xref: /linux-6.15/include/linux/blkdev.h (revision 9d64fc08)
1 #ifndef _LINUX_BLKDEV_H
2 #define _LINUX_BLKDEV_H
3 
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 
7 #ifdef CONFIG_BLOCK
8 
9 #include <linux/major.h>
10 #include <linux/genhd.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/timer.h>
14 #include <linux/workqueue.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev-defs.h>
17 #include <linux/wait.h>
18 #include <linux/mempool.h>
19 #include <linux/pfn.h>
20 #include <linux/bio.h>
21 #include <linux/stringify.h>
22 #include <linux/gfp.h>
23 #include <linux/bsg.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate.h>
26 #include <linux/percpu-refcount.h>
27 #include <linux/scatterlist.h>
28 #include <linux/blkzoned.h>
29 
30 struct module;
31 struct scsi_ioctl_command;
32 
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_wb;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 
46 #define BLKDEV_MIN_RQ	4
47 #define BLKDEV_MAX_RQ	128	/* Default maximum */
48 
49 /* Must be consisitent with blk_mq_poll_stats_bkt() */
50 #define BLK_MQ_POLL_STATS_BKTS 16
51 
52 /*
53  * Maximum number of blkcg policies allowed to be registered concurrently.
54  * Defined here to simplify include dependency.
55  */
56 #define BLKCG_MAX_POLS		3
57 
58 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
59 
60 #define BLK_RL_SYNCFULL		(1U << 0)
61 #define BLK_RL_ASYNCFULL	(1U << 1)
62 
63 struct request_list {
64 	struct request_queue	*q;	/* the queue this rl belongs to */
65 #ifdef CONFIG_BLK_CGROUP
66 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
67 #endif
68 	/*
69 	 * count[], starved[], and wait[] are indexed by
70 	 * BLK_RW_SYNC/BLK_RW_ASYNC
71 	 */
72 	int			count[2];
73 	int			starved[2];
74 	mempool_t		*rq_pool;
75 	wait_queue_head_t	wait[2];
76 	unsigned int		flags;
77 };
78 
79 /*
80  * request flags */
81 typedef __u32 __bitwise req_flags_t;
82 
83 /* elevator knows about this request */
84 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
85 /* drive already may have started this one */
86 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
87 /* uses tagged queueing */
88 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
89 /* may not be passed by ioscheduler */
90 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
91 /* request for flush sequence */
92 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
93 /* merge of different types, fail separately */
94 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
95 /* track inflight for MQ */
96 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
97 /* don't call prep for this one */
98 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
99 /* set for "ide_preempt" requests and also for requests for which the SCSI
100    "quiesce" state must be ignored. */
101 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
102 /* contains copies of user pages */
103 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
104 /* vaguely specified driver internal error.  Ignored by the block layer */
105 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
106 /* don't warn about errors */
107 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
108 /* elevator private data attached */
109 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
110 /* account I/O stat */
111 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
112 /* request came from our alloc pool */
113 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
114 /* runtime pm request */
115 #define RQF_PM			((__force req_flags_t)(1 << 15))
116 /* on IO scheduler merge hash */
117 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
118 /* IO stats tracking on */
119 #define RQF_STATS		((__force req_flags_t)(1 << 17))
120 /* Look at ->special_vec for the actual data payload instead of the
121    bio chain. */
122 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
123 
124 /* flags that prevent us from merging requests: */
125 #define RQF_NOMERGE_FLAGS \
126 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
127 
128 /*
129  * Try to put the fields that are referenced together in the same cacheline.
130  *
131  * If you modify this structure, make sure to update blk_rq_init() and
132  * especially blk_mq_rq_ctx_init() to take care of the added fields.
133  */
134 struct request {
135 	struct list_head queuelist;
136 	union {
137 		call_single_data_t csd;
138 		u64 fifo_time;
139 	};
140 
141 	struct request_queue *q;
142 	struct blk_mq_ctx *mq_ctx;
143 
144 	int cpu;
145 	unsigned int cmd_flags;		/* op and common flags */
146 	req_flags_t rq_flags;
147 
148 	int internal_tag;
149 
150 	unsigned long atomic_flags;
151 
152 	/* the following two fields are internal, NEVER access directly */
153 	unsigned int __data_len;	/* total data len */
154 	int tag;
155 	sector_t __sector;		/* sector cursor */
156 
157 	struct bio *bio;
158 	struct bio *biotail;
159 
160 	/*
161 	 * The hash is used inside the scheduler, and killed once the
162 	 * request reaches the dispatch list. The ipi_list is only used
163 	 * to queue the request for softirq completion, which is long
164 	 * after the request has been unhashed (and even removed from
165 	 * the dispatch list).
166 	 */
167 	union {
168 		struct hlist_node hash;	/* merge hash */
169 		struct list_head ipi_list;
170 	};
171 
172 	/*
173 	 * The rb_node is only used inside the io scheduler, requests
174 	 * are pruned when moved to the dispatch queue. So let the
175 	 * completion_data share space with the rb_node.
176 	 */
177 	union {
178 		struct rb_node rb_node;	/* sort/lookup */
179 		struct bio_vec special_vec;
180 		void *completion_data;
181 		int error_count; /* for legacy drivers, don't use */
182 	};
183 
184 	/*
185 	 * Three pointers are available for the IO schedulers, if they need
186 	 * more they have to dynamically allocate it.  Flush requests are
187 	 * never put on the IO scheduler. So let the flush fields share
188 	 * space with the elevator data.
189 	 */
190 	union {
191 		struct {
192 			struct io_cq		*icq;
193 			void			*priv[2];
194 		} elv;
195 
196 		struct {
197 			unsigned int		seq;
198 			struct list_head	list;
199 			rq_end_io_fn		*saved_end_io;
200 		} flush;
201 	};
202 
203 	struct gendisk *rq_disk;
204 	struct hd_struct *part;
205 	unsigned long start_time;
206 	struct blk_issue_stat issue_stat;
207 #ifdef CONFIG_BLK_CGROUP
208 	struct request_list *rl;		/* rl this rq is alloced from */
209 	unsigned long long start_time_ns;
210 	unsigned long long io_start_time_ns;    /* when passed to hardware */
211 #endif
212 	/* Number of scatter-gather DMA addr+len pairs after
213 	 * physical address coalescing is performed.
214 	 */
215 	unsigned short nr_phys_segments;
216 #if defined(CONFIG_BLK_DEV_INTEGRITY)
217 	unsigned short nr_integrity_segments;
218 #endif
219 
220 	unsigned short ioprio;
221 
222 	unsigned int timeout;
223 
224 	void *special;		/* opaque pointer available for LLD use */
225 
226 	unsigned int extra_len;	/* length of alignment and padding */
227 
228 	unsigned short write_hint;
229 
230 	unsigned long deadline;
231 	struct list_head timeout_list;
232 
233 	/*
234 	 * completion callback.
235 	 */
236 	rq_end_io_fn *end_io;
237 	void *end_io_data;
238 
239 	/* for bidi */
240 	struct request *next_rq;
241 };
242 
243 static inline bool blk_rq_is_scsi(struct request *rq)
244 {
245 	return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT;
246 }
247 
248 static inline bool blk_rq_is_private(struct request *rq)
249 {
250 	return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT;
251 }
252 
253 static inline bool blk_rq_is_passthrough(struct request *rq)
254 {
255 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
256 }
257 
258 static inline unsigned short req_get_ioprio(struct request *req)
259 {
260 	return req->ioprio;
261 }
262 
263 #include <linux/elevator.h>
264 
265 struct blk_queue_ctx;
266 
267 typedef void (request_fn_proc) (struct request_queue *q);
268 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
269 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
270 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
271 
272 struct bio_vec;
273 typedef void (softirq_done_fn)(struct request *);
274 typedef int (dma_drain_needed_fn)(struct request *);
275 typedef int (lld_busy_fn) (struct request_queue *q);
276 typedef int (bsg_job_fn) (struct bsg_job *);
277 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
278 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
279 
280 enum blk_eh_timer_return {
281 	BLK_EH_NOT_HANDLED,
282 	BLK_EH_HANDLED,
283 	BLK_EH_RESET_TIMER,
284 };
285 
286 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
287 
288 enum blk_queue_state {
289 	Queue_down,
290 	Queue_up,
291 };
292 
293 struct blk_queue_tag {
294 	struct request **tag_index;	/* map of busy tags */
295 	unsigned long *tag_map;		/* bit map of free/busy tags */
296 	int max_depth;			/* what we will send to device */
297 	int real_max_depth;		/* what the array can hold */
298 	atomic_t refcnt;		/* map can be shared */
299 	int alloc_policy;		/* tag allocation policy */
300 	int next_tag;			/* next tag */
301 };
302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
304 
305 #define BLK_SCSI_MAX_CMDS	(256)
306 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
307 
308 /*
309  * Zoned block device models (zoned limit).
310  */
311 enum blk_zoned_model {
312 	BLK_ZONED_NONE,	/* Regular block device */
313 	BLK_ZONED_HA,	/* Host-aware zoned block device */
314 	BLK_ZONED_HM,	/* Host-managed zoned block device */
315 };
316 
317 struct queue_limits {
318 	unsigned long		bounce_pfn;
319 	unsigned long		seg_boundary_mask;
320 	unsigned long		virt_boundary_mask;
321 
322 	unsigned int		max_hw_sectors;
323 	unsigned int		max_dev_sectors;
324 	unsigned int		chunk_sectors;
325 	unsigned int		max_sectors;
326 	unsigned int		max_segment_size;
327 	unsigned int		physical_block_size;
328 	unsigned int		alignment_offset;
329 	unsigned int		io_min;
330 	unsigned int		io_opt;
331 	unsigned int		max_discard_sectors;
332 	unsigned int		max_hw_discard_sectors;
333 	unsigned int		max_write_same_sectors;
334 	unsigned int		max_write_zeroes_sectors;
335 	unsigned int		discard_granularity;
336 	unsigned int		discard_alignment;
337 
338 	unsigned short		logical_block_size;
339 	unsigned short		max_segments;
340 	unsigned short		max_integrity_segments;
341 	unsigned short		max_discard_segments;
342 
343 	unsigned char		misaligned;
344 	unsigned char		discard_misaligned;
345 	unsigned char		cluster;
346 	unsigned char		raid_partial_stripes_expensive;
347 	enum blk_zoned_model	zoned;
348 };
349 
350 #ifdef CONFIG_BLK_DEV_ZONED
351 
352 struct blk_zone_report_hdr {
353 	unsigned int	nr_zones;
354 	u8		padding[60];
355 };
356 
357 extern int blkdev_report_zones(struct block_device *bdev,
358 			       sector_t sector, struct blk_zone *zones,
359 			       unsigned int *nr_zones, gfp_t gfp_mask);
360 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
361 			      sector_t nr_sectors, gfp_t gfp_mask);
362 
363 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
364 				     unsigned int cmd, unsigned long arg);
365 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
366 				    unsigned int cmd, unsigned long arg);
367 
368 #else /* CONFIG_BLK_DEV_ZONED */
369 
370 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
371 					    fmode_t mode, unsigned int cmd,
372 					    unsigned long arg)
373 {
374 	return -ENOTTY;
375 }
376 
377 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
378 					   fmode_t mode, unsigned int cmd,
379 					   unsigned long arg)
380 {
381 	return -ENOTTY;
382 }
383 
384 #endif /* CONFIG_BLK_DEV_ZONED */
385 
386 struct request_queue {
387 	/*
388 	 * Together with queue_head for cacheline sharing
389 	 */
390 	struct list_head	queue_head;
391 	struct request		*last_merge;
392 	struct elevator_queue	*elevator;
393 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
394 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
395 
396 	atomic_t		shared_hctx_restart;
397 
398 	struct blk_queue_stats	*stats;
399 	struct rq_wb		*rq_wb;
400 
401 	/*
402 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
403 	 * is used, root blkg allocates from @q->root_rl and all other
404 	 * blkgs from their own blkg->rl.  Which one to use should be
405 	 * determined using bio_request_list().
406 	 */
407 	struct request_list	root_rl;
408 
409 	request_fn_proc		*request_fn;
410 	make_request_fn		*make_request_fn;
411 	prep_rq_fn		*prep_rq_fn;
412 	unprep_rq_fn		*unprep_rq_fn;
413 	softirq_done_fn		*softirq_done_fn;
414 	rq_timed_out_fn		*rq_timed_out_fn;
415 	dma_drain_needed_fn	*dma_drain_needed;
416 	lld_busy_fn		*lld_busy_fn;
417 	/* Called just after a request is allocated */
418 	init_rq_fn		*init_rq_fn;
419 	/* Called just before a request is freed */
420 	exit_rq_fn		*exit_rq_fn;
421 	/* Called from inside blk_get_request() */
422 	void (*initialize_rq_fn)(struct request *rq);
423 
424 	const struct blk_mq_ops	*mq_ops;
425 
426 	unsigned int		*mq_map;
427 
428 	/* sw queues */
429 	struct blk_mq_ctx __percpu	*queue_ctx;
430 	unsigned int		nr_queues;
431 
432 	unsigned int		queue_depth;
433 
434 	/* hw dispatch queues */
435 	struct blk_mq_hw_ctx	**queue_hw_ctx;
436 	unsigned int		nr_hw_queues;
437 
438 	/*
439 	 * Dispatch queue sorting
440 	 */
441 	sector_t		end_sector;
442 	struct request		*boundary_rq;
443 
444 	/*
445 	 * Delayed queue handling
446 	 */
447 	struct delayed_work	delay_work;
448 
449 	struct backing_dev_info	*backing_dev_info;
450 
451 	/*
452 	 * The queue owner gets to use this for whatever they like.
453 	 * ll_rw_blk doesn't touch it.
454 	 */
455 	void			*queuedata;
456 
457 	/*
458 	 * various queue flags, see QUEUE_* below
459 	 */
460 	unsigned long		queue_flags;
461 
462 	/*
463 	 * ida allocated id for this queue.  Used to index queues from
464 	 * ioctx.
465 	 */
466 	int			id;
467 
468 	/*
469 	 * queue needs bounce pages for pages above this limit
470 	 */
471 	gfp_t			bounce_gfp;
472 
473 	/*
474 	 * protects queue structures from reentrancy. ->__queue_lock should
475 	 * _never_ be used directly, it is queue private. always use
476 	 * ->queue_lock.
477 	 */
478 	spinlock_t		__queue_lock;
479 	spinlock_t		*queue_lock;
480 
481 	/*
482 	 * queue kobject
483 	 */
484 	struct kobject kobj;
485 
486 	/*
487 	 * mq queue kobject
488 	 */
489 	struct kobject mq_kobj;
490 
491 #ifdef  CONFIG_BLK_DEV_INTEGRITY
492 	struct blk_integrity integrity;
493 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
494 
495 #ifdef CONFIG_PM
496 	struct device		*dev;
497 	int			rpm_status;
498 	unsigned int		nr_pending;
499 #endif
500 
501 	/*
502 	 * queue settings
503 	 */
504 	unsigned long		nr_requests;	/* Max # of requests */
505 	unsigned int		nr_congestion_on;
506 	unsigned int		nr_congestion_off;
507 	unsigned int		nr_batching;
508 
509 	unsigned int		dma_drain_size;
510 	void			*dma_drain_buffer;
511 	unsigned int		dma_pad_mask;
512 	unsigned int		dma_alignment;
513 
514 	struct blk_queue_tag	*queue_tags;
515 	struct list_head	tag_busy_list;
516 
517 	unsigned int		nr_sorted;
518 	unsigned int		in_flight[2];
519 
520 	/*
521 	 * Number of active block driver functions for which blk_drain_queue()
522 	 * must wait. Must be incremented around functions that unlock the
523 	 * queue_lock internally, e.g. scsi_request_fn().
524 	 */
525 	unsigned int		request_fn_active;
526 
527 	unsigned int		rq_timeout;
528 	int			poll_nsec;
529 
530 	struct blk_stat_callback	*poll_cb;
531 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
532 
533 	struct timer_list	timeout;
534 	struct work_struct	timeout_work;
535 	struct list_head	timeout_list;
536 
537 	struct list_head	icq_list;
538 #ifdef CONFIG_BLK_CGROUP
539 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
540 	struct blkcg_gq		*root_blkg;
541 	struct list_head	blkg_list;
542 #endif
543 
544 	struct queue_limits	limits;
545 
546 	/*
547 	 * sg stuff
548 	 */
549 	unsigned int		sg_timeout;
550 	unsigned int		sg_reserved_size;
551 	int			node;
552 #ifdef CONFIG_BLK_DEV_IO_TRACE
553 	struct blk_trace	*blk_trace;
554 	struct mutex		blk_trace_mutex;
555 #endif
556 	/*
557 	 * for flush operations
558 	 */
559 	struct blk_flush_queue	*fq;
560 
561 	struct list_head	requeue_list;
562 	spinlock_t		requeue_lock;
563 	struct delayed_work	requeue_work;
564 
565 	struct mutex		sysfs_lock;
566 
567 	int			bypass_depth;
568 	atomic_t		mq_freeze_depth;
569 
570 #if defined(CONFIG_BLK_DEV_BSG)
571 	bsg_job_fn		*bsg_job_fn;
572 	struct bsg_class_device bsg_dev;
573 #endif
574 
575 #ifdef CONFIG_BLK_DEV_THROTTLING
576 	/* Throttle data */
577 	struct throtl_data *td;
578 #endif
579 	struct rcu_head		rcu_head;
580 	wait_queue_head_t	mq_freeze_wq;
581 	struct percpu_ref	q_usage_counter;
582 	struct list_head	all_q_node;
583 
584 	struct blk_mq_tag_set	*tag_set;
585 	struct list_head	tag_set_list;
586 	struct bio_set		*bio_split;
587 
588 #ifdef CONFIG_BLK_DEBUG_FS
589 	struct dentry		*debugfs_dir;
590 	struct dentry		*sched_debugfs_dir;
591 #endif
592 
593 	bool			mq_sysfs_init_done;
594 
595 	size_t			cmd_size;
596 	void			*rq_alloc_data;
597 
598 	struct work_struct	release_work;
599 
600 #define BLK_MAX_WRITE_HINTS	5
601 	u64			write_hints[BLK_MAX_WRITE_HINTS];
602 };
603 
604 #define QUEUE_FLAG_QUEUED	0	/* uses generic tag queueing */
605 #define QUEUE_FLAG_STOPPED	1	/* queue is stopped */
606 #define QUEUE_FLAG_DYING	2	/* queue being torn down */
607 #define QUEUE_FLAG_BYPASS	3	/* act as dumb FIFO queue */
608 #define QUEUE_FLAG_BIDI		4	/* queue supports bidi requests */
609 #define QUEUE_FLAG_NOMERGES     5	/* disable merge attempts */
610 #define QUEUE_FLAG_SAME_COMP	6	/* complete on same CPU-group */
611 #define QUEUE_FLAG_FAIL_IO	7	/* fake timeout */
612 #define QUEUE_FLAG_STACKABLE	8	/* supports request stacking */
613 #define QUEUE_FLAG_NONROT	9	/* non-rotational device (SSD) */
614 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
615 #define QUEUE_FLAG_IO_STAT     10	/* do IO stats */
616 #define QUEUE_FLAG_DISCARD     11	/* supports DISCARD */
617 #define QUEUE_FLAG_NOXMERGES   12	/* No extended merges */
618 #define QUEUE_FLAG_ADD_RANDOM  13	/* Contributes to random pool */
619 #define QUEUE_FLAG_SECERASE    14	/* supports secure erase */
620 #define QUEUE_FLAG_SAME_FORCE  15	/* force complete on same CPU */
621 #define QUEUE_FLAG_DEAD        16	/* queue tear-down finished */
622 #define QUEUE_FLAG_INIT_DONE   17	/* queue is initialized */
623 #define QUEUE_FLAG_NO_SG_MERGE 18	/* don't attempt to merge SG segments*/
624 #define QUEUE_FLAG_POLL	       19	/* IO polling enabled if set */
625 #define QUEUE_FLAG_WC	       20	/* Write back caching */
626 #define QUEUE_FLAG_FUA	       21	/* device supports FUA writes */
627 #define QUEUE_FLAG_FLUSH_NQ    22	/* flush not queueuable */
628 #define QUEUE_FLAG_DAX         23	/* device supports DAX */
629 #define QUEUE_FLAG_STATS       24	/* track rq completion times */
630 #define QUEUE_FLAG_POLL_STATS  25	/* collecting stats for hybrid polling */
631 #define QUEUE_FLAG_REGISTERED  26	/* queue has been registered to a disk */
632 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27	/* queue supports SCSI commands */
633 #define QUEUE_FLAG_QUIESCED    28	/* queue has been quiesced */
634 
635 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
636 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
637 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
638 				 (1 << QUEUE_FLAG_ADD_RANDOM))
639 
640 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
641 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
642 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
643 				 (1 << QUEUE_FLAG_POLL))
644 
645 /*
646  * @q->queue_lock is set while a queue is being initialized. Since we know
647  * that no other threads access the queue object before @q->queue_lock has
648  * been set, it is safe to manipulate queue flags without holding the
649  * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
650  * blk_init_allocated_queue().
651  */
652 static inline void queue_lockdep_assert_held(struct request_queue *q)
653 {
654 	if (q->queue_lock)
655 		lockdep_assert_held(q->queue_lock);
656 }
657 
658 static inline void queue_flag_set_unlocked(unsigned int flag,
659 					   struct request_queue *q)
660 {
661 	__set_bit(flag, &q->queue_flags);
662 }
663 
664 static inline int queue_flag_test_and_clear(unsigned int flag,
665 					    struct request_queue *q)
666 {
667 	queue_lockdep_assert_held(q);
668 
669 	if (test_bit(flag, &q->queue_flags)) {
670 		__clear_bit(flag, &q->queue_flags);
671 		return 1;
672 	}
673 
674 	return 0;
675 }
676 
677 static inline int queue_flag_test_and_set(unsigned int flag,
678 					  struct request_queue *q)
679 {
680 	queue_lockdep_assert_held(q);
681 
682 	if (!test_bit(flag, &q->queue_flags)) {
683 		__set_bit(flag, &q->queue_flags);
684 		return 0;
685 	}
686 
687 	return 1;
688 }
689 
690 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
691 {
692 	queue_lockdep_assert_held(q);
693 	__set_bit(flag, &q->queue_flags);
694 }
695 
696 static inline void queue_flag_clear_unlocked(unsigned int flag,
697 					     struct request_queue *q)
698 {
699 	__clear_bit(flag, &q->queue_flags);
700 }
701 
702 static inline int queue_in_flight(struct request_queue *q)
703 {
704 	return q->in_flight[0] + q->in_flight[1];
705 }
706 
707 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
708 {
709 	queue_lockdep_assert_held(q);
710 	__clear_bit(flag, &q->queue_flags);
711 }
712 
713 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
714 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
715 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
716 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
717 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
718 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
719 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
720 #define blk_queue_noxmerges(q)	\
721 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
722 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
723 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
724 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
725 #define blk_queue_stackable(q)	\
726 	test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
727 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
728 #define blk_queue_secure_erase(q) \
729 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
730 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
731 #define blk_queue_scsi_passthrough(q)	\
732 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
733 
734 #define blk_noretry_request(rq) \
735 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
736 			     REQ_FAILFAST_DRIVER))
737 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
738 
739 static inline bool blk_account_rq(struct request *rq)
740 {
741 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
742 }
743 
744 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
745 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
746 /* rq->queuelist of dequeued request must be list_empty() */
747 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
748 
749 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
750 
751 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
752 
753 /*
754  * Driver can handle struct request, if it either has an old style
755  * request_fn defined, or is blk-mq based.
756  */
757 static inline bool queue_is_rq_based(struct request_queue *q)
758 {
759 	return q->request_fn || q->mq_ops;
760 }
761 
762 static inline unsigned int blk_queue_cluster(struct request_queue *q)
763 {
764 	return q->limits.cluster;
765 }
766 
767 static inline enum blk_zoned_model
768 blk_queue_zoned_model(struct request_queue *q)
769 {
770 	return q->limits.zoned;
771 }
772 
773 static inline bool blk_queue_is_zoned(struct request_queue *q)
774 {
775 	switch (blk_queue_zoned_model(q)) {
776 	case BLK_ZONED_HA:
777 	case BLK_ZONED_HM:
778 		return true;
779 	default:
780 		return false;
781 	}
782 }
783 
784 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
785 {
786 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
787 }
788 
789 static inline bool rq_is_sync(struct request *rq)
790 {
791 	return op_is_sync(rq->cmd_flags);
792 }
793 
794 static inline bool blk_rl_full(struct request_list *rl, bool sync)
795 {
796 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
797 
798 	return rl->flags & flag;
799 }
800 
801 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
802 {
803 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
804 
805 	rl->flags |= flag;
806 }
807 
808 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
809 {
810 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
811 
812 	rl->flags &= ~flag;
813 }
814 
815 static inline bool rq_mergeable(struct request *rq)
816 {
817 	if (blk_rq_is_passthrough(rq))
818 		return false;
819 
820 	if (req_op(rq) == REQ_OP_FLUSH)
821 		return false;
822 
823 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
824 		return false;
825 
826 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
827 		return false;
828 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
829 		return false;
830 
831 	return true;
832 }
833 
834 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
835 {
836 	if (bio_page(a) == bio_page(b) &&
837 	    bio_offset(a) == bio_offset(b))
838 		return true;
839 
840 	return false;
841 }
842 
843 static inline unsigned int blk_queue_depth(struct request_queue *q)
844 {
845 	if (q->queue_depth)
846 		return q->queue_depth;
847 
848 	return q->nr_requests;
849 }
850 
851 /*
852  * q->prep_rq_fn return values
853  */
854 enum {
855 	BLKPREP_OK,		/* serve it */
856 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
857 	BLKPREP_DEFER,		/* leave on queue */
858 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
859 };
860 
861 extern unsigned long blk_max_low_pfn, blk_max_pfn;
862 
863 /*
864  * standard bounce addresses:
865  *
866  * BLK_BOUNCE_HIGH	: bounce all highmem pages
867  * BLK_BOUNCE_ANY	: don't bounce anything
868  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
869  */
870 
871 #if BITS_PER_LONG == 32
872 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
873 #else
874 #define BLK_BOUNCE_HIGH		-1ULL
875 #endif
876 #define BLK_BOUNCE_ANY		(-1ULL)
877 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
878 
879 /*
880  * default timeout for SG_IO if none specified
881  */
882 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
883 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
884 
885 struct rq_map_data {
886 	struct page **pages;
887 	int page_order;
888 	int nr_entries;
889 	unsigned long offset;
890 	int null_mapped;
891 	int from_user;
892 };
893 
894 struct req_iterator {
895 	struct bvec_iter iter;
896 	struct bio *bio;
897 };
898 
899 /* This should not be used directly - use rq_for_each_segment */
900 #define for_each_bio(_bio)		\
901 	for (; _bio; _bio = _bio->bi_next)
902 #define __rq_for_each_bio(_bio, rq)	\
903 	if ((rq->bio))			\
904 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
905 
906 #define rq_for_each_segment(bvl, _rq, _iter)			\
907 	__rq_for_each_bio(_iter.bio, _rq)			\
908 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
909 
910 #define rq_iter_last(bvec, _iter)				\
911 		(_iter.bio->bi_next == NULL &&			\
912 		 bio_iter_last(bvec, _iter.iter))
913 
914 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
915 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
916 #endif
917 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
918 extern void rq_flush_dcache_pages(struct request *rq);
919 #else
920 static inline void rq_flush_dcache_pages(struct request *rq)
921 {
922 }
923 #endif
924 
925 #ifdef CONFIG_PRINTK
926 #define vfs_msg(sb, level, fmt, ...)				\
927 	__vfs_msg(sb, level, fmt, ##__VA_ARGS__)
928 #else
929 #define vfs_msg(sb, level, fmt, ...)				\
930 do {								\
931 	no_printk(fmt, ##__VA_ARGS__);				\
932 	__vfs_msg(sb, "", " ");					\
933 } while (0)
934 #endif
935 
936 extern int blk_register_queue(struct gendisk *disk);
937 extern void blk_unregister_queue(struct gendisk *disk);
938 extern blk_qc_t generic_make_request(struct bio *bio);
939 extern void blk_rq_init(struct request_queue *q, struct request *rq);
940 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
941 extern void blk_put_request(struct request *);
942 extern void __blk_put_request(struct request_queue *, struct request *);
943 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
944 				       gfp_t gfp_mask);
945 extern void blk_requeue_request(struct request_queue *, struct request *);
946 extern int blk_lld_busy(struct request_queue *q);
947 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
948 			     struct bio_set *bs, gfp_t gfp_mask,
949 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
950 			     void *data);
951 extern void blk_rq_unprep_clone(struct request *rq);
952 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
953 				     struct request *rq);
954 extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
955 extern void blk_delay_queue(struct request_queue *, unsigned long);
956 extern void blk_queue_split(struct request_queue *, struct bio **);
957 extern void blk_recount_segments(struct request_queue *, struct bio *);
958 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
959 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
960 			      unsigned int, void __user *);
961 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
962 			  unsigned int, void __user *);
963 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
964 			 struct scsi_ioctl_command __user *);
965 
966 extern int blk_queue_enter(struct request_queue *q, bool nowait);
967 extern void blk_queue_exit(struct request_queue *q);
968 extern void blk_start_queue(struct request_queue *q);
969 extern void blk_start_queue_async(struct request_queue *q);
970 extern void blk_stop_queue(struct request_queue *q);
971 extern void blk_sync_queue(struct request_queue *q);
972 extern void __blk_stop_queue(struct request_queue *q);
973 extern void __blk_run_queue(struct request_queue *q);
974 extern void __blk_run_queue_uncond(struct request_queue *q);
975 extern void blk_run_queue(struct request_queue *);
976 extern void blk_run_queue_async(struct request_queue *q);
977 extern int blk_rq_map_user(struct request_queue *, struct request *,
978 			   struct rq_map_data *, void __user *, unsigned long,
979 			   gfp_t);
980 extern int blk_rq_unmap_user(struct bio *);
981 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
982 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
983 			       struct rq_map_data *, const struct iov_iter *,
984 			       gfp_t);
985 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
986 			  struct request *, int);
987 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
988 				  struct request *, int, rq_end_io_fn *);
989 
990 int blk_status_to_errno(blk_status_t status);
991 blk_status_t errno_to_blk_status(int errno);
992 
993 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
994 
995 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
996 {
997 	return bdev->bd_disk->queue;	/* this is never NULL */
998 }
999 
1000 /*
1001  * blk_rq_pos()			: the current sector
1002  * blk_rq_bytes()		: bytes left in the entire request
1003  * blk_rq_cur_bytes()		: bytes left in the current segment
1004  * blk_rq_err_bytes()		: bytes left till the next error boundary
1005  * blk_rq_sectors()		: sectors left in the entire request
1006  * blk_rq_cur_sectors()		: sectors left in the current segment
1007  */
1008 static inline sector_t blk_rq_pos(const struct request *rq)
1009 {
1010 	return rq->__sector;
1011 }
1012 
1013 static inline unsigned int blk_rq_bytes(const struct request *rq)
1014 {
1015 	return rq->__data_len;
1016 }
1017 
1018 static inline int blk_rq_cur_bytes(const struct request *rq)
1019 {
1020 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1021 }
1022 
1023 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1024 
1025 static inline unsigned int blk_rq_sectors(const struct request *rq)
1026 {
1027 	return blk_rq_bytes(rq) >> 9;
1028 }
1029 
1030 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1031 {
1032 	return blk_rq_cur_bytes(rq) >> 9;
1033 }
1034 
1035 /*
1036  * Some commands like WRITE SAME have a payload or data transfer size which
1037  * is different from the size of the request.  Any driver that supports such
1038  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1039  * calculate the data transfer size.
1040  */
1041 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1042 {
1043 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1044 		return rq->special_vec.bv_len;
1045 	return blk_rq_bytes(rq);
1046 }
1047 
1048 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1049 						     int op)
1050 {
1051 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1052 		return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1053 
1054 	if (unlikely(op == REQ_OP_WRITE_SAME))
1055 		return q->limits.max_write_same_sectors;
1056 
1057 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1058 		return q->limits.max_write_zeroes_sectors;
1059 
1060 	return q->limits.max_sectors;
1061 }
1062 
1063 /*
1064  * Return maximum size of a request at given offset. Only valid for
1065  * file system requests.
1066  */
1067 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1068 					       sector_t offset)
1069 {
1070 	if (!q->limits.chunk_sectors)
1071 		return q->limits.max_sectors;
1072 
1073 	return q->limits.chunk_sectors -
1074 			(offset & (q->limits.chunk_sectors - 1));
1075 }
1076 
1077 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1078 						  sector_t offset)
1079 {
1080 	struct request_queue *q = rq->q;
1081 
1082 	if (blk_rq_is_passthrough(rq))
1083 		return q->limits.max_hw_sectors;
1084 
1085 	if (!q->limits.chunk_sectors ||
1086 	    req_op(rq) == REQ_OP_DISCARD ||
1087 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1088 		return blk_queue_get_max_sectors(q, req_op(rq));
1089 
1090 	return min(blk_max_size_offset(q, offset),
1091 			blk_queue_get_max_sectors(q, req_op(rq)));
1092 }
1093 
1094 static inline unsigned int blk_rq_count_bios(struct request *rq)
1095 {
1096 	unsigned int nr_bios = 0;
1097 	struct bio *bio;
1098 
1099 	__rq_for_each_bio(bio, rq)
1100 		nr_bios++;
1101 
1102 	return nr_bios;
1103 }
1104 
1105 /*
1106  * Request issue related functions.
1107  */
1108 extern struct request *blk_peek_request(struct request_queue *q);
1109 extern void blk_start_request(struct request *rq);
1110 extern struct request *blk_fetch_request(struct request_queue *q);
1111 
1112 /*
1113  * Request completion related functions.
1114  *
1115  * blk_update_request() completes given number of bytes and updates
1116  * the request without completing it.
1117  *
1118  * blk_end_request() and friends.  __blk_end_request() must be called
1119  * with the request queue spinlock acquired.
1120  *
1121  * Several drivers define their own end_request and call
1122  * blk_end_request() for parts of the original function.
1123  * This prevents code duplication in drivers.
1124  */
1125 extern bool blk_update_request(struct request *rq, blk_status_t error,
1126 			       unsigned int nr_bytes);
1127 extern void blk_finish_request(struct request *rq, blk_status_t error);
1128 extern bool blk_end_request(struct request *rq, blk_status_t error,
1129 			    unsigned int nr_bytes);
1130 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1131 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1132 			      unsigned int nr_bytes);
1133 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1134 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1135 
1136 extern void blk_complete_request(struct request *);
1137 extern void __blk_complete_request(struct request *);
1138 extern void blk_abort_request(struct request *);
1139 extern void blk_unprep_request(struct request *);
1140 
1141 /*
1142  * Access functions for manipulating queue properties
1143  */
1144 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1145 					spinlock_t *lock, int node_id);
1146 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1147 extern int blk_init_allocated_queue(struct request_queue *);
1148 extern void blk_cleanup_queue(struct request_queue *);
1149 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1150 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1151 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1152 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1153 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1154 extern void blk_queue_max_discard_segments(struct request_queue *,
1155 		unsigned short);
1156 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1157 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1158 		unsigned int max_discard_sectors);
1159 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1160 		unsigned int max_write_same_sectors);
1161 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1162 		unsigned int max_write_same_sectors);
1163 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1164 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1165 extern void blk_queue_alignment_offset(struct request_queue *q,
1166 				       unsigned int alignment);
1167 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1168 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1169 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1170 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1171 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1172 extern void blk_set_default_limits(struct queue_limits *lim);
1173 extern void blk_set_stacking_limits(struct queue_limits *lim);
1174 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1175 			    sector_t offset);
1176 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1177 			    sector_t offset);
1178 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1179 			      sector_t offset);
1180 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1181 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1182 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1183 extern int blk_queue_dma_drain(struct request_queue *q,
1184 			       dma_drain_needed_fn *dma_drain_needed,
1185 			       void *buf, unsigned int size);
1186 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1187 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1188 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1189 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1190 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1191 extern void blk_queue_dma_alignment(struct request_queue *, int);
1192 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1193 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1194 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1195 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1196 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1197 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1198 
1199 /*
1200  * Number of physical segments as sent to the device.
1201  *
1202  * Normally this is the number of discontiguous data segments sent by the
1203  * submitter.  But for data-less command like discard we might have no
1204  * actual data segments submitted, but the driver might have to add it's
1205  * own special payload.  In that case we still return 1 here so that this
1206  * special payload will be mapped.
1207  */
1208 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1209 {
1210 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1211 		return 1;
1212 	return rq->nr_phys_segments;
1213 }
1214 
1215 /*
1216  * Number of discard segments (or ranges) the driver needs to fill in.
1217  * Each discard bio merged into a request is counted as one segment.
1218  */
1219 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1220 {
1221 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1222 }
1223 
1224 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1225 extern void blk_dump_rq_flags(struct request *, char *);
1226 extern long nr_blockdev_pages(void);
1227 
1228 bool __must_check blk_get_queue(struct request_queue *);
1229 struct request_queue *blk_alloc_queue(gfp_t);
1230 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1231 extern void blk_put_queue(struct request_queue *);
1232 extern void blk_set_queue_dying(struct request_queue *);
1233 
1234 /*
1235  * block layer runtime pm functions
1236  */
1237 #ifdef CONFIG_PM
1238 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1239 extern int blk_pre_runtime_suspend(struct request_queue *q);
1240 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1241 extern void blk_pre_runtime_resume(struct request_queue *q);
1242 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1243 extern void blk_set_runtime_active(struct request_queue *q);
1244 #else
1245 static inline void blk_pm_runtime_init(struct request_queue *q,
1246 	struct device *dev) {}
1247 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1248 {
1249 	return -ENOSYS;
1250 }
1251 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1252 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1253 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1254 static inline void blk_set_runtime_active(struct request_queue *q) {}
1255 #endif
1256 
1257 /*
1258  * blk_plug permits building a queue of related requests by holding the I/O
1259  * fragments for a short period. This allows merging of sequential requests
1260  * into single larger request. As the requests are moved from a per-task list to
1261  * the device's request_queue in a batch, this results in improved scalability
1262  * as the lock contention for request_queue lock is reduced.
1263  *
1264  * It is ok not to disable preemption when adding the request to the plug list
1265  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1266  * the plug list when the task sleeps by itself. For details, please see
1267  * schedule() where blk_schedule_flush_plug() is called.
1268  */
1269 struct blk_plug {
1270 	struct list_head list; /* requests */
1271 	struct list_head mq_list; /* blk-mq requests */
1272 	struct list_head cb_list; /* md requires an unplug callback */
1273 };
1274 #define BLK_MAX_REQUEST_COUNT 16
1275 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1276 
1277 struct blk_plug_cb;
1278 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1279 struct blk_plug_cb {
1280 	struct list_head list;
1281 	blk_plug_cb_fn callback;
1282 	void *data;
1283 };
1284 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1285 					     void *data, int size);
1286 extern void blk_start_plug(struct blk_plug *);
1287 extern void blk_finish_plug(struct blk_plug *);
1288 extern void blk_flush_plug_list(struct blk_plug *, bool);
1289 
1290 static inline void blk_flush_plug(struct task_struct *tsk)
1291 {
1292 	struct blk_plug *plug = tsk->plug;
1293 
1294 	if (plug)
1295 		blk_flush_plug_list(plug, false);
1296 }
1297 
1298 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1299 {
1300 	struct blk_plug *plug = tsk->plug;
1301 
1302 	if (plug)
1303 		blk_flush_plug_list(plug, true);
1304 }
1305 
1306 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1307 {
1308 	struct blk_plug *plug = tsk->plug;
1309 
1310 	return plug &&
1311 		(!list_empty(&plug->list) ||
1312 		 !list_empty(&plug->mq_list) ||
1313 		 !list_empty(&plug->cb_list));
1314 }
1315 
1316 /*
1317  * tag stuff
1318  */
1319 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1320 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1321 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1322 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1323 extern void blk_queue_free_tags(struct request_queue *);
1324 extern int blk_queue_resize_tags(struct request_queue *, int);
1325 extern void blk_queue_invalidate_tags(struct request_queue *);
1326 extern struct blk_queue_tag *blk_init_tags(int, int);
1327 extern void blk_free_tags(struct blk_queue_tag *);
1328 
1329 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1330 						int tag)
1331 {
1332 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1333 		return NULL;
1334 	return bqt->tag_index[tag];
1335 }
1336 
1337 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1338 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1339 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1340 
1341 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1342 
1343 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1344 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1345 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1346 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1347 		struct bio **biop);
1348 
1349 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1350 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1351 
1352 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1353 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1354 		unsigned flags);
1355 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1356 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1357 
1358 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1359 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1360 {
1361 	return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1362 				    nr_blocks << (sb->s_blocksize_bits - 9),
1363 				    gfp_mask, flags);
1364 }
1365 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1366 		sector_t nr_blocks, gfp_t gfp_mask)
1367 {
1368 	return blkdev_issue_zeroout(sb->s_bdev,
1369 				    block << (sb->s_blocksize_bits - 9),
1370 				    nr_blocks << (sb->s_blocksize_bits - 9),
1371 				    gfp_mask, 0);
1372 }
1373 
1374 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1375 
1376 enum blk_default_limits {
1377 	BLK_MAX_SEGMENTS	= 128,
1378 	BLK_SAFE_MAX_SECTORS	= 255,
1379 	BLK_DEF_MAX_SECTORS	= 2560,
1380 	BLK_MAX_SEGMENT_SIZE	= 65536,
1381 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1382 };
1383 
1384 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1385 
1386 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1387 {
1388 	return q->limits.seg_boundary_mask;
1389 }
1390 
1391 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1392 {
1393 	return q->limits.virt_boundary_mask;
1394 }
1395 
1396 static inline unsigned int queue_max_sectors(struct request_queue *q)
1397 {
1398 	return q->limits.max_sectors;
1399 }
1400 
1401 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1402 {
1403 	return q->limits.max_hw_sectors;
1404 }
1405 
1406 static inline unsigned short queue_max_segments(struct request_queue *q)
1407 {
1408 	return q->limits.max_segments;
1409 }
1410 
1411 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1412 {
1413 	return q->limits.max_discard_segments;
1414 }
1415 
1416 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1417 {
1418 	return q->limits.max_segment_size;
1419 }
1420 
1421 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1422 {
1423 	int retval = 512;
1424 
1425 	if (q && q->limits.logical_block_size)
1426 		retval = q->limits.logical_block_size;
1427 
1428 	return retval;
1429 }
1430 
1431 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1432 {
1433 	return queue_logical_block_size(bdev_get_queue(bdev));
1434 }
1435 
1436 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1437 {
1438 	return q->limits.physical_block_size;
1439 }
1440 
1441 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1442 {
1443 	return queue_physical_block_size(bdev_get_queue(bdev));
1444 }
1445 
1446 static inline unsigned int queue_io_min(struct request_queue *q)
1447 {
1448 	return q->limits.io_min;
1449 }
1450 
1451 static inline int bdev_io_min(struct block_device *bdev)
1452 {
1453 	return queue_io_min(bdev_get_queue(bdev));
1454 }
1455 
1456 static inline unsigned int queue_io_opt(struct request_queue *q)
1457 {
1458 	return q->limits.io_opt;
1459 }
1460 
1461 static inline int bdev_io_opt(struct block_device *bdev)
1462 {
1463 	return queue_io_opt(bdev_get_queue(bdev));
1464 }
1465 
1466 static inline int queue_alignment_offset(struct request_queue *q)
1467 {
1468 	if (q->limits.misaligned)
1469 		return -1;
1470 
1471 	return q->limits.alignment_offset;
1472 }
1473 
1474 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1475 {
1476 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1477 	unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1478 
1479 	return (granularity + lim->alignment_offset - alignment) % granularity;
1480 }
1481 
1482 static inline int bdev_alignment_offset(struct block_device *bdev)
1483 {
1484 	struct request_queue *q = bdev_get_queue(bdev);
1485 
1486 	if (q->limits.misaligned)
1487 		return -1;
1488 
1489 	if (bdev != bdev->bd_contains)
1490 		return bdev->bd_part->alignment_offset;
1491 
1492 	return q->limits.alignment_offset;
1493 }
1494 
1495 static inline int queue_discard_alignment(struct request_queue *q)
1496 {
1497 	if (q->limits.discard_misaligned)
1498 		return -1;
1499 
1500 	return q->limits.discard_alignment;
1501 }
1502 
1503 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1504 {
1505 	unsigned int alignment, granularity, offset;
1506 
1507 	if (!lim->max_discard_sectors)
1508 		return 0;
1509 
1510 	/* Why are these in bytes, not sectors? */
1511 	alignment = lim->discard_alignment >> 9;
1512 	granularity = lim->discard_granularity >> 9;
1513 	if (!granularity)
1514 		return 0;
1515 
1516 	/* Offset of the partition start in 'granularity' sectors */
1517 	offset = sector_div(sector, granularity);
1518 
1519 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1520 	offset = (granularity + alignment - offset) % granularity;
1521 
1522 	/* Turn it back into bytes, gaah */
1523 	return offset << 9;
1524 }
1525 
1526 static inline int bdev_discard_alignment(struct block_device *bdev)
1527 {
1528 	struct request_queue *q = bdev_get_queue(bdev);
1529 
1530 	if (bdev != bdev->bd_contains)
1531 		return bdev->bd_part->discard_alignment;
1532 
1533 	return q->limits.discard_alignment;
1534 }
1535 
1536 static inline unsigned int bdev_write_same(struct block_device *bdev)
1537 {
1538 	struct request_queue *q = bdev_get_queue(bdev);
1539 
1540 	if (q)
1541 		return q->limits.max_write_same_sectors;
1542 
1543 	return 0;
1544 }
1545 
1546 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1547 {
1548 	struct request_queue *q = bdev_get_queue(bdev);
1549 
1550 	if (q)
1551 		return q->limits.max_write_zeroes_sectors;
1552 
1553 	return 0;
1554 }
1555 
1556 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1557 {
1558 	struct request_queue *q = bdev_get_queue(bdev);
1559 
1560 	if (q)
1561 		return blk_queue_zoned_model(q);
1562 
1563 	return BLK_ZONED_NONE;
1564 }
1565 
1566 static inline bool bdev_is_zoned(struct block_device *bdev)
1567 {
1568 	struct request_queue *q = bdev_get_queue(bdev);
1569 
1570 	if (q)
1571 		return blk_queue_is_zoned(q);
1572 
1573 	return false;
1574 }
1575 
1576 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1577 {
1578 	struct request_queue *q = bdev_get_queue(bdev);
1579 
1580 	if (q)
1581 		return blk_queue_zone_sectors(q);
1582 
1583 	return 0;
1584 }
1585 
1586 static inline int queue_dma_alignment(struct request_queue *q)
1587 {
1588 	return q ? q->dma_alignment : 511;
1589 }
1590 
1591 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1592 				 unsigned int len)
1593 {
1594 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1595 	return !(addr & alignment) && !(len & alignment);
1596 }
1597 
1598 /* assumes size > 256 */
1599 static inline unsigned int blksize_bits(unsigned int size)
1600 {
1601 	unsigned int bits = 8;
1602 	do {
1603 		bits++;
1604 		size >>= 1;
1605 	} while (size > 256);
1606 	return bits;
1607 }
1608 
1609 static inline unsigned int block_size(struct block_device *bdev)
1610 {
1611 	return bdev->bd_block_size;
1612 }
1613 
1614 static inline bool queue_flush_queueable(struct request_queue *q)
1615 {
1616 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1617 }
1618 
1619 typedef struct {struct page *v;} Sector;
1620 
1621 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1622 
1623 static inline void put_dev_sector(Sector p)
1624 {
1625 	put_page(p.v);
1626 }
1627 
1628 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1629 				struct bio_vec *bprv, unsigned int offset)
1630 {
1631 	return offset ||
1632 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1633 }
1634 
1635 /*
1636  * Check if adding a bio_vec after bprv with offset would create a gap in
1637  * the SG list. Most drivers don't care about this, but some do.
1638  */
1639 static inline bool bvec_gap_to_prev(struct request_queue *q,
1640 				struct bio_vec *bprv, unsigned int offset)
1641 {
1642 	if (!queue_virt_boundary(q))
1643 		return false;
1644 	return __bvec_gap_to_prev(q, bprv, offset);
1645 }
1646 
1647 /*
1648  * Check if the two bvecs from two bios can be merged to one segment.
1649  * If yes, no need to check gap between the two bios since the 1st bio
1650  * and the 1st bvec in the 2nd bio can be handled in one segment.
1651  */
1652 static inline bool bios_segs_mergeable(struct request_queue *q,
1653 		struct bio *prev, struct bio_vec *prev_last_bv,
1654 		struct bio_vec *next_first_bv)
1655 {
1656 	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1657 		return false;
1658 	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1659 		return false;
1660 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
1661 			queue_max_segment_size(q))
1662 		return false;
1663 	return true;
1664 }
1665 
1666 static inline bool bio_will_gap(struct request_queue *q,
1667 				struct request *prev_rq,
1668 				struct bio *prev,
1669 				struct bio *next)
1670 {
1671 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1672 		struct bio_vec pb, nb;
1673 
1674 		/*
1675 		 * don't merge if the 1st bio starts with non-zero
1676 		 * offset, otherwise it is quite difficult to respect
1677 		 * sg gap limit. We work hard to merge a huge number of small
1678 		 * single bios in case of mkfs.
1679 		 */
1680 		if (prev_rq)
1681 			bio_get_first_bvec(prev_rq->bio, &pb);
1682 		else
1683 			bio_get_first_bvec(prev, &pb);
1684 		if (pb.bv_offset)
1685 			return true;
1686 
1687 		/*
1688 		 * We don't need to worry about the situation that the
1689 		 * merged segment ends in unaligned virt boundary:
1690 		 *
1691 		 * - if 'pb' ends aligned, the merged segment ends aligned
1692 		 * - if 'pb' ends unaligned, the next bio must include
1693 		 *   one single bvec of 'nb', otherwise the 'nb' can't
1694 		 *   merge with 'pb'
1695 		 */
1696 		bio_get_last_bvec(prev, &pb);
1697 		bio_get_first_bvec(next, &nb);
1698 
1699 		if (!bios_segs_mergeable(q, prev, &pb, &nb))
1700 			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1701 	}
1702 
1703 	return false;
1704 }
1705 
1706 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1707 {
1708 	return bio_will_gap(req->q, req, req->biotail, bio);
1709 }
1710 
1711 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1712 {
1713 	return bio_will_gap(req->q, NULL, bio, req->bio);
1714 }
1715 
1716 int kblockd_schedule_work(struct work_struct *work);
1717 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1718 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1719 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1720 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1721 
1722 #ifdef CONFIG_BLK_CGROUP
1723 /*
1724  * This should not be using sched_clock(). A real patch is in progress
1725  * to fix this up, until that is in place we need to disable preemption
1726  * around sched_clock() in this function and set_io_start_time_ns().
1727  */
1728 static inline void set_start_time_ns(struct request *req)
1729 {
1730 	preempt_disable();
1731 	req->start_time_ns = sched_clock();
1732 	preempt_enable();
1733 }
1734 
1735 static inline void set_io_start_time_ns(struct request *req)
1736 {
1737 	preempt_disable();
1738 	req->io_start_time_ns = sched_clock();
1739 	preempt_enable();
1740 }
1741 
1742 static inline uint64_t rq_start_time_ns(struct request *req)
1743 {
1744         return req->start_time_ns;
1745 }
1746 
1747 static inline uint64_t rq_io_start_time_ns(struct request *req)
1748 {
1749         return req->io_start_time_ns;
1750 }
1751 #else
1752 static inline void set_start_time_ns(struct request *req) {}
1753 static inline void set_io_start_time_ns(struct request *req) {}
1754 static inline uint64_t rq_start_time_ns(struct request *req)
1755 {
1756 	return 0;
1757 }
1758 static inline uint64_t rq_io_start_time_ns(struct request *req)
1759 {
1760 	return 0;
1761 }
1762 #endif
1763 
1764 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1765 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1766 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1767 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1768 
1769 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1770 
1771 enum blk_integrity_flags {
1772 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1773 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1774 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1775 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1776 };
1777 
1778 struct blk_integrity_iter {
1779 	void			*prot_buf;
1780 	void			*data_buf;
1781 	sector_t		seed;
1782 	unsigned int		data_size;
1783 	unsigned short		interval;
1784 	const char		*disk_name;
1785 };
1786 
1787 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1788 
1789 struct blk_integrity_profile {
1790 	integrity_processing_fn		*generate_fn;
1791 	integrity_processing_fn		*verify_fn;
1792 	const char			*name;
1793 };
1794 
1795 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1796 extern void blk_integrity_unregister(struct gendisk *);
1797 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1798 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1799 				   struct scatterlist *);
1800 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1801 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1802 				   struct request *);
1803 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1804 				    struct bio *);
1805 
1806 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1807 {
1808 	struct blk_integrity *bi = &disk->queue->integrity;
1809 
1810 	if (!bi->profile)
1811 		return NULL;
1812 
1813 	return bi;
1814 }
1815 
1816 static inline
1817 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1818 {
1819 	return blk_get_integrity(bdev->bd_disk);
1820 }
1821 
1822 static inline bool blk_integrity_rq(struct request *rq)
1823 {
1824 	return rq->cmd_flags & REQ_INTEGRITY;
1825 }
1826 
1827 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1828 						    unsigned int segs)
1829 {
1830 	q->limits.max_integrity_segments = segs;
1831 }
1832 
1833 static inline unsigned short
1834 queue_max_integrity_segments(struct request_queue *q)
1835 {
1836 	return q->limits.max_integrity_segments;
1837 }
1838 
1839 static inline bool integrity_req_gap_back_merge(struct request *req,
1840 						struct bio *next)
1841 {
1842 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1843 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1844 
1845 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1846 				bip_next->bip_vec[0].bv_offset);
1847 }
1848 
1849 static inline bool integrity_req_gap_front_merge(struct request *req,
1850 						 struct bio *bio)
1851 {
1852 	struct bio_integrity_payload *bip = bio_integrity(bio);
1853 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1854 
1855 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1856 				bip_next->bip_vec[0].bv_offset);
1857 }
1858 
1859 #else /* CONFIG_BLK_DEV_INTEGRITY */
1860 
1861 struct bio;
1862 struct block_device;
1863 struct gendisk;
1864 struct blk_integrity;
1865 
1866 static inline int blk_integrity_rq(struct request *rq)
1867 {
1868 	return 0;
1869 }
1870 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1871 					    struct bio *b)
1872 {
1873 	return 0;
1874 }
1875 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1876 					  struct bio *b,
1877 					  struct scatterlist *s)
1878 {
1879 	return 0;
1880 }
1881 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1882 {
1883 	return NULL;
1884 }
1885 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1886 {
1887 	return NULL;
1888 }
1889 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1890 {
1891 	return 0;
1892 }
1893 static inline void blk_integrity_register(struct gendisk *d,
1894 					 struct blk_integrity *b)
1895 {
1896 }
1897 static inline void blk_integrity_unregister(struct gendisk *d)
1898 {
1899 }
1900 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1901 						    unsigned int segs)
1902 {
1903 }
1904 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1905 {
1906 	return 0;
1907 }
1908 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1909 					  struct request *r1,
1910 					  struct request *r2)
1911 {
1912 	return true;
1913 }
1914 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1915 					   struct request *r,
1916 					   struct bio *b)
1917 {
1918 	return true;
1919 }
1920 
1921 static inline bool integrity_req_gap_back_merge(struct request *req,
1922 						struct bio *next)
1923 {
1924 	return false;
1925 }
1926 static inline bool integrity_req_gap_front_merge(struct request *req,
1927 						 struct bio *bio)
1928 {
1929 	return false;
1930 }
1931 
1932 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1933 
1934 struct block_device_operations {
1935 	int (*open) (struct block_device *, fmode_t);
1936 	void (*release) (struct gendisk *, fmode_t);
1937 	int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1938 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1939 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1940 	unsigned int (*check_events) (struct gendisk *disk,
1941 				      unsigned int clearing);
1942 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1943 	int (*media_changed) (struct gendisk *);
1944 	void (*unlock_native_capacity) (struct gendisk *);
1945 	int (*revalidate_disk) (struct gendisk *);
1946 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1947 	/* this callback is with swap_lock and sometimes page table lock held */
1948 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1949 	struct module *owner;
1950 	const struct pr_ops *pr_ops;
1951 };
1952 
1953 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1954 				 unsigned long);
1955 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1956 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1957 						struct writeback_control *);
1958 #else /* CONFIG_BLOCK */
1959 
1960 struct block_device;
1961 
1962 /*
1963  * stubs for when the block layer is configured out
1964  */
1965 #define buffer_heads_over_limit 0
1966 
1967 static inline long nr_blockdev_pages(void)
1968 {
1969 	return 0;
1970 }
1971 
1972 struct blk_plug {
1973 };
1974 
1975 static inline void blk_start_plug(struct blk_plug *plug)
1976 {
1977 }
1978 
1979 static inline void blk_finish_plug(struct blk_plug *plug)
1980 {
1981 }
1982 
1983 static inline void blk_flush_plug(struct task_struct *task)
1984 {
1985 }
1986 
1987 static inline void blk_schedule_flush_plug(struct task_struct *task)
1988 {
1989 }
1990 
1991 
1992 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1993 {
1994 	return false;
1995 }
1996 
1997 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1998 				     sector_t *error_sector)
1999 {
2000 	return 0;
2001 }
2002 
2003 #endif /* CONFIG_BLOCK */
2004 
2005 #endif
2006