1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 31 struct module; 32 struct scsi_ioctl_command; 33 34 struct request_queue; 35 struct elevator_queue; 36 struct blk_trace; 37 struct request; 38 struct sg_io_hdr; 39 struct bsg_job; 40 struct blkcg_gq; 41 struct blk_flush_queue; 42 struct pr_ops; 43 struct rq_qos; 44 struct blk_queue_stats; 45 struct blk_stat_callback; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* elevator knows about this request */ 69 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70 /* drive already may have started this one */ 71 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72 /* may not be passed by ioscheduler */ 73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74 /* request for flush sequence */ 75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76 /* merge of different types, fail separately */ 77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78 /* track inflight for MQ */ 79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80 /* don't call prep for this one */ 81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82 /* set for "ide_preempt" requests and also for requests for which the SCSI 83 "quiesce" state must be ignored. */ 84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 85 /* contains copies of user pages */ 86 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 87 /* vaguely specified driver internal error. Ignored by the block layer */ 88 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 89 /* don't warn about errors */ 90 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 91 /* elevator private data attached */ 92 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 93 /* account into disk and partition IO statistics */ 94 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 95 /* request came from our alloc pool */ 96 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 97 /* runtime pm request */ 98 #define RQF_PM ((__force req_flags_t)(1 << 15)) 99 /* on IO scheduler merge hash */ 100 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 101 /* track IO completion time */ 102 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 103 /* Look at ->special_vec for the actual data payload instead of the 104 bio chain. */ 105 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 106 /* The per-zone write lock is held for this request */ 107 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 108 /* already slept for hybrid poll */ 109 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 110 /* ->timeout has been called, don't expire again */ 111 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 112 113 /* flags that prevent us from merging requests: */ 114 #define RQF_NOMERGE_FLAGS \ 115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 116 117 /* 118 * Request state for blk-mq. 119 */ 120 enum mq_rq_state { 121 MQ_RQ_IDLE = 0, 122 MQ_RQ_IN_FLIGHT = 1, 123 MQ_RQ_COMPLETE = 2, 124 }; 125 126 /* 127 * Try to put the fields that are referenced together in the same cacheline. 128 * 129 * If you modify this structure, make sure to update blk_rq_init() and 130 * especially blk_mq_rq_ctx_init() to take care of the added fields. 131 */ 132 struct request { 133 struct request_queue *q; 134 struct blk_mq_ctx *mq_ctx; 135 struct blk_mq_hw_ctx *mq_hctx; 136 137 unsigned int cmd_flags; /* op and common flags */ 138 req_flags_t rq_flags; 139 140 int tag; 141 int internal_tag; 142 143 /* the following two fields are internal, NEVER access directly */ 144 unsigned int __data_len; /* total data len */ 145 sector_t __sector; /* sector cursor */ 146 147 struct bio *bio; 148 struct bio *biotail; 149 150 struct list_head queuelist; 151 152 /* 153 * The hash is used inside the scheduler, and killed once the 154 * request reaches the dispatch list. The ipi_list is only used 155 * to queue the request for softirq completion, which is long 156 * after the request has been unhashed (and even removed from 157 * the dispatch list). 158 */ 159 union { 160 struct hlist_node hash; /* merge hash */ 161 struct list_head ipi_list; 162 }; 163 164 /* 165 * The rb_node is only used inside the io scheduler, requests 166 * are pruned when moved to the dispatch queue. So let the 167 * completion_data share space with the rb_node. 168 */ 169 union { 170 struct rb_node rb_node; /* sort/lookup */ 171 struct bio_vec special_vec; 172 void *completion_data; 173 int error_count; /* for legacy drivers, don't use */ 174 }; 175 176 /* 177 * Three pointers are available for the IO schedulers, if they need 178 * more they have to dynamically allocate it. Flush requests are 179 * never put on the IO scheduler. So let the flush fields share 180 * space with the elevator data. 181 */ 182 union { 183 struct { 184 struct io_cq *icq; 185 void *priv[2]; 186 } elv; 187 188 struct { 189 unsigned int seq; 190 struct list_head list; 191 rq_end_io_fn *saved_end_io; 192 } flush; 193 }; 194 195 struct gendisk *rq_disk; 196 struct hd_struct *part; 197 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 198 /* Time that the first bio started allocating this request. */ 199 u64 alloc_time_ns; 200 #endif 201 /* Time that this request was allocated for this IO. */ 202 u64 start_time_ns; 203 /* Time that I/O was submitted to the device. */ 204 u64 io_start_time_ns; 205 206 #ifdef CONFIG_BLK_WBT 207 unsigned short wbt_flags; 208 #endif 209 /* 210 * rq sectors used for blk stats. It has the same value 211 * with blk_rq_sectors(rq), except that it never be zeroed 212 * by completion. 213 */ 214 unsigned short stats_sectors; 215 216 /* 217 * Number of scatter-gather DMA addr+len pairs after 218 * physical address coalescing is performed. 219 */ 220 unsigned short nr_phys_segments; 221 222 #if defined(CONFIG_BLK_DEV_INTEGRITY) 223 unsigned short nr_integrity_segments; 224 #endif 225 226 unsigned short write_hint; 227 unsigned short ioprio; 228 229 unsigned int extra_len; /* length of alignment and padding */ 230 231 enum mq_rq_state state; 232 refcount_t ref; 233 234 unsigned int timeout; 235 unsigned long deadline; 236 237 union { 238 struct __call_single_data csd; 239 u64 fifo_time; 240 }; 241 242 /* 243 * completion callback. 244 */ 245 rq_end_io_fn *end_io; 246 void *end_io_data; 247 }; 248 249 static inline bool blk_op_is_scsi(unsigned int op) 250 { 251 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 252 } 253 254 static inline bool blk_op_is_private(unsigned int op) 255 { 256 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 257 } 258 259 static inline bool blk_rq_is_scsi(struct request *rq) 260 { 261 return blk_op_is_scsi(req_op(rq)); 262 } 263 264 static inline bool blk_rq_is_private(struct request *rq) 265 { 266 return blk_op_is_private(req_op(rq)); 267 } 268 269 static inline bool blk_rq_is_passthrough(struct request *rq) 270 { 271 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 272 } 273 274 static inline bool bio_is_passthrough(struct bio *bio) 275 { 276 unsigned op = bio_op(bio); 277 278 return blk_op_is_scsi(op) || blk_op_is_private(op); 279 } 280 281 static inline unsigned short req_get_ioprio(struct request *req) 282 { 283 return req->ioprio; 284 } 285 286 #include <linux/elevator.h> 287 288 struct blk_queue_ctx; 289 290 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 291 292 struct bio_vec; 293 typedef int (dma_drain_needed_fn)(struct request *); 294 295 enum blk_eh_timer_return { 296 BLK_EH_DONE, /* drivers has completed the command */ 297 BLK_EH_RESET_TIMER, /* reset timer and try again */ 298 }; 299 300 enum blk_queue_state { 301 Queue_down, 302 Queue_up, 303 }; 304 305 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 306 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 307 308 #define BLK_SCSI_MAX_CMDS (256) 309 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 310 311 /* 312 * Zoned block device models (zoned limit). 313 */ 314 enum blk_zoned_model { 315 BLK_ZONED_NONE, /* Regular block device */ 316 BLK_ZONED_HA, /* Host-aware zoned block device */ 317 BLK_ZONED_HM, /* Host-managed zoned block device */ 318 }; 319 320 struct queue_limits { 321 unsigned long bounce_pfn; 322 unsigned long seg_boundary_mask; 323 unsigned long virt_boundary_mask; 324 325 unsigned int max_hw_sectors; 326 unsigned int max_dev_sectors; 327 unsigned int chunk_sectors; 328 unsigned int max_sectors; 329 unsigned int max_segment_size; 330 unsigned int physical_block_size; 331 unsigned int alignment_offset; 332 unsigned int io_min; 333 unsigned int io_opt; 334 unsigned int max_discard_sectors; 335 unsigned int max_hw_discard_sectors; 336 unsigned int max_write_same_sectors; 337 unsigned int max_write_zeroes_sectors; 338 unsigned int discard_granularity; 339 unsigned int discard_alignment; 340 341 unsigned short logical_block_size; 342 unsigned short max_segments; 343 unsigned short max_integrity_segments; 344 unsigned short max_discard_segments; 345 346 unsigned char misaligned; 347 unsigned char discard_misaligned; 348 unsigned char raid_partial_stripes_expensive; 349 enum blk_zoned_model zoned; 350 }; 351 352 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 353 void *data); 354 355 #ifdef CONFIG_BLK_DEV_ZONED 356 357 #define BLK_ALL_ZONES ((unsigned int)-1) 358 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 359 unsigned int nr_zones, report_zones_cb cb, void *data); 360 unsigned int blkdev_nr_zones(struct gendisk *disk); 361 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 362 sector_t sectors, sector_t nr_sectors, 363 gfp_t gfp_mask); 364 extern int blk_revalidate_disk_zones(struct gendisk *disk); 365 366 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 367 unsigned int cmd, unsigned long arg); 368 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 369 unsigned int cmd, unsigned long arg); 370 371 #else /* CONFIG_BLK_DEV_ZONED */ 372 373 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 374 { 375 return 0; 376 } 377 378 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 379 fmode_t mode, unsigned int cmd, 380 unsigned long arg) 381 { 382 return -ENOTTY; 383 } 384 385 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 386 fmode_t mode, unsigned int cmd, 387 unsigned long arg) 388 { 389 return -ENOTTY; 390 } 391 392 #endif /* CONFIG_BLK_DEV_ZONED */ 393 394 struct request_queue { 395 struct request *last_merge; 396 struct elevator_queue *elevator; 397 398 struct blk_queue_stats *stats; 399 struct rq_qos *rq_qos; 400 401 make_request_fn *make_request_fn; 402 dma_drain_needed_fn *dma_drain_needed; 403 404 const struct blk_mq_ops *mq_ops; 405 406 /* sw queues */ 407 struct blk_mq_ctx __percpu *queue_ctx; 408 409 unsigned int queue_depth; 410 411 /* hw dispatch queues */ 412 struct blk_mq_hw_ctx **queue_hw_ctx; 413 unsigned int nr_hw_queues; 414 415 struct backing_dev_info *backing_dev_info; 416 417 /* 418 * The queue owner gets to use this for whatever they like. 419 * ll_rw_blk doesn't touch it. 420 */ 421 void *queuedata; 422 423 /* 424 * various queue flags, see QUEUE_* below 425 */ 426 unsigned long queue_flags; 427 /* 428 * Number of contexts that have called blk_set_pm_only(). If this 429 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 430 * processed. 431 */ 432 atomic_t pm_only; 433 434 /* 435 * ida allocated id for this queue. Used to index queues from 436 * ioctx. 437 */ 438 int id; 439 440 /* 441 * queue needs bounce pages for pages above this limit 442 */ 443 gfp_t bounce_gfp; 444 445 spinlock_t queue_lock; 446 447 /* 448 * queue kobject 449 */ 450 struct kobject kobj; 451 452 /* 453 * mq queue kobject 454 */ 455 struct kobject *mq_kobj; 456 457 #ifdef CONFIG_BLK_DEV_INTEGRITY 458 struct blk_integrity integrity; 459 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 460 461 #ifdef CONFIG_PM 462 struct device *dev; 463 int rpm_status; 464 unsigned int nr_pending; 465 #endif 466 467 /* 468 * queue settings 469 */ 470 unsigned long nr_requests; /* Max # of requests */ 471 472 unsigned int dma_drain_size; 473 void *dma_drain_buffer; 474 unsigned int dma_pad_mask; 475 unsigned int dma_alignment; 476 477 unsigned int rq_timeout; 478 int poll_nsec; 479 480 struct blk_stat_callback *poll_cb; 481 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 482 483 struct timer_list timeout; 484 struct work_struct timeout_work; 485 486 struct list_head icq_list; 487 #ifdef CONFIG_BLK_CGROUP 488 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 489 struct blkcg_gq *root_blkg; 490 struct list_head blkg_list; 491 #endif 492 493 struct queue_limits limits; 494 495 unsigned int required_elevator_features; 496 497 #ifdef CONFIG_BLK_DEV_ZONED 498 /* 499 * Zoned block device information for request dispatch control. 500 * nr_zones is the total number of zones of the device. This is always 501 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 502 * bits which indicates if a zone is conventional (bit set) or 503 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 504 * bits which indicates if a zone is write locked, that is, if a write 505 * request targeting the zone was dispatched. All three fields are 506 * initialized by the low level device driver (e.g. scsi/sd.c). 507 * Stacking drivers (device mappers) may or may not initialize 508 * these fields. 509 * 510 * Reads of this information must be protected with blk_queue_enter() / 511 * blk_queue_exit(). Modifying this information is only allowed while 512 * no requests are being processed. See also blk_mq_freeze_queue() and 513 * blk_mq_unfreeze_queue(). 514 */ 515 unsigned int nr_zones; 516 unsigned long *conv_zones_bitmap; 517 unsigned long *seq_zones_wlock; 518 #endif /* CONFIG_BLK_DEV_ZONED */ 519 520 /* 521 * sg stuff 522 */ 523 unsigned int sg_timeout; 524 unsigned int sg_reserved_size; 525 int node; 526 #ifdef CONFIG_BLK_DEV_IO_TRACE 527 struct blk_trace *blk_trace; 528 struct mutex blk_trace_mutex; 529 #endif 530 /* 531 * for flush operations 532 */ 533 struct blk_flush_queue *fq; 534 535 struct list_head requeue_list; 536 spinlock_t requeue_lock; 537 struct delayed_work requeue_work; 538 539 struct mutex sysfs_lock; 540 struct mutex sysfs_dir_lock; 541 542 /* 543 * for reusing dead hctx instance in case of updating 544 * nr_hw_queues 545 */ 546 struct list_head unused_hctx_list; 547 spinlock_t unused_hctx_lock; 548 549 int mq_freeze_depth; 550 551 #if defined(CONFIG_BLK_DEV_BSG) 552 struct bsg_class_device bsg_dev; 553 #endif 554 555 #ifdef CONFIG_BLK_DEV_THROTTLING 556 /* Throttle data */ 557 struct throtl_data *td; 558 #endif 559 struct rcu_head rcu_head; 560 wait_queue_head_t mq_freeze_wq; 561 /* 562 * Protect concurrent access to q_usage_counter by 563 * percpu_ref_kill() and percpu_ref_reinit(). 564 */ 565 struct mutex mq_freeze_lock; 566 struct percpu_ref q_usage_counter; 567 568 struct blk_mq_tag_set *tag_set; 569 struct list_head tag_set_list; 570 struct bio_set bio_split; 571 572 #ifdef CONFIG_BLK_DEBUG_FS 573 struct dentry *debugfs_dir; 574 struct dentry *sched_debugfs_dir; 575 struct dentry *rqos_debugfs_dir; 576 #endif 577 578 bool mq_sysfs_init_done; 579 580 size_t cmd_size; 581 582 struct work_struct release_work; 583 584 #define BLK_MAX_WRITE_HINTS 5 585 u64 write_hints[BLK_MAX_WRITE_HINTS]; 586 }; 587 588 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 589 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 590 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 591 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 592 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 593 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 594 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 595 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 596 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 597 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 598 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 599 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 600 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 601 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 602 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 603 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 604 #define QUEUE_FLAG_WC 17 /* Write back caching */ 605 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 606 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 607 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 608 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 609 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 610 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 611 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 612 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 613 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 614 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 615 616 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 617 (1 << QUEUE_FLAG_SAME_COMP)) 618 619 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 620 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 621 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 622 623 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 624 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 625 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 626 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 627 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 628 #define blk_queue_noxmerges(q) \ 629 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 630 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 631 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 632 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 633 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 634 #define blk_queue_zone_resetall(q) \ 635 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 636 #define blk_queue_secure_erase(q) \ 637 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 638 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 639 #define blk_queue_scsi_passthrough(q) \ 640 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 641 #define blk_queue_pci_p2pdma(q) \ 642 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 643 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 644 #define blk_queue_rq_alloc_time(q) \ 645 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 646 #else 647 #define blk_queue_rq_alloc_time(q) false 648 #endif 649 650 #define blk_noretry_request(rq) \ 651 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 652 REQ_FAILFAST_DRIVER)) 653 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 654 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 655 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 656 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 657 658 extern void blk_set_pm_only(struct request_queue *q); 659 extern void blk_clear_pm_only(struct request_queue *q); 660 661 static inline bool blk_account_rq(struct request *rq) 662 { 663 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 664 } 665 666 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 667 668 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 669 670 #define rq_dma_dir(rq) \ 671 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 672 673 #define dma_map_bvec(dev, bv, dir, attrs) \ 674 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 675 (dir), (attrs)) 676 677 static inline bool queue_is_mq(struct request_queue *q) 678 { 679 return q->mq_ops; 680 } 681 682 static inline enum blk_zoned_model 683 blk_queue_zoned_model(struct request_queue *q) 684 { 685 return q->limits.zoned; 686 } 687 688 static inline bool blk_queue_is_zoned(struct request_queue *q) 689 { 690 switch (blk_queue_zoned_model(q)) { 691 case BLK_ZONED_HA: 692 case BLK_ZONED_HM: 693 return true; 694 default: 695 return false; 696 } 697 } 698 699 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 700 { 701 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 702 } 703 704 #ifdef CONFIG_BLK_DEV_ZONED 705 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 706 { 707 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 708 } 709 710 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 711 sector_t sector) 712 { 713 if (!blk_queue_is_zoned(q)) 714 return 0; 715 return sector >> ilog2(q->limits.chunk_sectors); 716 } 717 718 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 719 sector_t sector) 720 { 721 if (!blk_queue_is_zoned(q)) 722 return false; 723 if (!q->conv_zones_bitmap) 724 return true; 725 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 726 } 727 #else /* CONFIG_BLK_DEV_ZONED */ 728 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 729 { 730 return 0; 731 } 732 #endif /* CONFIG_BLK_DEV_ZONED */ 733 734 static inline bool rq_is_sync(struct request *rq) 735 { 736 return op_is_sync(rq->cmd_flags); 737 } 738 739 static inline bool rq_mergeable(struct request *rq) 740 { 741 if (blk_rq_is_passthrough(rq)) 742 return false; 743 744 if (req_op(rq) == REQ_OP_FLUSH) 745 return false; 746 747 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 748 return false; 749 750 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 751 return false; 752 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 753 return false; 754 755 return true; 756 } 757 758 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 759 { 760 if (bio_page(a) == bio_page(b) && 761 bio_offset(a) == bio_offset(b)) 762 return true; 763 764 return false; 765 } 766 767 static inline unsigned int blk_queue_depth(struct request_queue *q) 768 { 769 if (q->queue_depth) 770 return q->queue_depth; 771 772 return q->nr_requests; 773 } 774 775 extern unsigned long blk_max_low_pfn, blk_max_pfn; 776 777 /* 778 * standard bounce addresses: 779 * 780 * BLK_BOUNCE_HIGH : bounce all highmem pages 781 * BLK_BOUNCE_ANY : don't bounce anything 782 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 783 */ 784 785 #if BITS_PER_LONG == 32 786 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 787 #else 788 #define BLK_BOUNCE_HIGH -1ULL 789 #endif 790 #define BLK_BOUNCE_ANY (-1ULL) 791 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 792 793 /* 794 * default timeout for SG_IO if none specified 795 */ 796 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 797 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 798 799 struct rq_map_data { 800 struct page **pages; 801 int page_order; 802 int nr_entries; 803 unsigned long offset; 804 int null_mapped; 805 int from_user; 806 }; 807 808 struct req_iterator { 809 struct bvec_iter iter; 810 struct bio *bio; 811 }; 812 813 /* This should not be used directly - use rq_for_each_segment */ 814 #define for_each_bio(_bio) \ 815 for (; _bio; _bio = _bio->bi_next) 816 #define __rq_for_each_bio(_bio, rq) \ 817 if ((rq->bio)) \ 818 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 819 820 #define rq_for_each_segment(bvl, _rq, _iter) \ 821 __rq_for_each_bio(_iter.bio, _rq) \ 822 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 823 824 #define rq_for_each_bvec(bvl, _rq, _iter) \ 825 __rq_for_each_bio(_iter.bio, _rq) \ 826 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 827 828 #define rq_iter_last(bvec, _iter) \ 829 (_iter.bio->bi_next == NULL && \ 830 bio_iter_last(bvec, _iter.iter)) 831 832 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 833 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 834 #endif 835 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 836 extern void rq_flush_dcache_pages(struct request *rq); 837 #else 838 static inline void rq_flush_dcache_pages(struct request *rq) 839 { 840 } 841 #endif 842 843 extern int blk_register_queue(struct gendisk *disk); 844 extern void blk_unregister_queue(struct gendisk *disk); 845 extern blk_qc_t generic_make_request(struct bio *bio); 846 extern blk_qc_t direct_make_request(struct bio *bio); 847 extern void blk_rq_init(struct request_queue *q, struct request *rq); 848 extern void blk_put_request(struct request *); 849 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 850 blk_mq_req_flags_t flags); 851 extern int blk_lld_busy(struct request_queue *q); 852 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 853 struct bio_set *bs, gfp_t gfp_mask, 854 int (*bio_ctr)(struct bio *, struct bio *, void *), 855 void *data); 856 extern void blk_rq_unprep_clone(struct request *rq); 857 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 858 struct request *rq); 859 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 860 extern void blk_queue_split(struct request_queue *, struct bio **); 861 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 862 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 863 unsigned int, void __user *); 864 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 865 unsigned int, void __user *); 866 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 867 struct scsi_ioctl_command __user *); 868 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 869 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 870 871 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 872 extern void blk_queue_exit(struct request_queue *q); 873 extern void blk_sync_queue(struct request_queue *q); 874 extern int blk_rq_map_user(struct request_queue *, struct request *, 875 struct rq_map_data *, void __user *, unsigned long, 876 gfp_t); 877 extern int blk_rq_unmap_user(struct bio *); 878 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 879 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 880 struct rq_map_data *, const struct iov_iter *, 881 gfp_t); 882 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 883 struct request *, int); 884 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 885 struct request *, int, rq_end_io_fn *); 886 887 /* Helper to convert REQ_OP_XXX to its string format XXX */ 888 extern const char *blk_op_str(unsigned int op); 889 890 int blk_status_to_errno(blk_status_t status); 891 blk_status_t errno_to_blk_status(int errno); 892 893 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 894 895 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 896 { 897 return bdev->bd_disk->queue; /* this is never NULL */ 898 } 899 900 /* 901 * The basic unit of block I/O is a sector. It is used in a number of contexts 902 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 903 * bytes. Variables of type sector_t represent an offset or size that is a 904 * multiple of 512 bytes. Hence these two constants. 905 */ 906 #ifndef SECTOR_SHIFT 907 #define SECTOR_SHIFT 9 908 #endif 909 #ifndef SECTOR_SIZE 910 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 911 #endif 912 913 /* 914 * blk_rq_pos() : the current sector 915 * blk_rq_bytes() : bytes left in the entire request 916 * blk_rq_cur_bytes() : bytes left in the current segment 917 * blk_rq_err_bytes() : bytes left till the next error boundary 918 * blk_rq_sectors() : sectors left in the entire request 919 * blk_rq_cur_sectors() : sectors left in the current segment 920 * blk_rq_stats_sectors() : sectors of the entire request used for stats 921 */ 922 static inline sector_t blk_rq_pos(const struct request *rq) 923 { 924 return rq->__sector; 925 } 926 927 static inline unsigned int blk_rq_bytes(const struct request *rq) 928 { 929 return rq->__data_len; 930 } 931 932 static inline int blk_rq_cur_bytes(const struct request *rq) 933 { 934 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 935 } 936 937 extern unsigned int blk_rq_err_bytes(const struct request *rq); 938 939 static inline unsigned int blk_rq_sectors(const struct request *rq) 940 { 941 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 942 } 943 944 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 945 { 946 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 947 } 948 949 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 950 { 951 return rq->stats_sectors; 952 } 953 954 #ifdef CONFIG_BLK_DEV_ZONED 955 static inline unsigned int blk_rq_zone_no(struct request *rq) 956 { 957 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 958 } 959 960 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 961 { 962 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 963 } 964 #endif /* CONFIG_BLK_DEV_ZONED */ 965 966 /* 967 * Some commands like WRITE SAME have a payload or data transfer size which 968 * is different from the size of the request. Any driver that supports such 969 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 970 * calculate the data transfer size. 971 */ 972 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 973 { 974 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 975 return rq->special_vec.bv_len; 976 return blk_rq_bytes(rq); 977 } 978 979 /* 980 * Return the first full biovec in the request. The caller needs to check that 981 * there are any bvecs before calling this helper. 982 */ 983 static inline struct bio_vec req_bvec(struct request *rq) 984 { 985 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 986 return rq->special_vec; 987 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 988 } 989 990 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 991 int op) 992 { 993 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 994 return min(q->limits.max_discard_sectors, 995 UINT_MAX >> SECTOR_SHIFT); 996 997 if (unlikely(op == REQ_OP_WRITE_SAME)) 998 return q->limits.max_write_same_sectors; 999 1000 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1001 return q->limits.max_write_zeroes_sectors; 1002 1003 return q->limits.max_sectors; 1004 } 1005 1006 /* 1007 * Return maximum size of a request at given offset. Only valid for 1008 * file system requests. 1009 */ 1010 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1011 sector_t offset) 1012 { 1013 if (!q->limits.chunk_sectors) 1014 return q->limits.max_sectors; 1015 1016 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1017 (offset & (q->limits.chunk_sectors - 1)))); 1018 } 1019 1020 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1021 sector_t offset) 1022 { 1023 struct request_queue *q = rq->q; 1024 1025 if (blk_rq_is_passthrough(rq)) 1026 return q->limits.max_hw_sectors; 1027 1028 if (!q->limits.chunk_sectors || 1029 req_op(rq) == REQ_OP_DISCARD || 1030 req_op(rq) == REQ_OP_SECURE_ERASE) 1031 return blk_queue_get_max_sectors(q, req_op(rq)); 1032 1033 return min(blk_max_size_offset(q, offset), 1034 blk_queue_get_max_sectors(q, req_op(rq))); 1035 } 1036 1037 static inline unsigned int blk_rq_count_bios(struct request *rq) 1038 { 1039 unsigned int nr_bios = 0; 1040 struct bio *bio; 1041 1042 __rq_for_each_bio(bio, rq) 1043 nr_bios++; 1044 1045 return nr_bios; 1046 } 1047 1048 void blk_steal_bios(struct bio_list *list, struct request *rq); 1049 1050 /* 1051 * Request completion related functions. 1052 * 1053 * blk_update_request() completes given number of bytes and updates 1054 * the request without completing it. 1055 */ 1056 extern bool blk_update_request(struct request *rq, blk_status_t error, 1057 unsigned int nr_bytes); 1058 1059 extern void __blk_complete_request(struct request *); 1060 extern void blk_abort_request(struct request *); 1061 1062 /* 1063 * Access functions for manipulating queue properties 1064 */ 1065 extern void blk_cleanup_queue(struct request_queue *); 1066 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1067 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1068 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1069 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1070 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1071 extern void blk_queue_max_discard_segments(struct request_queue *, 1072 unsigned short); 1073 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1074 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1075 unsigned int max_discard_sectors); 1076 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1077 unsigned int max_write_same_sectors); 1078 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1079 unsigned int max_write_same_sectors); 1080 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1081 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1082 extern void blk_queue_alignment_offset(struct request_queue *q, 1083 unsigned int alignment); 1084 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1085 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1086 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1087 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1088 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1089 extern void blk_set_default_limits(struct queue_limits *lim); 1090 extern void blk_set_stacking_limits(struct queue_limits *lim); 1091 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1092 sector_t offset); 1093 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1094 sector_t offset); 1095 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1096 sector_t offset); 1097 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1098 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1099 extern int blk_queue_dma_drain(struct request_queue *q, 1100 dma_drain_needed_fn *dma_drain_needed, 1101 void *buf, unsigned int size); 1102 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1103 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1104 extern void blk_queue_dma_alignment(struct request_queue *, int); 1105 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1106 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1107 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1108 extern void blk_queue_required_elevator_features(struct request_queue *q, 1109 unsigned int features); 1110 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1111 struct device *dev); 1112 1113 /* 1114 * Number of physical segments as sent to the device. 1115 * 1116 * Normally this is the number of discontiguous data segments sent by the 1117 * submitter. But for data-less command like discard we might have no 1118 * actual data segments submitted, but the driver might have to add it's 1119 * own special payload. In that case we still return 1 here so that this 1120 * special payload will be mapped. 1121 */ 1122 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1123 { 1124 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1125 return 1; 1126 return rq->nr_phys_segments; 1127 } 1128 1129 /* 1130 * Number of discard segments (or ranges) the driver needs to fill in. 1131 * Each discard bio merged into a request is counted as one segment. 1132 */ 1133 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1134 { 1135 return max_t(unsigned short, rq->nr_phys_segments, 1); 1136 } 1137 1138 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1139 extern void blk_dump_rq_flags(struct request *, char *); 1140 extern long nr_blockdev_pages(void); 1141 1142 bool __must_check blk_get_queue(struct request_queue *); 1143 struct request_queue *blk_alloc_queue(gfp_t); 1144 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id); 1145 extern void blk_put_queue(struct request_queue *); 1146 extern void blk_set_queue_dying(struct request_queue *); 1147 1148 /* 1149 * blk_plug permits building a queue of related requests by holding the I/O 1150 * fragments for a short period. This allows merging of sequential requests 1151 * into single larger request. As the requests are moved from a per-task list to 1152 * the device's request_queue in a batch, this results in improved scalability 1153 * as the lock contention for request_queue lock is reduced. 1154 * 1155 * It is ok not to disable preemption when adding the request to the plug list 1156 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1157 * the plug list when the task sleeps by itself. For details, please see 1158 * schedule() where blk_schedule_flush_plug() is called. 1159 */ 1160 struct blk_plug { 1161 struct list_head mq_list; /* blk-mq requests */ 1162 struct list_head cb_list; /* md requires an unplug callback */ 1163 unsigned short rq_count; 1164 bool multiple_queues; 1165 }; 1166 #define BLK_MAX_REQUEST_COUNT 16 1167 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1168 1169 struct blk_plug_cb; 1170 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1171 struct blk_plug_cb { 1172 struct list_head list; 1173 blk_plug_cb_fn callback; 1174 void *data; 1175 }; 1176 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1177 void *data, int size); 1178 extern void blk_start_plug(struct blk_plug *); 1179 extern void blk_finish_plug(struct blk_plug *); 1180 extern void blk_flush_plug_list(struct blk_plug *, bool); 1181 1182 static inline void blk_flush_plug(struct task_struct *tsk) 1183 { 1184 struct blk_plug *plug = tsk->plug; 1185 1186 if (plug) 1187 blk_flush_plug_list(plug, false); 1188 } 1189 1190 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1191 { 1192 struct blk_plug *plug = tsk->plug; 1193 1194 if (plug) 1195 blk_flush_plug_list(plug, true); 1196 } 1197 1198 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1199 { 1200 struct blk_plug *plug = tsk->plug; 1201 1202 return plug && 1203 (!list_empty(&plug->mq_list) || 1204 !list_empty(&plug->cb_list)); 1205 } 1206 1207 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1208 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1209 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1210 1211 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1212 1213 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1214 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1215 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1216 sector_t nr_sects, gfp_t gfp_mask, int flags, 1217 struct bio **biop); 1218 1219 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1220 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1221 1222 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1223 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1224 unsigned flags); 1225 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1226 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1227 1228 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1229 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1230 { 1231 return blkdev_issue_discard(sb->s_bdev, 1232 block << (sb->s_blocksize_bits - 1233 SECTOR_SHIFT), 1234 nr_blocks << (sb->s_blocksize_bits - 1235 SECTOR_SHIFT), 1236 gfp_mask, flags); 1237 } 1238 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1239 sector_t nr_blocks, gfp_t gfp_mask) 1240 { 1241 return blkdev_issue_zeroout(sb->s_bdev, 1242 block << (sb->s_blocksize_bits - 1243 SECTOR_SHIFT), 1244 nr_blocks << (sb->s_blocksize_bits - 1245 SECTOR_SHIFT), 1246 gfp_mask, 0); 1247 } 1248 1249 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1250 1251 enum blk_default_limits { 1252 BLK_MAX_SEGMENTS = 128, 1253 BLK_SAFE_MAX_SECTORS = 255, 1254 BLK_DEF_MAX_SECTORS = 2560, 1255 BLK_MAX_SEGMENT_SIZE = 65536, 1256 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1257 }; 1258 1259 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1260 { 1261 return q->limits.seg_boundary_mask; 1262 } 1263 1264 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1265 { 1266 return q->limits.virt_boundary_mask; 1267 } 1268 1269 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1270 { 1271 return q->limits.max_sectors; 1272 } 1273 1274 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1275 { 1276 return q->limits.max_hw_sectors; 1277 } 1278 1279 static inline unsigned short queue_max_segments(const struct request_queue *q) 1280 { 1281 return q->limits.max_segments; 1282 } 1283 1284 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1285 { 1286 return q->limits.max_discard_segments; 1287 } 1288 1289 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1290 { 1291 return q->limits.max_segment_size; 1292 } 1293 1294 static inline unsigned short queue_logical_block_size(const struct request_queue *q) 1295 { 1296 int retval = 512; 1297 1298 if (q && q->limits.logical_block_size) 1299 retval = q->limits.logical_block_size; 1300 1301 return retval; 1302 } 1303 1304 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1305 { 1306 return queue_logical_block_size(bdev_get_queue(bdev)); 1307 } 1308 1309 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1310 { 1311 return q->limits.physical_block_size; 1312 } 1313 1314 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1315 { 1316 return queue_physical_block_size(bdev_get_queue(bdev)); 1317 } 1318 1319 static inline unsigned int queue_io_min(const struct request_queue *q) 1320 { 1321 return q->limits.io_min; 1322 } 1323 1324 static inline int bdev_io_min(struct block_device *bdev) 1325 { 1326 return queue_io_min(bdev_get_queue(bdev)); 1327 } 1328 1329 static inline unsigned int queue_io_opt(const struct request_queue *q) 1330 { 1331 return q->limits.io_opt; 1332 } 1333 1334 static inline int bdev_io_opt(struct block_device *bdev) 1335 { 1336 return queue_io_opt(bdev_get_queue(bdev)); 1337 } 1338 1339 static inline int queue_alignment_offset(const struct request_queue *q) 1340 { 1341 if (q->limits.misaligned) 1342 return -1; 1343 1344 return q->limits.alignment_offset; 1345 } 1346 1347 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1348 { 1349 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1350 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1351 << SECTOR_SHIFT; 1352 1353 return (granularity + lim->alignment_offset - alignment) % granularity; 1354 } 1355 1356 static inline int bdev_alignment_offset(struct block_device *bdev) 1357 { 1358 struct request_queue *q = bdev_get_queue(bdev); 1359 1360 if (q->limits.misaligned) 1361 return -1; 1362 1363 if (bdev != bdev->bd_contains) 1364 return bdev->bd_part->alignment_offset; 1365 1366 return q->limits.alignment_offset; 1367 } 1368 1369 static inline int queue_discard_alignment(const struct request_queue *q) 1370 { 1371 if (q->limits.discard_misaligned) 1372 return -1; 1373 1374 return q->limits.discard_alignment; 1375 } 1376 1377 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1378 { 1379 unsigned int alignment, granularity, offset; 1380 1381 if (!lim->max_discard_sectors) 1382 return 0; 1383 1384 /* Why are these in bytes, not sectors? */ 1385 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1386 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1387 if (!granularity) 1388 return 0; 1389 1390 /* Offset of the partition start in 'granularity' sectors */ 1391 offset = sector_div(sector, granularity); 1392 1393 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1394 offset = (granularity + alignment - offset) % granularity; 1395 1396 /* Turn it back into bytes, gaah */ 1397 return offset << SECTOR_SHIFT; 1398 } 1399 1400 static inline int bdev_discard_alignment(struct block_device *bdev) 1401 { 1402 struct request_queue *q = bdev_get_queue(bdev); 1403 1404 if (bdev != bdev->bd_contains) 1405 return bdev->bd_part->discard_alignment; 1406 1407 return q->limits.discard_alignment; 1408 } 1409 1410 static inline unsigned int bdev_write_same(struct block_device *bdev) 1411 { 1412 struct request_queue *q = bdev_get_queue(bdev); 1413 1414 if (q) 1415 return q->limits.max_write_same_sectors; 1416 1417 return 0; 1418 } 1419 1420 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1421 { 1422 struct request_queue *q = bdev_get_queue(bdev); 1423 1424 if (q) 1425 return q->limits.max_write_zeroes_sectors; 1426 1427 return 0; 1428 } 1429 1430 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1431 { 1432 struct request_queue *q = bdev_get_queue(bdev); 1433 1434 if (q) 1435 return blk_queue_zoned_model(q); 1436 1437 return BLK_ZONED_NONE; 1438 } 1439 1440 static inline bool bdev_is_zoned(struct block_device *bdev) 1441 { 1442 struct request_queue *q = bdev_get_queue(bdev); 1443 1444 if (q) 1445 return blk_queue_is_zoned(q); 1446 1447 return false; 1448 } 1449 1450 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1451 { 1452 struct request_queue *q = bdev_get_queue(bdev); 1453 1454 if (q) 1455 return blk_queue_zone_sectors(q); 1456 return 0; 1457 } 1458 1459 static inline int queue_dma_alignment(const struct request_queue *q) 1460 { 1461 return q ? q->dma_alignment : 511; 1462 } 1463 1464 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1465 unsigned int len) 1466 { 1467 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1468 return !(addr & alignment) && !(len & alignment); 1469 } 1470 1471 /* assumes size > 256 */ 1472 static inline unsigned int blksize_bits(unsigned int size) 1473 { 1474 unsigned int bits = 8; 1475 do { 1476 bits++; 1477 size >>= 1; 1478 } while (size > 256); 1479 return bits; 1480 } 1481 1482 static inline unsigned int block_size(struct block_device *bdev) 1483 { 1484 return bdev->bd_block_size; 1485 } 1486 1487 typedef struct {struct page *v;} Sector; 1488 1489 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1490 1491 static inline void put_dev_sector(Sector p) 1492 { 1493 put_page(p.v); 1494 } 1495 1496 int kblockd_schedule_work(struct work_struct *work); 1497 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1498 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1499 1500 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1501 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1502 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1503 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1504 1505 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1506 1507 enum blk_integrity_flags { 1508 BLK_INTEGRITY_VERIFY = 1 << 0, 1509 BLK_INTEGRITY_GENERATE = 1 << 1, 1510 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1511 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1512 }; 1513 1514 struct blk_integrity_iter { 1515 void *prot_buf; 1516 void *data_buf; 1517 sector_t seed; 1518 unsigned int data_size; 1519 unsigned short interval; 1520 const char *disk_name; 1521 }; 1522 1523 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1524 typedef void (integrity_prepare_fn) (struct request *); 1525 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1526 1527 struct blk_integrity_profile { 1528 integrity_processing_fn *generate_fn; 1529 integrity_processing_fn *verify_fn; 1530 integrity_prepare_fn *prepare_fn; 1531 integrity_complete_fn *complete_fn; 1532 const char *name; 1533 }; 1534 1535 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1536 extern void blk_integrity_unregister(struct gendisk *); 1537 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1538 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1539 struct scatterlist *); 1540 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1541 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1542 struct request *); 1543 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1544 struct bio *); 1545 1546 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1547 { 1548 struct blk_integrity *bi = &disk->queue->integrity; 1549 1550 if (!bi->profile) 1551 return NULL; 1552 1553 return bi; 1554 } 1555 1556 static inline 1557 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1558 { 1559 return blk_get_integrity(bdev->bd_disk); 1560 } 1561 1562 static inline bool blk_integrity_rq(struct request *rq) 1563 { 1564 return rq->cmd_flags & REQ_INTEGRITY; 1565 } 1566 1567 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1568 unsigned int segs) 1569 { 1570 q->limits.max_integrity_segments = segs; 1571 } 1572 1573 static inline unsigned short 1574 queue_max_integrity_segments(const struct request_queue *q) 1575 { 1576 return q->limits.max_integrity_segments; 1577 } 1578 1579 /** 1580 * bio_integrity_intervals - Return number of integrity intervals for a bio 1581 * @bi: blk_integrity profile for device 1582 * @sectors: Size of the bio in 512-byte sectors 1583 * 1584 * Description: The block layer calculates everything in 512 byte 1585 * sectors but integrity metadata is done in terms of the data integrity 1586 * interval size of the storage device. Convert the block layer sectors 1587 * to the appropriate number of integrity intervals. 1588 */ 1589 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1590 unsigned int sectors) 1591 { 1592 return sectors >> (bi->interval_exp - 9); 1593 } 1594 1595 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1596 unsigned int sectors) 1597 { 1598 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1599 } 1600 1601 /* 1602 * Return the first bvec that contains integrity data. Only drivers that are 1603 * limited to a single integrity segment should use this helper. 1604 */ 1605 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1606 { 1607 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1608 return NULL; 1609 return rq->bio->bi_integrity->bip_vec; 1610 } 1611 1612 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1613 1614 struct bio; 1615 struct block_device; 1616 struct gendisk; 1617 struct blk_integrity; 1618 1619 static inline int blk_integrity_rq(struct request *rq) 1620 { 1621 return 0; 1622 } 1623 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1624 struct bio *b) 1625 { 1626 return 0; 1627 } 1628 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1629 struct bio *b, 1630 struct scatterlist *s) 1631 { 1632 return 0; 1633 } 1634 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1635 { 1636 return NULL; 1637 } 1638 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1639 { 1640 return NULL; 1641 } 1642 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1643 { 1644 return 0; 1645 } 1646 static inline void blk_integrity_register(struct gendisk *d, 1647 struct blk_integrity *b) 1648 { 1649 } 1650 static inline void blk_integrity_unregister(struct gendisk *d) 1651 { 1652 } 1653 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1654 unsigned int segs) 1655 { 1656 } 1657 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1658 { 1659 return 0; 1660 } 1661 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1662 struct request *r1, 1663 struct request *r2) 1664 { 1665 return true; 1666 } 1667 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1668 struct request *r, 1669 struct bio *b) 1670 { 1671 return true; 1672 } 1673 1674 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1675 unsigned int sectors) 1676 { 1677 return 0; 1678 } 1679 1680 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1681 unsigned int sectors) 1682 { 1683 return 0; 1684 } 1685 1686 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1687 { 1688 return NULL; 1689 } 1690 1691 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1692 1693 struct block_device_operations { 1694 int (*open) (struct block_device *, fmode_t); 1695 void (*release) (struct gendisk *, fmode_t); 1696 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1697 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1698 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1699 unsigned int (*check_events) (struct gendisk *disk, 1700 unsigned int clearing); 1701 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1702 int (*media_changed) (struct gendisk *); 1703 void (*unlock_native_capacity) (struct gendisk *); 1704 int (*revalidate_disk) (struct gendisk *); 1705 int (*getgeo)(struct block_device *, struct hd_geometry *); 1706 /* this callback is with swap_lock and sometimes page table lock held */ 1707 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1708 int (*report_zones)(struct gendisk *, sector_t sector, 1709 unsigned int nr_zones, report_zones_cb cb, void *data); 1710 struct module *owner; 1711 const struct pr_ops *pr_ops; 1712 }; 1713 1714 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1715 unsigned long); 1716 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1717 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1718 struct writeback_control *); 1719 1720 #ifdef CONFIG_BLK_DEV_ZONED 1721 bool blk_req_needs_zone_write_lock(struct request *rq); 1722 void __blk_req_zone_write_lock(struct request *rq); 1723 void __blk_req_zone_write_unlock(struct request *rq); 1724 1725 static inline void blk_req_zone_write_lock(struct request *rq) 1726 { 1727 if (blk_req_needs_zone_write_lock(rq)) 1728 __blk_req_zone_write_lock(rq); 1729 } 1730 1731 static inline void blk_req_zone_write_unlock(struct request *rq) 1732 { 1733 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1734 __blk_req_zone_write_unlock(rq); 1735 } 1736 1737 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1738 { 1739 return rq->q->seq_zones_wlock && 1740 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1741 } 1742 1743 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1744 { 1745 if (!blk_req_needs_zone_write_lock(rq)) 1746 return true; 1747 return !blk_req_zone_is_write_locked(rq); 1748 } 1749 #else 1750 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1751 { 1752 return false; 1753 } 1754 1755 static inline void blk_req_zone_write_lock(struct request *rq) 1756 { 1757 } 1758 1759 static inline void blk_req_zone_write_unlock(struct request *rq) 1760 { 1761 } 1762 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1763 { 1764 return false; 1765 } 1766 1767 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1768 { 1769 return true; 1770 } 1771 #endif /* CONFIG_BLK_DEV_ZONED */ 1772 1773 #else /* CONFIG_BLOCK */ 1774 1775 struct block_device; 1776 1777 /* 1778 * stubs for when the block layer is configured out 1779 */ 1780 #define buffer_heads_over_limit 0 1781 1782 static inline long nr_blockdev_pages(void) 1783 { 1784 return 0; 1785 } 1786 1787 struct blk_plug { 1788 }; 1789 1790 static inline void blk_start_plug(struct blk_plug *plug) 1791 { 1792 } 1793 1794 static inline void blk_finish_plug(struct blk_plug *plug) 1795 { 1796 } 1797 1798 static inline void blk_flush_plug(struct task_struct *task) 1799 { 1800 } 1801 1802 static inline void blk_schedule_flush_plug(struct task_struct *task) 1803 { 1804 } 1805 1806 1807 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1808 { 1809 return false; 1810 } 1811 1812 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1813 sector_t *error_sector) 1814 { 1815 return 0; 1816 } 1817 1818 #endif /* CONFIG_BLOCK */ 1819 1820 static inline void blk_wake_io_task(struct task_struct *waiter) 1821 { 1822 /* 1823 * If we're polling, the task itself is doing the completions. For 1824 * that case, we don't need to signal a wakeup, it's enough to just 1825 * mark us as RUNNING. 1826 */ 1827 if (waiter == current) 1828 __set_current_state(TASK_RUNNING); 1829 else 1830 wake_up_process(waiter); 1831 } 1832 1833 #endif 1834