1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/uuid.h> 26 #include <linux/xarray.h> 27 28 struct module; 29 struct request_queue; 30 struct elevator_queue; 31 struct blk_trace; 32 struct request; 33 struct sg_io_hdr; 34 struct blkcg_gq; 35 struct blk_flush_queue; 36 struct kiocb; 37 struct pr_ops; 38 struct rq_qos; 39 struct blk_queue_stats; 40 struct blk_stat_callback; 41 struct blk_crypto_profile; 42 43 extern const struct device_type disk_type; 44 extern struct device_type part_type; 45 extern struct class block_class; 46 47 /* 48 * Maximum number of blkcg policies allowed to be registered concurrently. 49 * Defined here to simplify include dependency. 50 */ 51 #define BLKCG_MAX_POLS 6 52 53 #define DISK_MAX_PARTS 256 54 #define DISK_NAME_LEN 32 55 56 #define PARTITION_META_INFO_VOLNAMELTH 64 57 /* 58 * Enough for the string representation of any kind of UUID plus NULL. 59 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 60 */ 61 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 62 63 struct partition_meta_info { 64 char uuid[PARTITION_META_INFO_UUIDLTH]; 65 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 66 }; 67 68 /** 69 * DOC: genhd capability flags 70 * 71 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 72 * removable media. When set, the device remains present even when media is not 73 * inserted. Shall not be set for devices which are removed entirely when the 74 * media is removed. 75 * 76 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 77 * doesn't appear in sysfs, and can't be opened from userspace or using 78 * blkdev_get*. Used for the underlying components of multipath devices. 79 * 80 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 81 * scan for partitions from add_disk, and users can't add partitions manually. 82 * 83 */ 84 enum { 85 GENHD_FL_REMOVABLE = 1 << 0, 86 GENHD_FL_HIDDEN = 1 << 1, 87 GENHD_FL_NO_PART = 1 << 2, 88 }; 89 90 enum { 91 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 92 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 93 }; 94 95 enum { 96 /* Poll even if events_poll_msecs is unset */ 97 DISK_EVENT_FLAG_POLL = 1 << 0, 98 /* Forward events to udev */ 99 DISK_EVENT_FLAG_UEVENT = 1 << 1, 100 /* Block event polling when open for exclusive write */ 101 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 102 }; 103 104 struct disk_events; 105 struct badblocks; 106 107 struct blk_integrity { 108 const struct blk_integrity_profile *profile; 109 unsigned char flags; 110 unsigned char tuple_size; 111 unsigned char interval_exp; 112 unsigned char tag_size; 113 }; 114 115 struct gendisk { 116 /* 117 * major/first_minor/minors should not be set by any new driver, the 118 * block core will take care of allocating them automatically. 119 */ 120 int major; 121 int first_minor; 122 int minors; 123 124 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 125 126 unsigned short events; /* supported events */ 127 unsigned short event_flags; /* flags related to event processing */ 128 129 struct xarray part_tbl; 130 struct block_device *part0; 131 132 const struct block_device_operations *fops; 133 struct request_queue *queue; 134 void *private_data; 135 136 struct bio_set bio_split; 137 138 int flags; 139 unsigned long state; 140 #define GD_NEED_PART_SCAN 0 141 #define GD_READ_ONLY 1 142 #define GD_DEAD 2 143 #define GD_NATIVE_CAPACITY 3 144 #define GD_ADDED 4 145 #define GD_SUPPRESS_PART_SCAN 5 146 #define GD_OWNS_QUEUE 6 147 148 struct mutex open_mutex; /* open/close mutex */ 149 unsigned open_partitions; /* number of open partitions */ 150 151 struct backing_dev_info *bdi; 152 struct kobject queue_kobj; /* the queue/ directory */ 153 struct kobject *slave_dir; 154 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 155 struct list_head slave_bdevs; 156 #endif 157 struct timer_rand_state *random; 158 atomic_t sync_io; /* RAID */ 159 struct disk_events *ev; 160 161 #ifdef CONFIG_BLK_DEV_ZONED 162 /* 163 * Zoned block device information for request dispatch control. 164 * nr_zones is the total number of zones of the device. This is always 165 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 166 * bits which indicates if a zone is conventional (bit set) or 167 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 168 * bits which indicates if a zone is write locked, that is, if a write 169 * request targeting the zone was dispatched. 170 * 171 * Reads of this information must be protected with blk_queue_enter() / 172 * blk_queue_exit(). Modifying this information is only allowed while 173 * no requests are being processed. See also blk_mq_freeze_queue() and 174 * blk_mq_unfreeze_queue(). 175 */ 176 unsigned int nr_zones; 177 unsigned int max_open_zones; 178 unsigned int max_active_zones; 179 unsigned long *conv_zones_bitmap; 180 unsigned long *seq_zones_wlock; 181 #endif /* CONFIG_BLK_DEV_ZONED */ 182 183 #if IS_ENABLED(CONFIG_CDROM) 184 struct cdrom_device_info *cdi; 185 #endif 186 int node_id; 187 struct badblocks *bb; 188 struct lockdep_map lockdep_map; 189 u64 diskseq; 190 191 /* 192 * Independent sector access ranges. This is always NULL for 193 * devices that do not have multiple independent access ranges. 194 */ 195 struct blk_independent_access_ranges *ia_ranges; 196 }; 197 198 static inline bool disk_live(struct gendisk *disk) 199 { 200 return !inode_unhashed(disk->part0->bd_inode); 201 } 202 203 /** 204 * disk_openers - returns how many openers are there for a disk 205 * @disk: disk to check 206 * 207 * This returns the number of openers for a disk. Note that this value is only 208 * stable if disk->open_mutex is held. 209 * 210 * Note: Due to a quirk in the block layer open code, each open partition is 211 * only counted once even if there are multiple openers. 212 */ 213 static inline unsigned int disk_openers(struct gendisk *disk) 214 { 215 return atomic_read(&disk->part0->bd_openers); 216 } 217 218 /* 219 * The gendisk is refcounted by the part0 block_device, and the bd_device 220 * therein is also used for device model presentation in sysfs. 221 */ 222 #define dev_to_disk(device) \ 223 (dev_to_bdev(device)->bd_disk) 224 #define disk_to_dev(disk) \ 225 (&((disk)->part0->bd_device)) 226 227 #if IS_REACHABLE(CONFIG_CDROM) 228 #define disk_to_cdi(disk) ((disk)->cdi) 229 #else 230 #define disk_to_cdi(disk) NULL 231 #endif 232 233 static inline dev_t disk_devt(struct gendisk *disk) 234 { 235 return MKDEV(disk->major, disk->first_minor); 236 } 237 238 static inline int blk_validate_block_size(unsigned long bsize) 239 { 240 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 241 return -EINVAL; 242 243 return 0; 244 } 245 246 static inline bool blk_op_is_passthrough(blk_opf_t op) 247 { 248 op &= REQ_OP_MASK; 249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 250 } 251 252 /* 253 * Zoned block device models (zoned limit). 254 * 255 * Note: This needs to be ordered from the least to the most severe 256 * restrictions for the inheritance in blk_stack_limits() to work. 257 */ 258 enum blk_zoned_model { 259 BLK_ZONED_NONE = 0, /* Regular block device */ 260 BLK_ZONED_HA, /* Host-aware zoned block device */ 261 BLK_ZONED_HM, /* Host-managed zoned block device */ 262 }; 263 264 /* 265 * BLK_BOUNCE_NONE: never bounce (default) 266 * BLK_BOUNCE_HIGH: bounce all highmem pages 267 */ 268 enum blk_bounce { 269 BLK_BOUNCE_NONE, 270 BLK_BOUNCE_HIGH, 271 }; 272 273 struct queue_limits { 274 enum blk_bounce bounce; 275 unsigned long seg_boundary_mask; 276 unsigned long virt_boundary_mask; 277 278 unsigned int max_hw_sectors; 279 unsigned int max_dev_sectors; 280 unsigned int chunk_sectors; 281 unsigned int max_sectors; 282 unsigned int max_user_sectors; 283 unsigned int max_segment_size; 284 unsigned int physical_block_size; 285 unsigned int logical_block_size; 286 unsigned int alignment_offset; 287 unsigned int io_min; 288 unsigned int io_opt; 289 unsigned int max_discard_sectors; 290 unsigned int max_hw_discard_sectors; 291 unsigned int max_secure_erase_sectors; 292 unsigned int max_write_zeroes_sectors; 293 unsigned int max_zone_append_sectors; 294 unsigned int discard_granularity; 295 unsigned int discard_alignment; 296 unsigned int zone_write_granularity; 297 298 unsigned short max_segments; 299 unsigned short max_integrity_segments; 300 unsigned short max_discard_segments; 301 302 unsigned char misaligned; 303 unsigned char discard_misaligned; 304 unsigned char raid_partial_stripes_expensive; 305 enum blk_zoned_model zoned; 306 307 /* 308 * Drivers that set dma_alignment to less than 511 must be prepared to 309 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 310 * due to possible offsets. 311 */ 312 unsigned int dma_alignment; 313 }; 314 315 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 316 void *data); 317 318 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 319 320 #ifdef CONFIG_BLK_DEV_ZONED 321 322 #define BLK_ALL_ZONES ((unsigned int)-1) 323 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 324 unsigned int nr_zones, report_zones_cb cb, void *data); 325 unsigned int bdev_nr_zones(struct block_device *bdev); 326 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 327 sector_t sectors, sector_t nr_sectors, 328 gfp_t gfp_mask); 329 int blk_revalidate_disk_zones(struct gendisk *disk, 330 void (*update_driver_data)(struct gendisk *disk)); 331 332 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 333 unsigned int cmd, unsigned long arg); 334 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 335 unsigned int cmd, unsigned long arg); 336 337 #else /* CONFIG_BLK_DEV_ZONED */ 338 339 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 340 { 341 return 0; 342 } 343 344 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 345 fmode_t mode, unsigned int cmd, 346 unsigned long arg) 347 { 348 return -ENOTTY; 349 } 350 351 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 352 fmode_t mode, unsigned int cmd, 353 unsigned long arg) 354 { 355 return -ENOTTY; 356 } 357 358 #endif /* CONFIG_BLK_DEV_ZONED */ 359 360 /* 361 * Independent access ranges: struct blk_independent_access_range describes 362 * a range of contiguous sectors that can be accessed using device command 363 * execution resources that are independent from the resources used for 364 * other access ranges. This is typically found with single-LUN multi-actuator 365 * HDDs where each access range is served by a different set of heads. 366 * The set of independent ranges supported by the device is defined using 367 * struct blk_independent_access_ranges. The independent ranges must not overlap 368 * and must include all sectors within the disk capacity (no sector holes 369 * allowed). 370 * For a device with multiple ranges, requests targeting sectors in different 371 * ranges can be executed in parallel. A request can straddle an access range 372 * boundary. 373 */ 374 struct blk_independent_access_range { 375 struct kobject kobj; 376 sector_t sector; 377 sector_t nr_sectors; 378 }; 379 380 struct blk_independent_access_ranges { 381 struct kobject kobj; 382 bool sysfs_registered; 383 unsigned int nr_ia_ranges; 384 struct blk_independent_access_range ia_range[]; 385 }; 386 387 struct request_queue { 388 struct request *last_merge; 389 struct elevator_queue *elevator; 390 391 struct percpu_ref q_usage_counter; 392 393 struct blk_queue_stats *stats; 394 struct rq_qos *rq_qos; 395 396 const struct blk_mq_ops *mq_ops; 397 398 /* sw queues */ 399 struct blk_mq_ctx __percpu *queue_ctx; 400 401 unsigned int queue_depth; 402 403 /* hw dispatch queues */ 404 struct xarray hctx_table; 405 unsigned int nr_hw_queues; 406 407 /* 408 * The queue owner gets to use this for whatever they like. 409 * ll_rw_blk doesn't touch it. 410 */ 411 void *queuedata; 412 413 /* 414 * various queue flags, see QUEUE_* below 415 */ 416 unsigned long queue_flags; 417 /* 418 * Number of contexts that have called blk_set_pm_only(). If this 419 * counter is above zero then only RQF_PM requests are processed. 420 */ 421 atomic_t pm_only; 422 423 /* 424 * ida allocated id for this queue. Used to index queues from 425 * ioctx. 426 */ 427 int id; 428 429 spinlock_t queue_lock; 430 431 struct gendisk *disk; 432 433 refcount_t refs; 434 435 /* 436 * mq queue kobject 437 */ 438 struct kobject *mq_kobj; 439 440 #ifdef CONFIG_BLK_DEV_INTEGRITY 441 struct blk_integrity integrity; 442 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 443 444 #ifdef CONFIG_PM 445 struct device *dev; 446 enum rpm_status rpm_status; 447 #endif 448 449 /* 450 * queue settings 451 */ 452 unsigned long nr_requests; /* Max # of requests */ 453 454 unsigned int dma_pad_mask; 455 456 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 457 struct blk_crypto_profile *crypto_profile; 458 struct kobject *crypto_kobject; 459 #endif 460 461 unsigned int rq_timeout; 462 463 struct timer_list timeout; 464 struct work_struct timeout_work; 465 466 atomic_t nr_active_requests_shared_tags; 467 468 struct blk_mq_tags *sched_shared_tags; 469 470 struct list_head icq_list; 471 #ifdef CONFIG_BLK_CGROUP 472 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 473 struct blkcg_gq *root_blkg; 474 struct list_head blkg_list; 475 struct mutex blkcg_mutex; 476 #endif 477 478 struct queue_limits limits; 479 480 unsigned int required_elevator_features; 481 482 int node; 483 #ifdef CONFIG_BLK_DEV_IO_TRACE 484 struct blk_trace __rcu *blk_trace; 485 #endif 486 /* 487 * for flush operations 488 */ 489 struct blk_flush_queue *fq; 490 491 struct list_head requeue_list; 492 spinlock_t requeue_lock; 493 struct delayed_work requeue_work; 494 495 struct mutex sysfs_lock; 496 struct mutex sysfs_dir_lock; 497 498 /* 499 * for reusing dead hctx instance in case of updating 500 * nr_hw_queues 501 */ 502 struct list_head unused_hctx_list; 503 spinlock_t unused_hctx_lock; 504 505 int mq_freeze_depth; 506 507 #ifdef CONFIG_BLK_DEV_THROTTLING 508 /* Throttle data */ 509 struct throtl_data *td; 510 #endif 511 struct rcu_head rcu_head; 512 wait_queue_head_t mq_freeze_wq; 513 /* 514 * Protect concurrent access to q_usage_counter by 515 * percpu_ref_kill() and percpu_ref_reinit(). 516 */ 517 struct mutex mq_freeze_lock; 518 519 int quiesce_depth; 520 521 struct blk_mq_tag_set *tag_set; 522 struct list_head tag_set_list; 523 524 struct dentry *debugfs_dir; 525 struct dentry *sched_debugfs_dir; 526 struct dentry *rqos_debugfs_dir; 527 /* 528 * Serializes all debugfs metadata operations using the above dentries. 529 */ 530 struct mutex debugfs_mutex; 531 532 bool mq_sysfs_init_done; 533 }; 534 535 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 536 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 537 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 538 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 539 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 540 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 541 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 542 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 543 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 544 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 545 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 546 #define QUEUE_FLAG_SYNCHRONOUS 11 /* always completes in submit context */ 547 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 548 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 549 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 550 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 551 #define QUEUE_FLAG_WC 17 /* Write back caching */ 552 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 553 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 554 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 555 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 556 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 557 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 558 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 559 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 560 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 561 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 562 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 563 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE 31 /* quiesce_tagset skip the queue*/ 564 565 #define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \ 566 (1UL << QUEUE_FLAG_SAME_COMP) | \ 567 (1UL << QUEUE_FLAG_NOWAIT)) 568 569 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 570 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 571 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 572 573 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 574 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 575 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 576 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 577 #define blk_queue_noxmerges(q) \ 578 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 579 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 580 #define blk_queue_stable_writes(q) \ 581 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 582 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 583 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 584 #define blk_queue_zone_resetall(q) \ 585 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 586 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 587 #define blk_queue_pci_p2pdma(q) \ 588 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 589 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 590 #define blk_queue_rq_alloc_time(q) \ 591 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 592 #else 593 #define blk_queue_rq_alloc_time(q) false 594 #endif 595 596 #define blk_noretry_request(rq) \ 597 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 598 REQ_FAILFAST_DRIVER)) 599 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 600 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 601 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 602 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 603 #define blk_queue_skip_tagset_quiesce(q) \ 604 test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags) 605 606 extern void blk_set_pm_only(struct request_queue *q); 607 extern void blk_clear_pm_only(struct request_queue *q); 608 609 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 610 611 #define dma_map_bvec(dev, bv, dir, attrs) \ 612 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 613 (dir), (attrs)) 614 615 static inline bool queue_is_mq(struct request_queue *q) 616 { 617 return q->mq_ops; 618 } 619 620 #ifdef CONFIG_PM 621 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 622 { 623 return q->rpm_status; 624 } 625 #else 626 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 627 { 628 return RPM_ACTIVE; 629 } 630 #endif 631 632 static inline enum blk_zoned_model 633 blk_queue_zoned_model(struct request_queue *q) 634 { 635 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 636 return q->limits.zoned; 637 return BLK_ZONED_NONE; 638 } 639 640 static inline bool blk_queue_is_zoned(struct request_queue *q) 641 { 642 switch (blk_queue_zoned_model(q)) { 643 case BLK_ZONED_HA: 644 case BLK_ZONED_HM: 645 return true; 646 default: 647 return false; 648 } 649 } 650 651 #ifdef CONFIG_BLK_DEV_ZONED 652 static inline unsigned int disk_nr_zones(struct gendisk *disk) 653 { 654 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0; 655 } 656 657 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 658 { 659 if (!blk_queue_is_zoned(disk->queue)) 660 return 0; 661 return sector >> ilog2(disk->queue->limits.chunk_sectors); 662 } 663 664 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 665 { 666 if (!blk_queue_is_zoned(disk->queue)) 667 return false; 668 if (!disk->conv_zones_bitmap) 669 return true; 670 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 671 } 672 673 static inline void disk_set_max_open_zones(struct gendisk *disk, 674 unsigned int max_open_zones) 675 { 676 disk->max_open_zones = max_open_zones; 677 } 678 679 static inline void disk_set_max_active_zones(struct gendisk *disk, 680 unsigned int max_active_zones) 681 { 682 disk->max_active_zones = max_active_zones; 683 } 684 685 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 686 { 687 return bdev->bd_disk->max_open_zones; 688 } 689 690 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 691 { 692 return bdev->bd_disk->max_active_zones; 693 } 694 695 #else /* CONFIG_BLK_DEV_ZONED */ 696 static inline unsigned int disk_nr_zones(struct gendisk *disk) 697 { 698 return 0; 699 } 700 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 701 { 702 return false; 703 } 704 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 705 { 706 return 0; 707 } 708 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 709 { 710 return 0; 711 } 712 713 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 714 { 715 return 0; 716 } 717 #endif /* CONFIG_BLK_DEV_ZONED */ 718 719 static inline unsigned int blk_queue_depth(struct request_queue *q) 720 { 721 if (q->queue_depth) 722 return q->queue_depth; 723 724 return q->nr_requests; 725 } 726 727 /* 728 * default timeout for SG_IO if none specified 729 */ 730 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 731 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 732 733 /* This should not be used directly - use rq_for_each_segment */ 734 #define for_each_bio(_bio) \ 735 for (; _bio; _bio = _bio->bi_next) 736 737 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 738 const struct attribute_group **groups); 739 static inline int __must_check add_disk(struct gendisk *disk) 740 { 741 return device_add_disk(NULL, disk, NULL); 742 } 743 void del_gendisk(struct gendisk *gp); 744 void invalidate_disk(struct gendisk *disk); 745 void set_disk_ro(struct gendisk *disk, bool read_only); 746 void disk_uevent(struct gendisk *disk, enum kobject_action action); 747 748 static inline int get_disk_ro(struct gendisk *disk) 749 { 750 return disk->part0->bd_read_only || 751 test_bit(GD_READ_ONLY, &disk->state); 752 } 753 754 static inline int bdev_read_only(struct block_device *bdev) 755 { 756 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 757 } 758 759 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 760 bool disk_force_media_change(struct gendisk *disk, unsigned int events); 761 762 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 763 void rand_initialize_disk(struct gendisk *disk); 764 765 static inline sector_t get_start_sect(struct block_device *bdev) 766 { 767 return bdev->bd_start_sect; 768 } 769 770 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 771 { 772 return bdev->bd_nr_sectors; 773 } 774 775 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 776 { 777 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 778 } 779 780 static inline sector_t get_capacity(struct gendisk *disk) 781 { 782 return bdev_nr_sectors(disk->part0); 783 } 784 785 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 786 { 787 return bdev_nr_sectors(sb->s_bdev) >> 788 (sb->s_blocksize_bits - SECTOR_SHIFT); 789 } 790 791 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 792 793 void put_disk(struct gendisk *disk); 794 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 795 796 /** 797 * blk_alloc_disk - allocate a gendisk structure 798 * @node_id: numa node to allocate on 799 * 800 * Allocate and pre-initialize a gendisk structure for use with BIO based 801 * drivers. 802 * 803 * Context: can sleep 804 */ 805 #define blk_alloc_disk(node_id) \ 806 ({ \ 807 static struct lock_class_key __key; \ 808 \ 809 __blk_alloc_disk(node_id, &__key); \ 810 }) 811 812 int __register_blkdev(unsigned int major, const char *name, 813 void (*probe)(dev_t devt)); 814 #define register_blkdev(major, name) \ 815 __register_blkdev(major, name, NULL) 816 void unregister_blkdev(unsigned int major, const char *name); 817 818 bool bdev_check_media_change(struct block_device *bdev); 819 int __invalidate_device(struct block_device *bdev, bool kill_dirty); 820 void set_capacity(struct gendisk *disk, sector_t size); 821 822 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 823 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 824 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 825 #else 826 static inline int bd_link_disk_holder(struct block_device *bdev, 827 struct gendisk *disk) 828 { 829 return 0; 830 } 831 static inline void bd_unlink_disk_holder(struct block_device *bdev, 832 struct gendisk *disk) 833 { 834 } 835 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 836 837 dev_t part_devt(struct gendisk *disk, u8 partno); 838 void inc_diskseq(struct gendisk *disk); 839 dev_t blk_lookup_devt(const char *name, int partno); 840 void blk_request_module(dev_t devt); 841 842 extern int blk_register_queue(struct gendisk *disk); 843 extern void blk_unregister_queue(struct gendisk *disk); 844 void submit_bio_noacct(struct bio *bio); 845 struct bio *bio_split_to_limits(struct bio *bio); 846 847 extern int blk_lld_busy(struct request_queue *q); 848 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 849 extern void blk_queue_exit(struct request_queue *q); 850 extern void blk_sync_queue(struct request_queue *q); 851 852 /* Helper to convert REQ_OP_XXX to its string format XXX */ 853 extern const char *blk_op_str(enum req_op op); 854 855 int blk_status_to_errno(blk_status_t status); 856 blk_status_t errno_to_blk_status(int errno); 857 858 /* only poll the hardware once, don't continue until a completion was found */ 859 #define BLK_POLL_ONESHOT (1 << 0) 860 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 861 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 862 unsigned int flags); 863 864 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 865 { 866 return bdev->bd_queue; /* this is never NULL */ 867 } 868 869 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 870 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 871 872 static inline unsigned int bio_zone_no(struct bio *bio) 873 { 874 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 875 } 876 877 static inline unsigned int bio_zone_is_seq(struct bio *bio) 878 { 879 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 880 } 881 882 /* 883 * Return how much of the chunk is left to be used for I/O at a given offset. 884 */ 885 static inline unsigned int blk_chunk_sectors_left(sector_t offset, 886 unsigned int chunk_sectors) 887 { 888 if (unlikely(!is_power_of_2(chunk_sectors))) 889 return chunk_sectors - sector_div(offset, chunk_sectors); 890 return chunk_sectors - (offset & (chunk_sectors - 1)); 891 } 892 893 /* 894 * Access functions for manipulating queue properties 895 */ 896 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 897 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 898 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 899 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 900 extern void blk_queue_max_discard_segments(struct request_queue *, 901 unsigned short); 902 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 903 unsigned int max_sectors); 904 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 905 extern void blk_queue_max_discard_sectors(struct request_queue *q, 906 unsigned int max_discard_sectors); 907 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 908 unsigned int max_write_same_sectors); 909 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 910 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 911 unsigned int max_zone_append_sectors); 912 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 913 void blk_queue_zone_write_granularity(struct request_queue *q, 914 unsigned int size); 915 extern void blk_queue_alignment_offset(struct request_queue *q, 916 unsigned int alignment); 917 void disk_update_readahead(struct gendisk *disk); 918 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 919 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 920 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 921 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 922 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 923 extern void blk_set_stacking_limits(struct queue_limits *lim); 924 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 925 sector_t offset); 926 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 927 sector_t offset); 928 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 929 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 930 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 931 extern void blk_queue_dma_alignment(struct request_queue *, int); 932 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 933 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 934 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 935 936 struct blk_independent_access_ranges * 937 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 938 void disk_set_independent_access_ranges(struct gendisk *disk, 939 struct blk_independent_access_ranges *iars); 940 941 /* 942 * Elevator features for blk_queue_required_elevator_features: 943 */ 944 /* Supports zoned block devices sequential write constraint */ 945 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 946 947 extern void blk_queue_required_elevator_features(struct request_queue *q, 948 unsigned int features); 949 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 950 struct device *dev); 951 952 bool __must_check blk_get_queue(struct request_queue *); 953 extern void blk_put_queue(struct request_queue *); 954 955 void blk_mark_disk_dead(struct gendisk *disk); 956 957 #ifdef CONFIG_BLOCK 958 /* 959 * blk_plug permits building a queue of related requests by holding the I/O 960 * fragments for a short period. This allows merging of sequential requests 961 * into single larger request. As the requests are moved from a per-task list to 962 * the device's request_queue in a batch, this results in improved scalability 963 * as the lock contention for request_queue lock is reduced. 964 * 965 * It is ok not to disable preemption when adding the request to the plug list 966 * or when attempting a merge. For details, please see schedule() where 967 * blk_flush_plug() is called. 968 */ 969 struct blk_plug { 970 struct request *mq_list; /* blk-mq requests */ 971 972 /* if ios_left is > 1, we can batch tag/rq allocations */ 973 struct request *cached_rq; 974 unsigned short nr_ios; 975 976 unsigned short rq_count; 977 978 bool multiple_queues; 979 bool has_elevator; 980 bool nowait; 981 982 struct list_head cb_list; /* md requires an unplug callback */ 983 }; 984 985 struct blk_plug_cb; 986 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 987 struct blk_plug_cb { 988 struct list_head list; 989 blk_plug_cb_fn callback; 990 void *data; 991 }; 992 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 993 void *data, int size); 994 extern void blk_start_plug(struct blk_plug *); 995 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 996 extern void blk_finish_plug(struct blk_plug *); 997 998 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 999 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1000 { 1001 if (plug) 1002 __blk_flush_plug(plug, async); 1003 } 1004 1005 int blkdev_issue_flush(struct block_device *bdev); 1006 long nr_blockdev_pages(void); 1007 #else /* CONFIG_BLOCK */ 1008 struct blk_plug { 1009 }; 1010 1011 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1012 unsigned short nr_ios) 1013 { 1014 } 1015 1016 static inline void blk_start_plug(struct blk_plug *plug) 1017 { 1018 } 1019 1020 static inline void blk_finish_plug(struct blk_plug *plug) 1021 { 1022 } 1023 1024 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1025 { 1026 } 1027 1028 static inline int blkdev_issue_flush(struct block_device *bdev) 1029 { 1030 return 0; 1031 } 1032 1033 static inline long nr_blockdev_pages(void) 1034 { 1035 return 0; 1036 } 1037 #endif /* CONFIG_BLOCK */ 1038 1039 extern void blk_io_schedule(void); 1040 1041 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1042 sector_t nr_sects, gfp_t gfp_mask); 1043 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1044 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1045 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1046 sector_t nr_sects, gfp_t gfp); 1047 1048 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1049 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1050 1051 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1052 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1053 unsigned flags); 1054 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1055 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1056 1057 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1058 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1059 { 1060 return blkdev_issue_discard(sb->s_bdev, 1061 block << (sb->s_blocksize_bits - 1062 SECTOR_SHIFT), 1063 nr_blocks << (sb->s_blocksize_bits - 1064 SECTOR_SHIFT), 1065 gfp_mask); 1066 } 1067 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1068 sector_t nr_blocks, gfp_t gfp_mask) 1069 { 1070 return blkdev_issue_zeroout(sb->s_bdev, 1071 block << (sb->s_blocksize_bits - 1072 SECTOR_SHIFT), 1073 nr_blocks << (sb->s_blocksize_bits - 1074 SECTOR_SHIFT), 1075 gfp_mask, 0); 1076 } 1077 1078 static inline bool bdev_is_partition(struct block_device *bdev) 1079 { 1080 return bdev->bd_partno; 1081 } 1082 1083 enum blk_default_limits { 1084 BLK_MAX_SEGMENTS = 128, 1085 BLK_SAFE_MAX_SECTORS = 255, 1086 BLK_MAX_SEGMENT_SIZE = 65536, 1087 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1088 }; 1089 1090 #define BLK_DEF_MAX_SECTORS 2560u 1091 1092 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1093 { 1094 return q->limits.seg_boundary_mask; 1095 } 1096 1097 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1098 { 1099 return q->limits.virt_boundary_mask; 1100 } 1101 1102 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1103 { 1104 return q->limits.max_sectors; 1105 } 1106 1107 static inline unsigned int queue_max_bytes(struct request_queue *q) 1108 { 1109 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1110 } 1111 1112 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1113 { 1114 return q->limits.max_hw_sectors; 1115 } 1116 1117 static inline unsigned short queue_max_segments(const struct request_queue *q) 1118 { 1119 return q->limits.max_segments; 1120 } 1121 1122 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1123 { 1124 return q->limits.max_discard_segments; 1125 } 1126 1127 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1128 { 1129 return q->limits.max_segment_size; 1130 } 1131 1132 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1133 { 1134 1135 const struct queue_limits *l = &q->limits; 1136 1137 return min(l->max_zone_append_sectors, l->max_sectors); 1138 } 1139 1140 static inline unsigned int 1141 bdev_max_zone_append_sectors(struct block_device *bdev) 1142 { 1143 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1144 } 1145 1146 static inline unsigned int bdev_max_segments(struct block_device *bdev) 1147 { 1148 return queue_max_segments(bdev_get_queue(bdev)); 1149 } 1150 1151 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1152 { 1153 int retval = 512; 1154 1155 if (q && q->limits.logical_block_size) 1156 retval = q->limits.logical_block_size; 1157 1158 return retval; 1159 } 1160 1161 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1162 { 1163 return queue_logical_block_size(bdev_get_queue(bdev)); 1164 } 1165 1166 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1167 { 1168 return q->limits.physical_block_size; 1169 } 1170 1171 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1172 { 1173 return queue_physical_block_size(bdev_get_queue(bdev)); 1174 } 1175 1176 static inline unsigned int queue_io_min(const struct request_queue *q) 1177 { 1178 return q->limits.io_min; 1179 } 1180 1181 static inline int bdev_io_min(struct block_device *bdev) 1182 { 1183 return queue_io_min(bdev_get_queue(bdev)); 1184 } 1185 1186 static inline unsigned int queue_io_opt(const struct request_queue *q) 1187 { 1188 return q->limits.io_opt; 1189 } 1190 1191 static inline int bdev_io_opt(struct block_device *bdev) 1192 { 1193 return queue_io_opt(bdev_get_queue(bdev)); 1194 } 1195 1196 static inline unsigned int 1197 queue_zone_write_granularity(const struct request_queue *q) 1198 { 1199 return q->limits.zone_write_granularity; 1200 } 1201 1202 static inline unsigned int 1203 bdev_zone_write_granularity(struct block_device *bdev) 1204 { 1205 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1206 } 1207 1208 int bdev_alignment_offset(struct block_device *bdev); 1209 unsigned int bdev_discard_alignment(struct block_device *bdev); 1210 1211 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1212 { 1213 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1214 } 1215 1216 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1217 { 1218 return bdev_get_queue(bdev)->limits.discard_granularity; 1219 } 1220 1221 static inline unsigned int 1222 bdev_max_secure_erase_sectors(struct block_device *bdev) 1223 { 1224 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1225 } 1226 1227 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1228 { 1229 struct request_queue *q = bdev_get_queue(bdev); 1230 1231 if (q) 1232 return q->limits.max_write_zeroes_sectors; 1233 1234 return 0; 1235 } 1236 1237 static inline bool bdev_nonrot(struct block_device *bdev) 1238 { 1239 return blk_queue_nonrot(bdev_get_queue(bdev)); 1240 } 1241 1242 static inline bool bdev_synchronous(struct block_device *bdev) 1243 { 1244 return test_bit(QUEUE_FLAG_SYNCHRONOUS, 1245 &bdev_get_queue(bdev)->queue_flags); 1246 } 1247 1248 static inline bool bdev_stable_writes(struct block_device *bdev) 1249 { 1250 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1251 &bdev_get_queue(bdev)->queue_flags); 1252 } 1253 1254 static inline bool bdev_write_cache(struct block_device *bdev) 1255 { 1256 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1257 } 1258 1259 static inline bool bdev_fua(struct block_device *bdev) 1260 { 1261 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1262 } 1263 1264 static inline bool bdev_nowait(struct block_device *bdev) 1265 { 1266 return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags); 1267 } 1268 1269 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1270 { 1271 return blk_queue_zoned_model(bdev_get_queue(bdev)); 1272 } 1273 1274 static inline bool bdev_is_zoned(struct block_device *bdev) 1275 { 1276 return blk_queue_is_zoned(bdev_get_queue(bdev)); 1277 } 1278 1279 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) 1280 { 1281 return disk_zone_no(bdev->bd_disk, sec); 1282 } 1283 1284 static inline bool bdev_op_is_zoned_write(struct block_device *bdev, 1285 blk_opf_t op) 1286 { 1287 if (!bdev_is_zoned(bdev)) 1288 return false; 1289 1290 return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES; 1291 } 1292 1293 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1294 { 1295 struct request_queue *q = bdev_get_queue(bdev); 1296 1297 if (!blk_queue_is_zoned(q)) 1298 return 0; 1299 return q->limits.chunk_sectors; 1300 } 1301 1302 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, 1303 sector_t sector) 1304 { 1305 return sector & (bdev_zone_sectors(bdev) - 1); 1306 } 1307 1308 static inline bool bdev_is_zone_start(struct block_device *bdev, 1309 sector_t sector) 1310 { 1311 return bdev_offset_from_zone_start(bdev, sector) == 0; 1312 } 1313 1314 static inline int queue_dma_alignment(const struct request_queue *q) 1315 { 1316 return q ? q->limits.dma_alignment : 511; 1317 } 1318 1319 static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1320 { 1321 return queue_dma_alignment(bdev_get_queue(bdev)); 1322 } 1323 1324 static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1325 struct iov_iter *iter) 1326 { 1327 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1328 bdev_logical_block_size(bdev) - 1); 1329 } 1330 1331 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1332 unsigned int len) 1333 { 1334 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1335 return !(addr & alignment) && !(len & alignment); 1336 } 1337 1338 /* assumes size > 256 */ 1339 static inline unsigned int blksize_bits(unsigned int size) 1340 { 1341 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1342 } 1343 1344 static inline unsigned int block_size(struct block_device *bdev) 1345 { 1346 return 1 << bdev->bd_inode->i_blkbits; 1347 } 1348 1349 int kblockd_schedule_work(struct work_struct *work); 1350 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1351 1352 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1353 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1354 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1355 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1356 1357 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1358 1359 bool blk_crypto_register(struct blk_crypto_profile *profile, 1360 struct request_queue *q); 1361 1362 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1363 1364 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1365 struct request_queue *q) 1366 { 1367 return true; 1368 } 1369 1370 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1371 1372 enum blk_unique_id { 1373 /* these match the Designator Types specified in SPC */ 1374 BLK_UID_T10 = 1, 1375 BLK_UID_EUI64 = 2, 1376 BLK_UID_NAA = 3, 1377 }; 1378 1379 #define NFL4_UFLG_MASK 0x0000003F 1380 1381 struct block_device_operations { 1382 void (*submit_bio)(struct bio *bio); 1383 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1384 unsigned int flags); 1385 int (*open) (struct block_device *, fmode_t); 1386 void (*release) (struct gendisk *, fmode_t); 1387 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1388 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1389 unsigned int (*check_events) (struct gendisk *disk, 1390 unsigned int clearing); 1391 void (*unlock_native_capacity) (struct gendisk *); 1392 int (*getgeo)(struct block_device *, struct hd_geometry *); 1393 int (*set_read_only)(struct block_device *bdev, bool ro); 1394 void (*free_disk)(struct gendisk *disk); 1395 /* this callback is with swap_lock and sometimes page table lock held */ 1396 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1397 int (*report_zones)(struct gendisk *, sector_t sector, 1398 unsigned int nr_zones, report_zones_cb cb, void *data); 1399 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1400 /* returns the length of the identifier or a negative errno: */ 1401 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1402 enum blk_unique_id id_type); 1403 struct module *owner; 1404 const struct pr_ops *pr_ops; 1405 1406 /* 1407 * Special callback for probing GPT entry at a given sector. 1408 * Needed by Android devices, used by GPT scanner and MMC blk 1409 * driver. 1410 */ 1411 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1412 }; 1413 1414 #ifdef CONFIG_COMPAT 1415 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1416 unsigned int, unsigned long); 1417 #else 1418 #define blkdev_compat_ptr_ioctl NULL 1419 #endif 1420 1421 static inline void blk_wake_io_task(struct task_struct *waiter) 1422 { 1423 /* 1424 * If we're polling, the task itself is doing the completions. For 1425 * that case, we don't need to signal a wakeup, it's enough to just 1426 * mark us as RUNNING. 1427 */ 1428 if (waiter == current) 1429 __set_current_state(TASK_RUNNING); 1430 else 1431 wake_up_process(waiter); 1432 } 1433 1434 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 1435 unsigned long start_time); 1436 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1437 unsigned int sectors, unsigned long start_time); 1438 1439 unsigned long bio_start_io_acct(struct bio *bio); 1440 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1441 struct block_device *orig_bdev); 1442 1443 /** 1444 * bio_end_io_acct - end I/O accounting for bio based drivers 1445 * @bio: bio to end account for 1446 * @start_time: start time returned by bio_start_io_acct() 1447 */ 1448 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1449 { 1450 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1451 } 1452 1453 int bdev_read_only(struct block_device *bdev); 1454 int set_blocksize(struct block_device *bdev, int size); 1455 1456 int lookup_bdev(const char *pathname, dev_t *dev); 1457 1458 void blkdev_show(struct seq_file *seqf, off_t offset); 1459 1460 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1461 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1462 #ifdef CONFIG_BLOCK 1463 #define BLKDEV_MAJOR_MAX 512 1464 #else 1465 #define BLKDEV_MAJOR_MAX 0 1466 #endif 1467 1468 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1469 void *holder); 1470 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1471 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1472 void bd_abort_claiming(struct block_device *bdev, void *holder); 1473 void blkdev_put(struct block_device *bdev, fmode_t mode); 1474 1475 /* just for blk-cgroup, don't use elsewhere */ 1476 struct block_device *blkdev_get_no_open(dev_t dev); 1477 void blkdev_put_no_open(struct block_device *bdev); 1478 1479 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1480 void bdev_add(struct block_device *bdev, dev_t dev); 1481 struct block_device *I_BDEV(struct inode *inode); 1482 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1483 loff_t lend); 1484 1485 #ifdef CONFIG_BLOCK 1486 void invalidate_bdev(struct block_device *bdev); 1487 int sync_blockdev(struct block_device *bdev); 1488 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1489 int sync_blockdev_nowait(struct block_device *bdev); 1490 void sync_bdevs(bool wait); 1491 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat); 1492 void printk_all_partitions(void); 1493 #else 1494 static inline void invalidate_bdev(struct block_device *bdev) 1495 { 1496 } 1497 static inline int sync_blockdev(struct block_device *bdev) 1498 { 1499 return 0; 1500 } 1501 static inline int sync_blockdev_nowait(struct block_device *bdev) 1502 { 1503 return 0; 1504 } 1505 static inline void sync_bdevs(bool wait) 1506 { 1507 } 1508 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat) 1509 { 1510 } 1511 static inline void printk_all_partitions(void) 1512 { 1513 } 1514 #endif /* CONFIG_BLOCK */ 1515 1516 int fsync_bdev(struct block_device *bdev); 1517 1518 int freeze_bdev(struct block_device *bdev); 1519 int thaw_bdev(struct block_device *bdev); 1520 1521 struct io_comp_batch { 1522 struct request *req_list; 1523 bool need_ts; 1524 void (*complete)(struct io_comp_batch *); 1525 }; 1526 1527 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1528 1529 #endif /* _LINUX_BLKDEV_H */ 1530