_t submit_bio_noacct(struct bio *bio);
904 extern void blk_rq_init(struct request_queue *q, struct request *rq);
905 extern void blk_put_request(struct request *);
906 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
907 				       blk_mq_req_flags_t flags);
908 extern int blk_lld_busy(struct request_queue *q);
909 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
910 			     struct bio_set *bs, gfp_t gfp_mask,
911 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
912 			     void *data);
913 extern void blk_rq_unprep_clone(struct request *rq);
914 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
915 				     struct request *rq);
916 int blk_rq_append_bio(struct request *rq, struct bio *bio);
917 extern void blk_queue_split(struct bio **);
918 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
919 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
920 			      unsigned int, void __user *);
921 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
922 			  unsigned int, void __user *);
923 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
924 			 struct scsi_ioctl_command __user *);
925 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
926 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
927 
928 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
929 extern void blk_queue_exit(struct request_queue *q);
930 extern void blk_sync_queue(struct request_queue *q);
931 extern int blk_rq_map_user(struct request_queue *, struct request *,
932 			   struct rq_map_data *, void __user *, unsigned long,
933 			   gfp_t);
934 extern int blk_rq_unmap_user(struct bio *);
935 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
936 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
937 			       struct rq_map_data *, const struct iov_iter *,
938 			       gfp_t);
939 extern void blk_execute_rq(struct gendisk *, struct request *, int);
940 extern void blk_execute_rq_nowait(struct gendisk *,
941 				  struct request *, int, rq_end_io_fn *);
942 
943 /* Helper to convert REQ_OP_XXX to its string format XXX */
944 extern const char *blk_op_str(unsigned int op);
945 
946 int blk_status_to_errno(blk_status_t status);
947 blk_status_t errno_to_blk_status(int errno);
948 
949 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
950 
951 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
952 {
953 	return bdev->bd_disk->queue;	/* this is never NULL */
954 }
955 
956 /*
957  * The basic unit of block I/O is a sector. It is used in a number of contexts
958  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
959  * bytes. Variables of type sector_t represent an offset or size that is a
960  * multiple of 512 bytes. Hence these two constants.
961  */
962 #ifndef SECTOR_SHIFT
963 #define SECTOR_SHIFT 9
964 #endif
965 #ifndef SECTOR_SIZE
966 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
967 #endif
968 
969 /*
970  * blk_rq_pos()			: the current sector
971  * blk_rq_bytes()		: bytes left in the entire request
972  * blk_rq_cur_bytes()		: bytes left in the current segment
973  * blk_rq_err_bytes()		: bytes left till the next error boundary
974  * blk_rq_sectors()		: sectors left in the entire request
975  * blk_rq_cur_sectors()		: sectors left in the current segment
976  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
977  */
978 static inline sector_t blk_rq_pos(const struct request *rq)
979 {
980 	return rq->__sector;
981 }
982 
983 static inline unsigned int blk_rq_bytes(const struct request *rq)
984 {
985 	return rq->__data_len;
986 }
987 
988 static inline int blk_rq_cur_bytes(const struct request *rq)
989 {
990 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
991 }
992 
993 extern unsigned int blk_rq_err_bytes(const struct request *rq);
994 
995 static inline unsigned int blk_rq_sectors(const struct request *rq)
996 {
997 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
998 }
999 
1000 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1001 {
1002 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1003 }
1004 
1005 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1006 {
1007 	return rq->stats_sectors;
1008 }
1009 
1010 #ifdef CONFIG_BLK_DEV_ZONED
1011 
1012 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1013 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1014 
1015 static inline unsigned int bio_zone_no(struct bio *bio)
1016 {
1017 	return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev),
1018 				 bio->bi_iter.bi_sector);
1019 }
1020 
1021 static inline unsigned int bio_zone_is_seq(struct bio *bio)
1022 {
1023 	return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev),
1024 				     bio->bi_iter.bi_sector);
1025 }
1026 
1027 static inline unsigned int blk_rq_zone_no(struct request *rq)
1028 {
1029 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1030 }
1031 
1032 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1033 {
1034 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1035 }
1036 #endif /* CONFIG_BLK_DEV_ZONED */
1037 
1038 /*
1039  * Some commands like WRITE SAME have a payload or data transfer size which
1040  * is different from the size of the request.  Any driver that supports such
1041  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1042  * calculate the data transfer size.
1043  */
1044 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1045 {
1046 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1047 		return rq->special_vec.bv_len;
1048 	return blk_rq_bytes(rq);
1049 }
1050 
1051 /*
1052  * Return the first full biovec in the request.  The caller needs to check that
1053  * there are any bvecs before calling this helper.
1054  */
1055 static inline struct bio_vec req_bvec(struct request *rq)
1056 {
1057 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1058 		return rq->special_vec;
1059 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1060 }
1061 
1062 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1063 						     int op)
1064 {
1065 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1066 		return min(q->limits.max_discard_sectors,
1067 			   UINT_MAX >> SECTOR_SHIFT);
1068 
1069 	if (unlikely(op == REQ_OP_WRITE_SAME))
1070 		return q->limits.max_write_same_sectors;
1071 
1072 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1073 		return q->limits.max_write_zeroes_sectors;
1074 
1075 	return q->limits.max_sectors;
1076 }
1077 
1078 /*
1079  * Return maximum size of a request at given offset. Only valid for
1080  * file system requests.
1081  */
1082 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1083 					       sector_t offset,
1084 					       unsigned int chunk_sectors)
1085 {
1086 	if (!chunk_sectors) {
1087 		if (q->limits.chunk_sectors)
1088 			chunk_sectors = q->limits.chunk_sectors;
1089 		else
1090 			return q->limits.max_sectors;
1091 	}
1092 
1093 	if (likely(is_power_of_2(chunk_sectors)))
1094 		chunk_sectors -= offset & (chunk_sectors - 1);
1095 	else
1096 		chunk_sectors -= sector_div(offset, chunk_sectors);
1097 
1098 	return min(q->limits.max_sectors, chunk_sectors);
1099 }
1100 
1101 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1102 						  sector_t offset)
1103 {
1104 	struct request_queue *q = rq->q;
1105 
1106 	if (blk_rq_is_passthrough(rq))
1107 		return q->limits.max_hw_sectors;
1108 
1109 	if (!q->limits.chunk_sectors ||
1110 	    req_op(rq) == REQ_OP_DISCARD ||
1111 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1112 		return blk_queue_get_max_sectors(q, req_op(rq));
1113 
1114 	return min(blk_max_size_offset(q, offset, 0),
1115 			blk_queue_get_max_sectors(q, req_op(rq)));
1116 }
1117 
1118 static inline unsigned int blk_rq_count_bios(struct request *rq)
1119 {
1120 	unsigned int nr_bios = 0;
1121 	struct bio *bio;
1122 
1123 	__rq_for_each_bio(bio, rq)
1124 		nr_bios++;
1125 
1126 	return nr_bios;
1127 }
1128 
1129 void blk_steal_bios(struct bio_list *list, struct request *rq);
1130 
1131 /*
1132  * Request completion related functions.
1133  *
1134  * blk_update_request() completes given number of bytes and updates
1135  * the request without completing it.
1136  */
1137 extern bool blk_update_request(struct request *rq, blk_status_t error,
1138 			       unsigned int nr_bytes);
1139 
1140 extern void blk_abort_request(struct request *);
1141 
1142 /*
1143  * Access functions for manipulating queue properties
1144  */
1145 extern void blk_cleanup_queue(struct request_queue *);
1146 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
1147 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1148 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1149 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1150 extern void blk_queue_max_discard_segments(struct request_queue *,
1151 		unsigned short);
1152 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1153 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1154 		unsigned int max_discard_sectors);
1155 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1156 		unsigned int max_write_same_sectors);
1157 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1158 		unsigned int max_write_same_sectors);
1159 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1160 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1161 		unsigned int max_zone_append_sectors);
1162 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1163 void blk_queue_zone_write_granularity(struct request_queue *q,
1164 				      unsigned int size);
1165 extern void blk_queue_alignment_offset(struct request_queue *q,
1166 				       unsigned int alignment);
1167 void blk_queue_update_readahead(struct request_queue *q);
1168 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1169 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1170 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1171 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1172 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1173 extern void blk_set_default_limits(struct queue_limits *lim);
1174 extern void blk_set_stacking_limits(struct queue_limits *lim);
1175 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1176 			    sector_t offset);
1177 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1178 			      sector_t offset);
1179 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1180 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1181 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1182 extern void blk_queue_dma_alignment(struct request_queue *, int);
1183 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1184 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1185 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1186 extern void blk_queue_required_elevator_features(struct request_queue *q,
1187 						 unsigned int features);
1188 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1189 					      struct device *dev);
1190 
1191 /*
1192  * Number of physical segments as sent to the device.
1193  *
1194  * Normally this is the number of discontiguous data segments sent by the
1195  * submitter.  But for data-less command like discard we might have no
1196  * actual data segments submitted, but the driver might have to add it's
1197  * own special payload.  In that case we still return 1 here so that this
1198  * special payload will be mapped.
1199  */
1200 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1201 {
1202 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1203 		return 1;
1204 	return rq->nr_phys_segments;
1205 }
1206 
1207 /*
1208  * Number of discard segments (or ranges) the driver needs to fill in.
1209  * Each discard bio merged into a request is counted as one segment.
1210  */
1211 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1212 {
1213 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1214 }
1215 
1216 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1217 		struct scatterlist *sglist, struct scatterlist **last_sg);
1218 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1219 		struct scatterlist *sglist)
1220 {
1221 	struct scatterlist *last_sg = NULL;
1222 
1223 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1224 }
1225 extern void blk_dump_rq_flags(struct request *, char *);
1226 
1227 bool __must_check blk_get_queue(struct request_queue *);
1228 extern void blk_put_queue(struct request_queue *);
1229 extern void blk_set_queue_dying(struct request_queue *);
1230 
1231 #ifdef CONFIG_BLOCK
1232 /*
1233  * blk_plug permits building a queue of related requests by holding the I/O
1234  * fragments for a short period. This allows merging of sequential requests
1235  * into single larger request. As the requests are moved from a per-task list to
1236  * the device's request_queue in a batch, this results in improved scalability
1237  * as the lock contention for request_queue lock is reduced.
1238  *
1239  * It is ok not to disable preemption when adding the request to the plug list
1240  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1241  * the plug list when the task sleeps by itself. For details, please see
1242  * schedule() where blk_schedule_flush_plug() is called.
1243  */
1244 struct blk_plug {
1245 	struct list_head mq_list; /* blk-mq requests */
1246 	struct list_head cb_list; /* md requires an unplug callback */
1247 	unsigned short rq_count;
1248 	bool multiple_queues;
1249 	bool nowait;
1250 };
1251 #define BLK_MAX_REQUEST_COUNT 16
1252 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1253 
1254 struct blk_plug_cb;
1255 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1256 struct blk_plug_cb {
1257 	struct list_head list;
1258 	blk_plug_cb_fn callback;
1259 	void *data;
1260 };
1261 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1262 					     void *data, int size);
1263 extern void blk_start_plug(struct blk_plug *);
1264 extern void blk_finish_plug(struct blk_plug *);
1265 extern void blk_flush_plug_list(struct blk_plug *, bool);
1266 
1267 static inline void blk_flush_plug(struct task_struct *tsk)
1268 {
1269 	struct blk_plug *plug = tsk->plug;
1270 
1271 	if (plug)
1272 		blk_flush_plug_list(plug, false);
1273 }
1274 
1275 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1276 {
1277 	struct blk_plug *plug = tsk->plug;
1278 
1279 	if (plug)
1280 		blk_flush_plug_list(plug, true);
1281 }
1282 
1283 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1284 {
1285 	struct blk_plug *plug = tsk->plug;
1286 
1287 	return plug &&
1288 		 (!list_empty(&plug->mq_list) ||
1289 		 !list_empty(&plug->cb_list));
1290 }
1291 
1292 int blkdev_issue_flush(struct block_device *bdev);
1293 long nr_blockdev_pages(void);
1294 #else /* CONFIG_BLOCK */
1295 struct blk_plug {
1296 };
1297 
1298 static inline void blk_start_plug(struct blk_plug *plug)
1299 {
1300 }
1301 
1302 static inline void blk_finish_plug(struct blk_plug *plug)
1303 {
1304 }
1305 
1306 static inline void blk_flush_plug(struct task_struct *task)
1307 {
1308 }
1309 
1310 static inline void blk_schedule_flush_plug(struct task_struct *task)
1311 {
1312 }
1313 
1314 
1315 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1316 {
1317 	return false;
1318 }
1319 
1320 static inline int blkdev_issue_flush(struct block_device *bdev)
1321 {
1322 	return 0;
1323 }
1324 
1325 static inline long nr_blockdev_pages(void)
1326 {
1327 	return 0;
1328 }
1329 #endif /* CONFIG_BLOCK */
1330 
1331 extern void blk_io_schedule(void);
1332 
1333 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1334 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1335 
1336 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1337 
1338 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1339 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1340 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1341 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1342 		struct bio **biop);
1343 
1344 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1345 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1346 
1347 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1348 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1349 		unsigned flags);
1350 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1351 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1352 
1353 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1354 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1355 {
1356 	return blkdev_issue_discard(sb->s_bdev,
1357 				    block << (sb->s_blocksize_bits -
1358 					      SECTOR_SHIFT),
1359 				    nr_blocks << (sb->s_blocksize_bits -
1360 						  SECTOR_SHIFT),
1361 				    gfp_mask, flags);
1362 }
1363 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1364 		sector_t nr_blocks, gfp_t gfp_mask)
1365 {
1366 	return blkdev_issue_zeroout(sb->s_bdev,
1367 				    block << (sb->s_blocksize_bits -
1368 					      SECTOR_SHIFT),
1369 				    nr_blocks << (sb->s_blocksize_bits -
1370 						  SECTOR_SHIFT),
1371 				    gfp_mask, 0);
1372 }
1373 
1374 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1375 
1376 static inline bool bdev_is_partition(struct block_device *bdev)
1377 {
1378 	return bdev->bd_partno;
1379 }
1380 
1381 enum blk_default_limits {
1382 	BLK_MAX_SEGMENTS	= 128,
1383 	BLK_SAFE_MAX_SECTORS	= 255,
1384 	BLK_DEF_MAX_SECTORS	= 2560,
1385 	BLK_MAX_SEGMENT_SIZE	= 65536,
1386 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1387 };
1388 
1389 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1390 {
1391 	return q->limits.seg_boundary_mask;
1392 }
1393 
1394 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1395 {
1396 	return q->limits.virt_boundary_mask;
1397 }
1398 
1399 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1400 {
1401 	return q->limits.max_sectors;
1402 }
1403 
1404 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1405 {
1406 	return q->limits.max_hw_sectors;
1407 }
1408 
1409 static inline unsigned short queue_max_segments(const struct request_queue *q)
1410 {
1411 	return q->limits.max_segments;
1412 }
1413 
1414 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1415 {
1416 	return q->limits.max_discard_segments;
1417 }
1418 
1419 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1420 {
1421 	return q->limits.max_segment_size;
1422 }
1423 
1424 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1425 {
1426 
1427 	const struct queue_limits *l = &q->limits;
1428 
1429 	return min(l->max_zone_append_sectors, l->max_sectors);
1430 }
1431 
1432 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1433 {
1434 	int retval = 512;
1435 
1436 	if (q && q->limits.logical_block_size)
1437 		retval = q->limits.logical_block_size;
1438 
1439 	return retval;
1440 }
1441 
1442 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1443 {
1444 	return queue_logical_block_size(bdev_get_queue(bdev));
1445 }
1446 
1447 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1448 {
1449 	return q->limits.physical_block_size;
1450 }
1451 
1452 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1453 {
1454 	return queue_physical_block_size(bdev_get_queue(bdev));
1455 }
1456 
1457 static inline unsigned int queue_io_min(const struct request_queue *q)
1458 {
1459 	return q->limits.io_min;
1460 }
1461 
1462 static inline int bdev_io_min(struct block_device *bdev)
1463 {
1464 	return queue_io_min(bdev_get_queue(bdev));
1465 }
1466 
1467 static inline unsigned int queue_io_opt(const struct request_queue *q)
1468 {
1469 	return q->limits.io_opt;
1470 }
1471 
1472 static inline int bdev_io_opt(struct block_device *bdev)
1473 {
1474 	return queue_io_opt(bdev_get_queue(bdev));
1475 }
1476 
1477 static inline unsigned int
1478 queue_zone_write_granularity(const struct request_queue *q)
1479 {
1480 	return q->limits.zone_write_granularity;
1481 }
1482 
1483 static inline unsigned int
1484 bdev_zone_write_granularity(struct block_device *bdev)
1485 {
1486 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1487 }
1488 
1489 static inline int queue_alignment_offset(const struct request_queue *q)
1490 {
1491 	if (q->limits.misaligned)
1492 		return -1;
1493 
1494 	return q->limits.alignment_offset;
1495 }
1496 
1497 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1498 {
1499 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1500 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1501 		<< SECTOR_SHIFT;
1502 
1503 	return (granularity + lim->alignment_offset - alignment) % granularity;
1504 }
1505 
1506 static inline int bdev_alignment_offset(struct block_device *bdev)
1507 {
1508 	struct request_queue *q = bdev_get_queue(bdev);
1509 
1510 	if (q->limits.misaligned)
1511 		return -1;
1512 	if (bdev_is_partition(bdev))
1513 		return queue_limit_alignment_offset(&q->limits,
1514 				bdev->bd_start_sect);
1515 	return q->limits.alignment_offset;
1516 }
1517 
1518 static inline int queue_discard_alignment(const struct request_queue *q)
1519 {
1520 	if (q->limits.discard_misaligned)
1521 		return -1;
1522 
1523 	return q->limits.discard_alignment;
1524 }
1525 
1526 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1527 {
1528 	unsigned int alignment, granularity, offset;
1529 
1530 	if (!lim->max_discard_sectors)
1531 		return 0;
1532 
1533 	/* Why are these in bytes, not sectors? */
1534 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1535 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1536 	if (!granularity)
1537 		return 0;
1538 
1539 	/* Offset of the partition start in 'granularity' sectors */
1540 	offset = sector_div(sector, granularity);
1541 
1542 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1543 	offset = (granularity + alignment - offset) % granularity;
1544 
1545 	/* Turn it back into bytes, gaah */
1546 	return offset << SECTOR_SHIFT;
1547 }
1548 
1549 static inline int bdev_discard_alignment(struct block_device *bdev)
1550 {
1551 	struct request_queue *q = bdev_get_queue(bdev);
1552 
1553 	if (bdev_is_partition(bdev))
1554 		return queue_limit_discard_alignment(&q->limits,
1555 				bdev->bd_start_sect);
1556 	return q->limits.discard_alignment;
1557 }
1558 
1559 static inline unsigned int bdev_write_same(struct block_device *bdev)
1560 {
1561 	struct request_queue *q = bdev_get_queue(bdev);
1562 
1563 	if (q)
1564 		return q->limits.max_write_same_sectors;
1565 
1566 	return 0;
1567 }
1568 
1569 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1570 {
1571 	struct request_queue *q = bdev_get_queue(bdev);
1572 
1573 	if (q)
1574 		return q->limits.max_write_zeroes_sectors;
1575 
1576 	return 0;
1577 }
1578 
1579 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1580 {
1581 	struct request_queue *q = bdev_get_queue(bdev);
1582 
1583 	if (q)
1584 		return blk_queue_zoned_model(q);
1585 
1586 	return BLK_ZONED_NONE;
1587 }
1588 
1589 static inline bool bdev_is_zoned(struct block_device *bdev)
1590 {
1591 	struct request_queue *q = bdev_get_queue(bdev);
1592 
1593 	if (q)
1594 		return blk_queue_is_zoned(q);
1595 
1596 	return false;
1597 }
1598 
1599 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1600 {
1601 	struct request_queue *q = bdev_get_queue(bdev);
1602 
1603 	if (q)
1604 		return blk_queue_zone_sectors(q);
1605 	return 0;
1606 }
1607 
1608 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1609 {
1610 	struct request_queue *q = bdev_get_queue(bdev);
1611 
1612 	if (q)
1613 		return queue_max_open_zones(q);
1614 	return 0;
1615 }
1616 
1617 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1618 {
1619 	struct request_queue *q = bdev_get_queue(bdev);
1620 
1621 	if (q)
1622 		return queue_max_active_zones(q);
1623 	return 0;
1624 }
1625 
1626 static inline int queue_dma_alignment(const struct request_queue *q)
1627 {
1628 	return q ? q->dma_alignment : 511;
1629 }
1630 
1631 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1632 				 unsigned int len)
1633 {
1634 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1635 	return !(addr & alignment) && !(len & alignment);
1636 }
1637 
1638 /* assumes size > 256 */
1639 static inline unsigned int blksize_bits(unsigned int size)
1640 {
1641 	unsigned int bits = 8;
1642 	do {
1643 		bits++;
1644 		size >>= 1;
1645 	} while (size > 256);
1646 	return bits;
1647 }
1648 
1649 static inline unsigned int block_size(struct block_device *bdev)
1650 {
1651 	return 1 << bdev->bd_inode->i_blkbits;
1652 }
1653 
1654 int kblockd_schedule_work(struct work_struct *work);
1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1656 
1657 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1658 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1659 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1660 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1661 
1662 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1663 
1664 enum blk_integrity_flags {
1665 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1666 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1667 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1668 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1669 };
1670 
1671 struct blk_integrity_iter {
1672 	void			*prot_buf;
1673 	void			*data_buf;
1674 	sector_t		seed;
1675 	unsigned int		data_size;
1676 	unsigned short		interval;
1677 	const char		*disk_name;
1678 };
1679 
1680 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1681 typedef void (integrity_prepare_fn) (struct request *);
1682 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1683 
1684 struct blk_integrity_profile {
1685 	integrity_processing_fn		*generate_fn;
1686 	integrity_processing_fn		*verify_fn;
1687 	integrity_prepare_fn		*prepare_fn;
1688 	integrity_complete_fn		*complete_fn;
1689 	const char			*name;
1690 };
1691 
1692 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1693 extern void blk_integrity_unregister(struct gendisk *);
1694 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1695 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1696 				   struct scatterlist *);
1697 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1698 
1699 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1700 {
1701 	struct blk_integrity *bi = &disk->queue->integrity;
1702 
1703 	if (!bi->profile)
1704 		return NULL;
1705 
1706 	return bi;
1707 }
1708 
1709 static inline
1710 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1711 {
1712 	return blk_get_integrity(bdev->bd_disk);
1713 }
1714 
1715 static inline bool
1716 blk_integrity_queue_supports_integrity(struct request_queue *q)
1717 {
1718 	return q->integrity.profile;
1719 }
1720 
1721 static inline bool blk_integrity_rq(struct request *rq)
1722 {
1723 	return rq->cmd_flags & REQ_INTEGRITY;
1724 }
1725 
1726 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1727 						    unsigned int segs)
1728 {
1729 	q->limits.max_integrity_segments = segs;
1730 }
1731 
1732 static inline unsigned short
1733 queue_max_integrity_segments(const struct request_queue *q)
1734 {
1735 	return q->limits.max_integrity_segments;
1736 }
1737 
1738 /**
1739  * bio_integrity_intervals - Return number of integrity intervals for a bio
1740  * @bi:		blk_integrity profile for device
1741  * @sectors:	Size of the bio in 512-byte sectors
1742  *
1743  * Description: The block layer calculates everything in 512 byte
1744  * sectors but integrity metadata is done in terms of the data integrity
1745  * interval size of the storage device.  Convert the block layer sectors
1746  * to the appropriate number of integrity intervals.
1747  */
1748 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1749 						   unsigned int sectors)
1750 {
1751 	return sectors >> (bi->interval_exp - 9);
1752 }
1753 
1754 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1755 					       unsigned int sectors)
1756 {
1757 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1758 }
1759 
1760 /*
1761  * Return the first bvec that contains integrity data.  Only drivers that are
1762  * limited to a single integrity segment should use this helper.
1763  */
1764 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1765 {
1766 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1767 		return NULL;
1768 	return rq->bio->bi_integrity->bip_vec;
1769 }
1770 
1771 #else /* CONFIG_BLK_DEV_INTEGRITY */
1772 
1773 struct bio;
1774 struct block_device;
1775 struct gendisk;
1776 struct blk_integrity;
1777 
1778 static inline int blk_integrity_rq(struct request *rq)
1779 {
1780 	return 0;
1781 }
1782 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1783 					    struct bio *b)
1784 {
1785 	return 0;
1786 }
1787 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1788 					  struct bio *b,
1789 					  struct scatterlist *s)
1790 {
1791 	return 0;
1792 }
1793 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1794 {
1795 	return NULL;
1796 }
1797 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1798 {
1799 	return NULL;
1800 }
1801 static inline bool
1802 blk_integrity_queue_supports_integrity(struct request_queue *q)
1803 {
1804 	return false;
1805 }
1806 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1807 {
1808 	return 0;
1809 }
1810 static inline void blk_integrity_register(struct gendisk *d,
1811 					 struct blk_integrity *b)
1812 {
1813 }
1814 static inline void blk_integrity_unregister(struct gendisk *d)
1815 {
1816 }
1817 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1818 						    unsigned int segs)
1819 {
1820 }
1821 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1822 {
1823 	return 0;
1824 }
1825 
1826 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1827 						   unsigned int sectors)
1828 {
1829 	return 0;
1830 }
1831 
1832 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1833 					       unsigned int sectors)
1834 {
1835 	return 0;
1836 }
1837 
1838 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1839 {
1840 	return NULL;
1841 }
1842 
1843 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1844 
1845 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1846 
1847 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1848 
1849 void blk_ksm_unregister(struct request_queue *q);
1850 
1851 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1852 
1853 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1854 				    struct request_queue *q)
1855 {
1856 	return true;
1857 }
1858 
1859 static inline void blk_ksm_unregister(struct request_queue *q) { }
1860 
1861 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1862 
1863 
1864 struct block_device_operations {
1865 	blk_qc_t (*submit_bio) (struct bio *bio);
1866 	int (*open) (struct block_device *, fmode_t);
1867 	void (*release) (struct gendisk *, fmode_t);
1868 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1869 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1870 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1871 	unsigned int (*check_events) (struct gendisk *disk,
1872 				      unsigned int clearing);
1873 	void (*unlock_native_capacity) (struct gendisk *);
1874 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1875 	int (*set_read_only)(struct block_device *bdev, bool ro);
1876 	/* this callback is with swap_lock and sometimes page table lock held */
1877 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1878 	int (*report_zones)(struct gendisk *, sector_t sector,
1879 			unsigned int nr_zones, report_zones_cb cb, void *data);
1880 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1881 	struct module *owner;
1882 	const struct pr_ops *pr_ops;
1883 };
1884 
1885 #ifdef CONFIG_COMPAT
1886 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1887 				      unsigned int, unsigned long);
1888 #else
1889 #define blkdev_compat_ptr_ioctl NULL
1890 #endif
1891 
1892 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1893 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1894 						struct writeback_control *);
1895 
1896 #ifdef CONFIG_BLK_DEV_ZONED
1897 bool blk_req_needs_zone_write_lock(struct request *rq);
1898 bool blk_req_zone_write_trylock(struct request *rq);
1899 void __blk_req_zone_write_lock(struct request *rq);
1900 void __blk_req_zone_write_unlock(struct request *rq);
1901 
1902 static inline void blk_req_zone_write_lock(struct request *rq)
1903 {
1904 	if (blk_req_needs_zone_write_lock(rq))
1905 		__blk_req_zone_write_lock(rq);
1906 }
1907 
1908 static inline void blk_req_zone_write_unlock(struct request *rq)
1909 {
1910 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1911 		__blk_req_zone_write_unlock(rq);
1912 }
1913 
1914 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1915 {
1916 	return rq->q->seq_zones_wlock &&
1917 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1918 }
1919 
1920 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1921 {
1922 	if (!blk_req_needs_zone_write_lock(rq))
1923 		return true;
1924 	return !blk_req_zone_is_write_locked(rq);
1925 }
1926 #else
1927 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1928 {
1929 	return false;
1930 }
1931 
1932 static inline void blk_req_zone_write_lock(struct request *rq)
1933 {
1934 }
1935 
1936 static inline void blk_req_zone_write_unlock(struct request *rq)
1937 {
1938 }
1939 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1940 {
1941 	return false;
1942 }
1943 
1944 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1945 {
1946 	return true;
1947 }
1948 #endif /* CONFIG_BLK_DEV_ZONED */
1949 
1950 static inline void blk_wake_io_task(struct task_struct *waiter)
1951 {
1952 	/*
1953 	 * If we're polling, the task itself is doing the completions. For
1954 	 * that case, we don't need to signal a wakeup, it's enough to just
1955 	 * mark us as RUNNING.
1956 	 */
1957 	if (waiter == current)
1958 		__set_current_state(TASK_RUNNING);
1959 	else
1960 		wake_up_process(waiter);
1961 }
1962 
1963 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1964 		unsigned int op);
1965 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1966 		unsigned long start_time);
1967 
1968 unsigned long bio_start_io_acct(struct bio *bio);
1969 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1970 		struct block_device *orig_bdev);
1971 
1972 /**
1973  * bio_end_io_acct - end I/O accounting for bio based drivers
1974  * @bio:	bio to end account for
1975  * @start:	start time returned by bio_start_io_acct()
1976  */
1977 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1978 {
1979 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1980 }
1981 
1982 int bdev_read_only(struct block_device *bdev);
1983 int set_blocksize(struct block_device *bdev, int size);
1984 
1985 const char *bdevname(struct block_device *bdev, char *buffer);
1986 int lookup_bdev(const char *pathname, dev_t *dev);
1987 
1988 void blkdev_show(struct seq_file *seqf, off_t offset);
1989 
1990 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1991 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1992 #ifdef CONFIG_BLOCK
1993 #define BLKDEV_MAJOR_MAX	512
1994 #else
1995 #define BLKDEV_MAJOR_MAX	0
1996 #endif
1997 
1998 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1999 		void *holder);
2000 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2001 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
2002 void bd_abort_claiming(struct block_device *bdev, void *holder);
2003 void blkdev_put(struct block_device *bdev, fmode_t mode);
2004 
2005 /* just for blk-cgroup, don't use elsewhere */
2006 struct block_device *blkdev_get_no_open(dev_t dev);
2007 void blkdev_put_no_open(struct block_device *bdev);
2008 
2009 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
2010 void bdev_add(struct block_device *bdev, dev_t dev);
2011 struct block_device *I_BDEV(struct inode *inode);
2012 struct block_device *bdgrab(struct block_device *bdev);
2013 void bdput(struct block_device *);
2014 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2015 		loff_t lend);
2016 
2017 #ifdef CONFIG_BLOCK
2018 void invalidate_bdev(struct block_device *bdev);
2019 int sync_blockdev(struct block_device *bdev);
2020 #else
2021 static inline void invalidate_bdev(struct block_device *bdev)
2022 {
2023 }
2024 static inline int sync_blockdev(struct block_device *bdev)
2025 {
2026 	return 0;
2027 }
2028 #endif
2029 int fsync_bdev(struct block_device *bdev);
2030 
2031 int freeze_bdev(struct block_device *bdev);
2032 int thaw_bdev(struct block_device *bdev);
2033 
2034 #endif /* _LINUX_BLKDEV_H */
2035