1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 #include <linux/seqlock.h> 31 #include <linux/u64_stats_sync.h> 32 33 struct module; 34 struct scsi_ioctl_command; 35 36 struct request_queue; 37 struct elevator_queue; 38 struct blk_trace; 39 struct request; 40 struct sg_io_hdr; 41 struct bsg_job; 42 struct blkcg_gq; 43 struct blk_flush_queue; 44 struct pr_ops; 45 struct rq_wb; 46 struct blk_queue_stats; 47 struct blk_stat_callback; 48 49 #define BLKDEV_MIN_RQ 4 50 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 51 52 /* Must be consistent with blk_mq_poll_stats_bkt() */ 53 #define BLK_MQ_POLL_STATS_BKTS 16 54 55 /* 56 * Maximum number of blkcg policies allowed to be registered concurrently. 57 * Defined here to simplify include dependency. 58 */ 59 #define BLKCG_MAX_POLS 3 60 61 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 62 63 #define BLK_RL_SYNCFULL (1U << 0) 64 #define BLK_RL_ASYNCFULL (1U << 1) 65 66 struct request_list { 67 struct request_queue *q; /* the queue this rl belongs to */ 68 #ifdef CONFIG_BLK_CGROUP 69 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 70 #endif 71 /* 72 * count[], starved[], and wait[] are indexed by 73 * BLK_RW_SYNC/BLK_RW_ASYNC 74 */ 75 int count[2]; 76 int starved[2]; 77 mempool_t *rq_pool; 78 wait_queue_head_t wait[2]; 79 unsigned int flags; 80 }; 81 82 /* 83 * request flags */ 84 typedef __u32 __bitwise req_flags_t; 85 86 /* elevator knows about this request */ 87 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 88 /* drive already may have started this one */ 89 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 90 /* uses tagged queueing */ 91 #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 92 /* may not be passed by ioscheduler */ 93 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 94 /* request for flush sequence */ 95 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 96 /* merge of different types, fail separately */ 97 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 98 /* track inflight for MQ */ 99 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 100 /* don't call prep for this one */ 101 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 102 /* set for "ide_preempt" requests and also for requests for which the SCSI 103 "quiesce" state must be ignored. */ 104 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 105 /* contains copies of user pages */ 106 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 107 /* vaguely specified driver internal error. Ignored by the block layer */ 108 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 109 /* don't warn about errors */ 110 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 111 /* elevator private data attached */ 112 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 113 /* account I/O stat */ 114 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 115 /* request came from our alloc pool */ 116 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 117 /* runtime pm request */ 118 #define RQF_PM ((__force req_flags_t)(1 << 15)) 119 /* on IO scheduler merge hash */ 120 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 121 /* IO stats tracking on */ 122 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 123 /* Look at ->special_vec for the actual data payload instead of the 124 bio chain. */ 125 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 126 /* The per-zone write lock is held for this request */ 127 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 128 /* timeout is expired */ 129 #define RQF_MQ_TIMEOUT_EXPIRED ((__force req_flags_t)(1 << 20)) 130 /* already slept for hybrid poll */ 131 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 21)) 132 133 /* flags that prevent us from merging requests: */ 134 #define RQF_NOMERGE_FLAGS \ 135 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 136 137 /* 138 * Try to put the fields that are referenced together in the same cacheline. 139 * 140 * If you modify this structure, make sure to update blk_rq_init() and 141 * especially blk_mq_rq_ctx_init() to take care of the added fields. 142 */ 143 struct request { 144 struct request_queue *q; 145 struct blk_mq_ctx *mq_ctx; 146 147 int cpu; 148 unsigned int cmd_flags; /* op and common flags */ 149 req_flags_t rq_flags; 150 151 int internal_tag; 152 153 /* the following two fields are internal, NEVER access directly */ 154 unsigned int __data_len; /* total data len */ 155 int tag; 156 sector_t __sector; /* sector cursor */ 157 158 struct bio *bio; 159 struct bio *biotail; 160 161 struct list_head queuelist; 162 163 /* 164 * The hash is used inside the scheduler, and killed once the 165 * request reaches the dispatch list. The ipi_list is only used 166 * to queue the request for softirq completion, which is long 167 * after the request has been unhashed (and even removed from 168 * the dispatch list). 169 */ 170 union { 171 struct hlist_node hash; /* merge hash */ 172 struct list_head ipi_list; 173 }; 174 175 /* 176 * The rb_node is only used inside the io scheduler, requests 177 * are pruned when moved to the dispatch queue. So let the 178 * completion_data share space with the rb_node. 179 */ 180 union { 181 struct rb_node rb_node; /* sort/lookup */ 182 struct bio_vec special_vec; 183 void *completion_data; 184 int error_count; /* for legacy drivers, don't use */ 185 }; 186 187 /* 188 * Three pointers are available for the IO schedulers, if they need 189 * more they have to dynamically allocate it. Flush requests are 190 * never put on the IO scheduler. So let the flush fields share 191 * space with the elevator data. 192 */ 193 union { 194 struct { 195 struct io_cq *icq; 196 void *priv[2]; 197 } elv; 198 199 struct { 200 unsigned int seq; 201 struct list_head list; 202 rq_end_io_fn *saved_end_io; 203 } flush; 204 }; 205 206 struct gendisk *rq_disk; 207 struct hd_struct *part; 208 unsigned long start_time; 209 struct blk_issue_stat issue_stat; 210 /* Number of scatter-gather DMA addr+len pairs after 211 * physical address coalescing is performed. 212 */ 213 unsigned short nr_phys_segments; 214 215 #if defined(CONFIG_BLK_DEV_INTEGRITY) 216 unsigned short nr_integrity_segments; 217 #endif 218 219 unsigned short write_hint; 220 unsigned short ioprio; 221 222 unsigned int timeout; 223 224 void *special; /* opaque pointer available for LLD use */ 225 226 unsigned int extra_len; /* length of alignment and padding */ 227 228 /* 229 * On blk-mq, the lower bits of ->gstate (generation number and 230 * state) carry the MQ_RQ_* state value and the upper bits the 231 * generation number which is monotonically incremented and used to 232 * distinguish the reuse instances. 233 * 234 * ->gstate_seq allows updates to ->gstate and other fields 235 * (currently ->deadline) during request start to be read 236 * atomically from the timeout path, so that it can operate on a 237 * coherent set of information. 238 */ 239 seqcount_t gstate_seq; 240 u64 gstate; 241 242 /* 243 * ->aborted_gstate is used by the timeout to claim a specific 244 * recycle instance of this request. See blk_mq_timeout_work(). 245 */ 246 struct u64_stats_sync aborted_gstate_sync; 247 u64 aborted_gstate; 248 249 /* access through blk_rq_set_deadline, blk_rq_deadline */ 250 unsigned long __deadline; 251 252 struct list_head timeout_list; 253 254 union { 255 struct __call_single_data csd; 256 u64 fifo_time; 257 }; 258 259 /* 260 * completion callback. 261 */ 262 rq_end_io_fn *end_io; 263 void *end_io_data; 264 265 /* for bidi */ 266 struct request *next_rq; 267 268 #ifdef CONFIG_BLK_CGROUP 269 struct request_list *rl; /* rl this rq is alloced from */ 270 unsigned long long start_time_ns; 271 unsigned long long io_start_time_ns; /* when passed to hardware */ 272 #endif 273 }; 274 275 static inline bool blk_op_is_scsi(unsigned int op) 276 { 277 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 278 } 279 280 static inline bool blk_op_is_private(unsigned int op) 281 { 282 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 283 } 284 285 static inline bool blk_rq_is_scsi(struct request *rq) 286 { 287 return blk_op_is_scsi(req_op(rq)); 288 } 289 290 static inline bool blk_rq_is_private(struct request *rq) 291 { 292 return blk_op_is_private(req_op(rq)); 293 } 294 295 static inline bool blk_rq_is_passthrough(struct request *rq) 296 { 297 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 298 } 299 300 static inline bool bio_is_passthrough(struct bio *bio) 301 { 302 unsigned op = bio_op(bio); 303 304 return blk_op_is_scsi(op) || blk_op_is_private(op); 305 } 306 307 static inline unsigned short req_get_ioprio(struct request *req) 308 { 309 return req->ioprio; 310 } 311 312 #include <linux/elevator.h> 313 314 struct blk_queue_ctx; 315 316 typedef void (request_fn_proc) (struct request_queue *q); 317 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 318 typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t); 319 typedef int (prep_rq_fn) (struct request_queue *, struct request *); 320 typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 321 322 struct bio_vec; 323 typedef void (softirq_done_fn)(struct request *); 324 typedef int (dma_drain_needed_fn)(struct request *); 325 typedef int (lld_busy_fn) (struct request_queue *q); 326 typedef int (bsg_job_fn) (struct bsg_job *); 327 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 328 typedef void (exit_rq_fn)(struct request_queue *, struct request *); 329 330 enum blk_eh_timer_return { 331 BLK_EH_NOT_HANDLED, 332 BLK_EH_HANDLED, 333 BLK_EH_RESET_TIMER, 334 }; 335 336 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 337 338 enum blk_queue_state { 339 Queue_down, 340 Queue_up, 341 }; 342 343 struct blk_queue_tag { 344 struct request **tag_index; /* map of busy tags */ 345 unsigned long *tag_map; /* bit map of free/busy tags */ 346 int max_depth; /* what we will send to device */ 347 int real_max_depth; /* what the array can hold */ 348 atomic_t refcnt; /* map can be shared */ 349 int alloc_policy; /* tag allocation policy */ 350 int next_tag; /* next tag */ 351 }; 352 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 353 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 354 355 #define BLK_SCSI_MAX_CMDS (256) 356 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 357 358 /* 359 * Zoned block device models (zoned limit). 360 */ 361 enum blk_zoned_model { 362 BLK_ZONED_NONE, /* Regular block device */ 363 BLK_ZONED_HA, /* Host-aware zoned block device */ 364 BLK_ZONED_HM, /* Host-managed zoned block device */ 365 }; 366 367 struct queue_limits { 368 unsigned long bounce_pfn; 369 unsigned long seg_boundary_mask; 370 unsigned long virt_boundary_mask; 371 372 unsigned int max_hw_sectors; 373 unsigned int max_dev_sectors; 374 unsigned int chunk_sectors; 375 unsigned int max_sectors; 376 unsigned int max_segment_size; 377 unsigned int physical_block_size; 378 unsigned int alignment_offset; 379 unsigned int io_min; 380 unsigned int io_opt; 381 unsigned int max_discard_sectors; 382 unsigned int max_hw_discard_sectors; 383 unsigned int max_write_same_sectors; 384 unsigned int max_write_zeroes_sectors; 385 unsigned int discard_granularity; 386 unsigned int discard_alignment; 387 388 unsigned short logical_block_size; 389 unsigned short max_segments; 390 unsigned short max_integrity_segments; 391 unsigned short max_discard_segments; 392 393 unsigned char misaligned; 394 unsigned char discard_misaligned; 395 unsigned char cluster; 396 unsigned char raid_partial_stripes_expensive; 397 enum blk_zoned_model zoned; 398 }; 399 400 #ifdef CONFIG_BLK_DEV_ZONED 401 402 struct blk_zone_report_hdr { 403 unsigned int nr_zones; 404 u8 padding[60]; 405 }; 406 407 extern int blkdev_report_zones(struct block_device *bdev, 408 sector_t sector, struct blk_zone *zones, 409 unsigned int *nr_zones, gfp_t gfp_mask); 410 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 411 sector_t nr_sectors, gfp_t gfp_mask); 412 413 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 414 unsigned int cmd, unsigned long arg); 415 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 416 unsigned int cmd, unsigned long arg); 417 418 #else /* CONFIG_BLK_DEV_ZONED */ 419 420 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 421 fmode_t mode, unsigned int cmd, 422 unsigned long arg) 423 { 424 return -ENOTTY; 425 } 426 427 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 428 fmode_t mode, unsigned int cmd, 429 unsigned long arg) 430 { 431 return -ENOTTY; 432 } 433 434 #endif /* CONFIG_BLK_DEV_ZONED */ 435 436 struct request_queue { 437 /* 438 * Together with queue_head for cacheline sharing 439 */ 440 struct list_head queue_head; 441 struct request *last_merge; 442 struct elevator_queue *elevator; 443 int nr_rqs[2]; /* # allocated [a]sync rqs */ 444 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 445 446 atomic_t shared_hctx_restart; 447 448 struct blk_queue_stats *stats; 449 struct rq_wb *rq_wb; 450 451 /* 452 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 453 * is used, root blkg allocates from @q->root_rl and all other 454 * blkgs from their own blkg->rl. Which one to use should be 455 * determined using bio_request_list(). 456 */ 457 struct request_list root_rl; 458 459 request_fn_proc *request_fn; 460 make_request_fn *make_request_fn; 461 poll_q_fn *poll_fn; 462 prep_rq_fn *prep_rq_fn; 463 unprep_rq_fn *unprep_rq_fn; 464 softirq_done_fn *softirq_done_fn; 465 rq_timed_out_fn *rq_timed_out_fn; 466 dma_drain_needed_fn *dma_drain_needed; 467 lld_busy_fn *lld_busy_fn; 468 /* Called just after a request is allocated */ 469 init_rq_fn *init_rq_fn; 470 /* Called just before a request is freed */ 471 exit_rq_fn *exit_rq_fn; 472 /* Called from inside blk_get_request() */ 473 void (*initialize_rq_fn)(struct request *rq); 474 475 const struct blk_mq_ops *mq_ops; 476 477 unsigned int *mq_map; 478 479 /* sw queues */ 480 struct blk_mq_ctx __percpu *queue_ctx; 481 unsigned int nr_queues; 482 483 unsigned int queue_depth; 484 485 /* hw dispatch queues */ 486 struct blk_mq_hw_ctx **queue_hw_ctx; 487 unsigned int nr_hw_queues; 488 489 /* 490 * Dispatch queue sorting 491 */ 492 sector_t end_sector; 493 struct request *boundary_rq; 494 495 /* 496 * Delayed queue handling 497 */ 498 struct delayed_work delay_work; 499 500 struct backing_dev_info *backing_dev_info; 501 502 /* 503 * The queue owner gets to use this for whatever they like. 504 * ll_rw_blk doesn't touch it. 505 */ 506 void *queuedata; 507 508 /* 509 * various queue flags, see QUEUE_* below 510 */ 511 unsigned long queue_flags; 512 513 /* 514 * ida allocated id for this queue. Used to index queues from 515 * ioctx. 516 */ 517 int id; 518 519 /* 520 * queue needs bounce pages for pages above this limit 521 */ 522 gfp_t bounce_gfp; 523 524 /* 525 * protects queue structures from reentrancy. ->__queue_lock should 526 * _never_ be used directly, it is queue private. always use 527 * ->queue_lock. 528 */ 529 spinlock_t __queue_lock; 530 spinlock_t *queue_lock; 531 532 /* 533 * queue kobject 534 */ 535 struct kobject kobj; 536 537 /* 538 * mq queue kobject 539 */ 540 struct kobject mq_kobj; 541 542 #ifdef CONFIG_BLK_DEV_INTEGRITY 543 struct blk_integrity integrity; 544 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 545 546 #ifdef CONFIG_PM 547 struct device *dev; 548 int rpm_status; 549 unsigned int nr_pending; 550 #endif 551 552 /* 553 * queue settings 554 */ 555 unsigned long nr_requests; /* Max # of requests */ 556 unsigned int nr_congestion_on; 557 unsigned int nr_congestion_off; 558 unsigned int nr_batching; 559 560 unsigned int dma_drain_size; 561 void *dma_drain_buffer; 562 unsigned int dma_pad_mask; 563 unsigned int dma_alignment; 564 565 struct blk_queue_tag *queue_tags; 566 struct list_head tag_busy_list; 567 568 unsigned int nr_sorted; 569 unsigned int in_flight[2]; 570 571 /* 572 * Number of active block driver functions for which blk_drain_queue() 573 * must wait. Must be incremented around functions that unlock the 574 * queue_lock internally, e.g. scsi_request_fn(). 575 */ 576 unsigned int request_fn_active; 577 578 unsigned int rq_timeout; 579 int poll_nsec; 580 581 struct blk_stat_callback *poll_cb; 582 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 583 584 struct timer_list timeout; 585 struct work_struct timeout_work; 586 struct list_head timeout_list; 587 588 struct list_head icq_list; 589 #ifdef CONFIG_BLK_CGROUP 590 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 591 struct blkcg_gq *root_blkg; 592 struct list_head blkg_list; 593 #endif 594 595 struct queue_limits limits; 596 597 /* 598 * Zoned block device information for request dispatch control. 599 * nr_zones is the total number of zones of the device. This is always 600 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones 601 * bits which indicates if a zone is conventional (bit clear) or 602 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones 603 * bits which indicates if a zone is write locked, that is, if a write 604 * request targeting the zone was dispatched. All three fields are 605 * initialized by the low level device driver (e.g. scsi/sd.c). 606 * Stacking drivers (device mappers) may or may not initialize 607 * these fields. 608 */ 609 unsigned int nr_zones; 610 unsigned long *seq_zones_bitmap; 611 unsigned long *seq_zones_wlock; 612 613 /* 614 * sg stuff 615 */ 616 unsigned int sg_timeout; 617 unsigned int sg_reserved_size; 618 int node; 619 #ifdef CONFIG_BLK_DEV_IO_TRACE 620 struct blk_trace *blk_trace; 621 struct mutex blk_trace_mutex; 622 #endif 623 /* 624 * for flush operations 625 */ 626 struct blk_flush_queue *fq; 627 628 struct list_head requeue_list; 629 spinlock_t requeue_lock; 630 struct delayed_work requeue_work; 631 632 struct mutex sysfs_lock; 633 634 int bypass_depth; 635 atomic_t mq_freeze_depth; 636 637 #if defined(CONFIG_BLK_DEV_BSG) 638 bsg_job_fn *bsg_job_fn; 639 struct bsg_class_device bsg_dev; 640 #endif 641 642 #ifdef CONFIG_BLK_DEV_THROTTLING 643 /* Throttle data */ 644 struct throtl_data *td; 645 #endif 646 struct rcu_head rcu_head; 647 wait_queue_head_t mq_freeze_wq; 648 struct percpu_ref q_usage_counter; 649 struct list_head all_q_node; 650 651 struct blk_mq_tag_set *tag_set; 652 struct list_head tag_set_list; 653 struct bio_set *bio_split; 654 655 #ifdef CONFIG_BLK_DEBUG_FS 656 struct dentry *debugfs_dir; 657 struct dentry *sched_debugfs_dir; 658 #endif 659 660 bool mq_sysfs_init_done; 661 662 size_t cmd_size; 663 void *rq_alloc_data; 664 665 struct work_struct release_work; 666 667 #define BLK_MAX_WRITE_HINTS 5 668 u64 write_hints[BLK_MAX_WRITE_HINTS]; 669 }; 670 671 #define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */ 672 #define QUEUE_FLAG_STOPPED 1 /* queue is stopped */ 673 #define QUEUE_FLAG_DYING 2 /* queue being torn down */ 674 #define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */ 675 #define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */ 676 #define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */ 677 #define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */ 678 #define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */ 679 #define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */ 680 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 681 #define QUEUE_FLAG_IO_STAT 10 /* do IO stats */ 682 #define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */ 683 #define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */ 684 #define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */ 685 #define QUEUE_FLAG_SECERASE 14 /* supports secure erase */ 686 #define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */ 687 #define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */ 688 #define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */ 689 #define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/ 690 #define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */ 691 #define QUEUE_FLAG_WC 20 /* Write back caching */ 692 #define QUEUE_FLAG_FUA 21 /* device supports FUA writes */ 693 #define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */ 694 #define QUEUE_FLAG_DAX 23 /* device supports DAX */ 695 #define QUEUE_FLAG_STATS 24 /* track rq completion times */ 696 #define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */ 697 #define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */ 698 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */ 699 #define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */ 700 #define QUEUE_FLAG_PREEMPT_ONLY 29 /* only process REQ_PREEMPT requests */ 701 702 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 703 (1 << QUEUE_FLAG_SAME_COMP) | \ 704 (1 << QUEUE_FLAG_ADD_RANDOM)) 705 706 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 707 (1 << QUEUE_FLAG_SAME_COMP) | \ 708 (1 << QUEUE_FLAG_POLL)) 709 710 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 711 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 712 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 713 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q); 714 715 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 716 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 717 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 718 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 719 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 720 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 721 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 722 #define blk_queue_noxmerges(q) \ 723 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 724 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 725 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 726 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 727 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 728 #define blk_queue_secure_erase(q) \ 729 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 730 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 731 #define blk_queue_scsi_passthrough(q) \ 732 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 733 734 #define blk_noretry_request(rq) \ 735 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 736 REQ_FAILFAST_DRIVER)) 737 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 738 #define blk_queue_preempt_only(q) \ 739 test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags) 740 741 extern int blk_set_preempt_only(struct request_queue *q); 742 extern void blk_clear_preempt_only(struct request_queue *q); 743 744 static inline int queue_in_flight(struct request_queue *q) 745 { 746 return q->in_flight[0] + q->in_flight[1]; 747 } 748 749 static inline bool blk_account_rq(struct request *rq) 750 { 751 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 752 } 753 754 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 755 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 756 /* rq->queuelist of dequeued request must be list_empty() */ 757 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 758 759 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 760 761 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 762 763 /* 764 * Driver can handle struct request, if it either has an old style 765 * request_fn defined, or is blk-mq based. 766 */ 767 static inline bool queue_is_rq_based(struct request_queue *q) 768 { 769 return q->request_fn || q->mq_ops; 770 } 771 772 static inline unsigned int blk_queue_cluster(struct request_queue *q) 773 { 774 return q->limits.cluster; 775 } 776 777 static inline enum blk_zoned_model 778 blk_queue_zoned_model(struct request_queue *q) 779 { 780 return q->limits.zoned; 781 } 782 783 static inline bool blk_queue_is_zoned(struct request_queue *q) 784 { 785 switch (blk_queue_zoned_model(q)) { 786 case BLK_ZONED_HA: 787 case BLK_ZONED_HM: 788 return true; 789 default: 790 return false; 791 } 792 } 793 794 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 795 { 796 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 797 } 798 799 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 800 { 801 return q->nr_zones; 802 } 803 804 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 805 sector_t sector) 806 { 807 if (!blk_queue_is_zoned(q)) 808 return 0; 809 return sector >> ilog2(q->limits.chunk_sectors); 810 } 811 812 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 813 sector_t sector) 814 { 815 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) 816 return false; 817 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); 818 } 819 820 static inline bool rq_is_sync(struct request *rq) 821 { 822 return op_is_sync(rq->cmd_flags); 823 } 824 825 static inline bool blk_rl_full(struct request_list *rl, bool sync) 826 { 827 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 828 829 return rl->flags & flag; 830 } 831 832 static inline void blk_set_rl_full(struct request_list *rl, bool sync) 833 { 834 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 835 836 rl->flags |= flag; 837 } 838 839 static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 840 { 841 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 842 843 rl->flags &= ~flag; 844 } 845 846 static inline bool rq_mergeable(struct request *rq) 847 { 848 if (blk_rq_is_passthrough(rq)) 849 return false; 850 851 if (req_op(rq) == REQ_OP_FLUSH) 852 return false; 853 854 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 855 return false; 856 857 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 858 return false; 859 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 860 return false; 861 862 return true; 863 } 864 865 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 866 { 867 if (bio_page(a) == bio_page(b) && 868 bio_offset(a) == bio_offset(b)) 869 return true; 870 871 return false; 872 } 873 874 static inline unsigned int blk_queue_depth(struct request_queue *q) 875 { 876 if (q->queue_depth) 877 return q->queue_depth; 878 879 return q->nr_requests; 880 } 881 882 /* 883 * q->prep_rq_fn return values 884 */ 885 enum { 886 BLKPREP_OK, /* serve it */ 887 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 888 BLKPREP_DEFER, /* leave on queue */ 889 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 890 }; 891 892 extern unsigned long blk_max_low_pfn, blk_max_pfn; 893 894 /* 895 * standard bounce addresses: 896 * 897 * BLK_BOUNCE_HIGH : bounce all highmem pages 898 * BLK_BOUNCE_ANY : don't bounce anything 899 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 900 */ 901 902 #if BITS_PER_LONG == 32 903 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 904 #else 905 #define BLK_BOUNCE_HIGH -1ULL 906 #endif 907 #define BLK_BOUNCE_ANY (-1ULL) 908 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 909 910 /* 911 * default timeout for SG_IO if none specified 912 */ 913 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 914 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 915 916 struct rq_map_data { 917 struct page **pages; 918 int page_order; 919 int nr_entries; 920 unsigned long offset; 921 int null_mapped; 922 int from_user; 923 }; 924 925 struct req_iterator { 926 struct bvec_iter iter; 927 struct bio *bio; 928 }; 929 930 /* This should not be used directly - use rq_for_each_segment */ 931 #define for_each_bio(_bio) \ 932 for (; _bio; _bio = _bio->bi_next) 933 #define __rq_for_each_bio(_bio, rq) \ 934 if ((rq->bio)) \ 935 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 936 937 #define rq_for_each_segment(bvl, _rq, _iter) \ 938 __rq_for_each_bio(_iter.bio, _rq) \ 939 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 940 941 #define rq_iter_last(bvec, _iter) \ 942 (_iter.bio->bi_next == NULL && \ 943 bio_iter_last(bvec, _iter.iter)) 944 945 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 946 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 947 #endif 948 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 949 extern void rq_flush_dcache_pages(struct request *rq); 950 #else 951 static inline void rq_flush_dcache_pages(struct request *rq) 952 { 953 } 954 #endif 955 956 extern int blk_register_queue(struct gendisk *disk); 957 extern void blk_unregister_queue(struct gendisk *disk); 958 extern blk_qc_t generic_make_request(struct bio *bio); 959 extern blk_qc_t direct_make_request(struct bio *bio); 960 extern void blk_rq_init(struct request_queue *q, struct request *rq); 961 extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 962 extern void blk_put_request(struct request *); 963 extern void __blk_put_request(struct request_queue *, struct request *); 964 extern struct request *blk_get_request_flags(struct request_queue *, 965 unsigned int op, 966 blk_mq_req_flags_t flags); 967 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 968 gfp_t gfp_mask); 969 extern void blk_requeue_request(struct request_queue *, struct request *); 970 extern int blk_lld_busy(struct request_queue *q); 971 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 972 struct bio_set *bs, gfp_t gfp_mask, 973 int (*bio_ctr)(struct bio *, struct bio *, void *), 974 void *data); 975 extern void blk_rq_unprep_clone(struct request *rq); 976 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 977 struct request *rq); 978 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 979 extern void blk_delay_queue(struct request_queue *, unsigned long); 980 extern void blk_queue_split(struct request_queue *, struct bio **); 981 extern void blk_recount_segments(struct request_queue *, struct bio *); 982 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 983 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 984 unsigned int, void __user *); 985 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 986 unsigned int, void __user *); 987 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 988 struct scsi_ioctl_command __user *); 989 990 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 991 extern void blk_queue_exit(struct request_queue *q); 992 extern void blk_start_queue(struct request_queue *q); 993 extern void blk_start_queue_async(struct request_queue *q); 994 extern void blk_stop_queue(struct request_queue *q); 995 extern void blk_sync_queue(struct request_queue *q); 996 extern void __blk_stop_queue(struct request_queue *q); 997 extern void __blk_run_queue(struct request_queue *q); 998 extern void __blk_run_queue_uncond(struct request_queue *q); 999 extern void blk_run_queue(struct request_queue *); 1000 extern void blk_run_queue_async(struct request_queue *q); 1001 extern int blk_rq_map_user(struct request_queue *, struct request *, 1002 struct rq_map_data *, void __user *, unsigned long, 1003 gfp_t); 1004 extern int blk_rq_unmap_user(struct bio *); 1005 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 1006 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 1007 struct rq_map_data *, const struct iov_iter *, 1008 gfp_t); 1009 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 1010 struct request *, int); 1011 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 1012 struct request *, int, rq_end_io_fn *); 1013 1014 int blk_status_to_errno(blk_status_t status); 1015 blk_status_t errno_to_blk_status(int errno); 1016 1017 bool blk_poll(struct request_queue *q, blk_qc_t cookie); 1018 1019 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 1020 { 1021 return bdev->bd_disk->queue; /* this is never NULL */ 1022 } 1023 1024 /* 1025 * The basic unit of block I/O is a sector. It is used in a number of contexts 1026 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 1027 * bytes. Variables of type sector_t represent an offset or size that is a 1028 * multiple of 512 bytes. Hence these two constants. 1029 */ 1030 #ifndef SECTOR_SHIFT 1031 #define SECTOR_SHIFT 9 1032 #endif 1033 #ifndef SECTOR_SIZE 1034 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 1035 #endif 1036 1037 /* 1038 * blk_rq_pos() : the current sector 1039 * blk_rq_bytes() : bytes left in the entire request 1040 * blk_rq_cur_bytes() : bytes left in the current segment 1041 * blk_rq_err_bytes() : bytes left till the next error boundary 1042 * blk_rq_sectors() : sectors left in the entire request 1043 * blk_rq_cur_sectors() : sectors left in the current segment 1044 */ 1045 static inline sector_t blk_rq_pos(const struct request *rq) 1046 { 1047 return rq->__sector; 1048 } 1049 1050 static inline unsigned int blk_rq_bytes(const struct request *rq) 1051 { 1052 return rq->__data_len; 1053 } 1054 1055 static inline int blk_rq_cur_bytes(const struct request *rq) 1056 { 1057 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1058 } 1059 1060 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1061 1062 static inline unsigned int blk_rq_sectors(const struct request *rq) 1063 { 1064 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1065 } 1066 1067 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1068 { 1069 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1070 } 1071 1072 static inline unsigned int blk_rq_zone_no(struct request *rq) 1073 { 1074 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1075 } 1076 1077 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1078 { 1079 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1080 } 1081 1082 /* 1083 * Some commands like WRITE SAME have a payload or data transfer size which 1084 * is different from the size of the request. Any driver that supports such 1085 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1086 * calculate the data transfer size. 1087 */ 1088 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1089 { 1090 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1091 return rq->special_vec.bv_len; 1092 return blk_rq_bytes(rq); 1093 } 1094 1095 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1096 int op) 1097 { 1098 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1099 return min(q->limits.max_discard_sectors, 1100 UINT_MAX >> SECTOR_SHIFT); 1101 1102 if (unlikely(op == REQ_OP_WRITE_SAME)) 1103 return q->limits.max_write_same_sectors; 1104 1105 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1106 return q->limits.max_write_zeroes_sectors; 1107 1108 return q->limits.max_sectors; 1109 } 1110 1111 /* 1112 * Return maximum size of a request at given offset. Only valid for 1113 * file system requests. 1114 */ 1115 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1116 sector_t offset) 1117 { 1118 if (!q->limits.chunk_sectors) 1119 return q->limits.max_sectors; 1120 1121 return q->limits.chunk_sectors - 1122 (offset & (q->limits.chunk_sectors - 1)); 1123 } 1124 1125 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1126 sector_t offset) 1127 { 1128 struct request_queue *q = rq->q; 1129 1130 if (blk_rq_is_passthrough(rq)) 1131 return q->limits.max_hw_sectors; 1132 1133 if (!q->limits.chunk_sectors || 1134 req_op(rq) == REQ_OP_DISCARD || 1135 req_op(rq) == REQ_OP_SECURE_ERASE) 1136 return blk_queue_get_max_sectors(q, req_op(rq)); 1137 1138 return min(blk_max_size_offset(q, offset), 1139 blk_queue_get_max_sectors(q, req_op(rq))); 1140 } 1141 1142 static inline unsigned int blk_rq_count_bios(struct request *rq) 1143 { 1144 unsigned int nr_bios = 0; 1145 struct bio *bio; 1146 1147 __rq_for_each_bio(bio, rq) 1148 nr_bios++; 1149 1150 return nr_bios; 1151 } 1152 1153 /* 1154 * Request issue related functions. 1155 */ 1156 extern struct request *blk_peek_request(struct request_queue *q); 1157 extern void blk_start_request(struct request *rq); 1158 extern struct request *blk_fetch_request(struct request_queue *q); 1159 1160 void blk_steal_bios(struct bio_list *list, struct request *rq); 1161 1162 /* 1163 * Request completion related functions. 1164 * 1165 * blk_update_request() completes given number of bytes and updates 1166 * the request without completing it. 1167 * 1168 * blk_end_request() and friends. __blk_end_request() must be called 1169 * with the request queue spinlock acquired. 1170 * 1171 * Several drivers define their own end_request and call 1172 * blk_end_request() for parts of the original function. 1173 * This prevents code duplication in drivers. 1174 */ 1175 extern bool blk_update_request(struct request *rq, blk_status_t error, 1176 unsigned int nr_bytes); 1177 extern void blk_finish_request(struct request *rq, blk_status_t error); 1178 extern bool blk_end_request(struct request *rq, blk_status_t error, 1179 unsigned int nr_bytes); 1180 extern void blk_end_request_all(struct request *rq, blk_status_t error); 1181 extern bool __blk_end_request(struct request *rq, blk_status_t error, 1182 unsigned int nr_bytes); 1183 extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1184 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1185 1186 extern void blk_complete_request(struct request *); 1187 extern void __blk_complete_request(struct request *); 1188 extern void blk_abort_request(struct request *); 1189 extern void blk_unprep_request(struct request *); 1190 1191 /* 1192 * Access functions for manipulating queue properties 1193 */ 1194 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1195 spinlock_t *lock, int node_id); 1196 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1197 extern int blk_init_allocated_queue(struct request_queue *); 1198 extern void blk_cleanup_queue(struct request_queue *); 1199 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1200 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1201 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1202 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1203 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1204 extern void blk_queue_max_discard_segments(struct request_queue *, 1205 unsigned short); 1206 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1207 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1208 unsigned int max_discard_sectors); 1209 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1210 unsigned int max_write_same_sectors); 1211 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1212 unsigned int max_write_same_sectors); 1213 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1214 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1215 extern void blk_queue_alignment_offset(struct request_queue *q, 1216 unsigned int alignment); 1217 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1218 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1219 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1220 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1221 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1222 extern void blk_set_default_limits(struct queue_limits *lim); 1223 extern void blk_set_stacking_limits(struct queue_limits *lim); 1224 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1225 sector_t offset); 1226 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1227 sector_t offset); 1228 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1229 sector_t offset); 1230 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1231 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1232 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1233 extern int blk_queue_dma_drain(struct request_queue *q, 1234 dma_drain_needed_fn *dma_drain_needed, 1235 void *buf, unsigned int size); 1236 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1237 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1238 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1239 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1240 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1241 extern void blk_queue_dma_alignment(struct request_queue *, int); 1242 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1243 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1244 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1245 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1246 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1247 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1248 1249 /* 1250 * Number of physical segments as sent to the device. 1251 * 1252 * Normally this is the number of discontiguous data segments sent by the 1253 * submitter. But for data-less command like discard we might have no 1254 * actual data segments submitted, but the driver might have to add it's 1255 * own special payload. In that case we still return 1 here so that this 1256 * special payload will be mapped. 1257 */ 1258 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1259 { 1260 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1261 return 1; 1262 return rq->nr_phys_segments; 1263 } 1264 1265 /* 1266 * Number of discard segments (or ranges) the driver needs to fill in. 1267 * Each discard bio merged into a request is counted as one segment. 1268 */ 1269 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1270 { 1271 return max_t(unsigned short, rq->nr_phys_segments, 1); 1272 } 1273 1274 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1275 extern void blk_dump_rq_flags(struct request *, char *); 1276 extern long nr_blockdev_pages(void); 1277 1278 bool __must_check blk_get_queue(struct request_queue *); 1279 struct request_queue *blk_alloc_queue(gfp_t); 1280 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 1281 spinlock_t *lock); 1282 extern void blk_put_queue(struct request_queue *); 1283 extern void blk_set_queue_dying(struct request_queue *); 1284 1285 /* 1286 * block layer runtime pm functions 1287 */ 1288 #ifdef CONFIG_PM 1289 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1290 extern int blk_pre_runtime_suspend(struct request_queue *q); 1291 extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1292 extern void blk_pre_runtime_resume(struct request_queue *q); 1293 extern void blk_post_runtime_resume(struct request_queue *q, int err); 1294 extern void blk_set_runtime_active(struct request_queue *q); 1295 #else 1296 static inline void blk_pm_runtime_init(struct request_queue *q, 1297 struct device *dev) {} 1298 static inline int blk_pre_runtime_suspend(struct request_queue *q) 1299 { 1300 return -ENOSYS; 1301 } 1302 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1303 static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1304 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1305 static inline void blk_set_runtime_active(struct request_queue *q) {} 1306 #endif 1307 1308 /* 1309 * blk_plug permits building a queue of related requests by holding the I/O 1310 * fragments for a short period. This allows merging of sequential requests 1311 * into single larger request. As the requests are moved from a per-task list to 1312 * the device's request_queue in a batch, this results in improved scalability 1313 * as the lock contention for request_queue lock is reduced. 1314 * 1315 * It is ok not to disable preemption when adding the request to the plug list 1316 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1317 * the plug list when the task sleeps by itself. For details, please see 1318 * schedule() where blk_schedule_flush_plug() is called. 1319 */ 1320 struct blk_plug { 1321 struct list_head list; /* requests */ 1322 struct list_head mq_list; /* blk-mq requests */ 1323 struct list_head cb_list; /* md requires an unplug callback */ 1324 }; 1325 #define BLK_MAX_REQUEST_COUNT 16 1326 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1327 1328 struct blk_plug_cb; 1329 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1330 struct blk_plug_cb { 1331 struct list_head list; 1332 blk_plug_cb_fn callback; 1333 void *data; 1334 }; 1335 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1336 void *data, int size); 1337 extern void blk_start_plug(struct blk_plug *); 1338 extern void blk_finish_plug(struct blk_plug *); 1339 extern void blk_flush_plug_list(struct blk_plug *, bool); 1340 1341 static inline void blk_flush_plug(struct task_struct *tsk) 1342 { 1343 struct blk_plug *plug = tsk->plug; 1344 1345 if (plug) 1346 blk_flush_plug_list(plug, false); 1347 } 1348 1349 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1350 { 1351 struct blk_plug *plug = tsk->plug; 1352 1353 if (plug) 1354 blk_flush_plug_list(plug, true); 1355 } 1356 1357 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1358 { 1359 struct blk_plug *plug = tsk->plug; 1360 1361 return plug && 1362 (!list_empty(&plug->list) || 1363 !list_empty(&plug->mq_list) || 1364 !list_empty(&plug->cb_list)); 1365 } 1366 1367 /* 1368 * tag stuff 1369 */ 1370 extern int blk_queue_start_tag(struct request_queue *, struct request *); 1371 extern struct request *blk_queue_find_tag(struct request_queue *, int); 1372 extern void blk_queue_end_tag(struct request_queue *, struct request *); 1373 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1374 extern void blk_queue_free_tags(struct request_queue *); 1375 extern int blk_queue_resize_tags(struct request_queue *, int); 1376 extern void blk_queue_invalidate_tags(struct request_queue *); 1377 extern struct blk_queue_tag *blk_init_tags(int, int); 1378 extern void blk_free_tags(struct blk_queue_tag *); 1379 1380 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1381 int tag) 1382 { 1383 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1384 return NULL; 1385 return bqt->tag_index[tag]; 1386 } 1387 1388 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1389 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1390 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1391 1392 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1393 1394 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1395 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1396 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1397 sector_t nr_sects, gfp_t gfp_mask, int flags, 1398 struct bio **biop); 1399 1400 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1401 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1402 1403 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1404 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1405 unsigned flags); 1406 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1407 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1408 1409 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1410 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1411 { 1412 return blkdev_issue_discard(sb->s_bdev, 1413 block << (sb->s_blocksize_bits - 1414 SECTOR_SHIFT), 1415 nr_blocks << (sb->s_blocksize_bits - 1416 SECTOR_SHIFT), 1417 gfp_mask, flags); 1418 } 1419 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1420 sector_t nr_blocks, gfp_t gfp_mask) 1421 { 1422 return blkdev_issue_zeroout(sb->s_bdev, 1423 block << (sb->s_blocksize_bits - 1424 SECTOR_SHIFT), 1425 nr_blocks << (sb->s_blocksize_bits - 1426 SECTOR_SHIFT), 1427 gfp_mask, 0); 1428 } 1429 1430 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1431 1432 enum blk_default_limits { 1433 BLK_MAX_SEGMENTS = 128, 1434 BLK_SAFE_MAX_SECTORS = 255, 1435 BLK_DEF_MAX_SECTORS = 2560, 1436 BLK_MAX_SEGMENT_SIZE = 65536, 1437 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1438 }; 1439 1440 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1441 1442 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1443 { 1444 return q->limits.seg_boundary_mask; 1445 } 1446 1447 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1448 { 1449 return q->limits.virt_boundary_mask; 1450 } 1451 1452 static inline unsigned int queue_max_sectors(struct request_queue *q) 1453 { 1454 return q->limits.max_sectors; 1455 } 1456 1457 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1458 { 1459 return q->limits.max_hw_sectors; 1460 } 1461 1462 static inline unsigned short queue_max_segments(struct request_queue *q) 1463 { 1464 return q->limits.max_segments; 1465 } 1466 1467 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1468 { 1469 return q->limits.max_discard_segments; 1470 } 1471 1472 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1473 { 1474 return q->limits.max_segment_size; 1475 } 1476 1477 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1478 { 1479 int retval = 512; 1480 1481 if (q && q->limits.logical_block_size) 1482 retval = q->limits.logical_block_size; 1483 1484 return retval; 1485 } 1486 1487 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1488 { 1489 return queue_logical_block_size(bdev_get_queue(bdev)); 1490 } 1491 1492 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1493 { 1494 return q->limits.physical_block_size; 1495 } 1496 1497 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1498 { 1499 return queue_physical_block_size(bdev_get_queue(bdev)); 1500 } 1501 1502 static inline unsigned int queue_io_min(struct request_queue *q) 1503 { 1504 return q->limits.io_min; 1505 } 1506 1507 static inline int bdev_io_min(struct block_device *bdev) 1508 { 1509 return queue_io_min(bdev_get_queue(bdev)); 1510 } 1511 1512 static inline unsigned int queue_io_opt(struct request_queue *q) 1513 { 1514 return q->limits.io_opt; 1515 } 1516 1517 static inline int bdev_io_opt(struct block_device *bdev) 1518 { 1519 return queue_io_opt(bdev_get_queue(bdev)); 1520 } 1521 1522 static inline int queue_alignment_offset(struct request_queue *q) 1523 { 1524 if (q->limits.misaligned) 1525 return -1; 1526 1527 return q->limits.alignment_offset; 1528 } 1529 1530 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1531 { 1532 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1533 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1534 << SECTOR_SHIFT; 1535 1536 return (granularity + lim->alignment_offset - alignment) % granularity; 1537 } 1538 1539 static inline int bdev_alignment_offset(struct block_device *bdev) 1540 { 1541 struct request_queue *q = bdev_get_queue(bdev); 1542 1543 if (q->limits.misaligned) 1544 return -1; 1545 1546 if (bdev != bdev->bd_contains) 1547 return bdev->bd_part->alignment_offset; 1548 1549 return q->limits.alignment_offset; 1550 } 1551 1552 static inline int queue_discard_alignment(struct request_queue *q) 1553 { 1554 if (q->limits.discard_misaligned) 1555 return -1; 1556 1557 return q->limits.discard_alignment; 1558 } 1559 1560 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1561 { 1562 unsigned int alignment, granularity, offset; 1563 1564 if (!lim->max_discard_sectors) 1565 return 0; 1566 1567 /* Why are these in bytes, not sectors? */ 1568 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1569 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1570 if (!granularity) 1571 return 0; 1572 1573 /* Offset of the partition start in 'granularity' sectors */ 1574 offset = sector_div(sector, granularity); 1575 1576 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1577 offset = (granularity + alignment - offset) % granularity; 1578 1579 /* Turn it back into bytes, gaah */ 1580 return offset << SECTOR_SHIFT; 1581 } 1582 1583 static inline int bdev_discard_alignment(struct block_device *bdev) 1584 { 1585 struct request_queue *q = bdev_get_queue(bdev); 1586 1587 if (bdev != bdev->bd_contains) 1588 return bdev->bd_part->discard_alignment; 1589 1590 return q->limits.discard_alignment; 1591 } 1592 1593 static inline unsigned int bdev_write_same(struct block_device *bdev) 1594 { 1595 struct request_queue *q = bdev_get_queue(bdev); 1596 1597 if (q) 1598 return q->limits.max_write_same_sectors; 1599 1600 return 0; 1601 } 1602 1603 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1604 { 1605 struct request_queue *q = bdev_get_queue(bdev); 1606 1607 if (q) 1608 return q->limits.max_write_zeroes_sectors; 1609 1610 return 0; 1611 } 1612 1613 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1614 { 1615 struct request_queue *q = bdev_get_queue(bdev); 1616 1617 if (q) 1618 return blk_queue_zoned_model(q); 1619 1620 return BLK_ZONED_NONE; 1621 } 1622 1623 static inline bool bdev_is_zoned(struct block_device *bdev) 1624 { 1625 struct request_queue *q = bdev_get_queue(bdev); 1626 1627 if (q) 1628 return blk_queue_is_zoned(q); 1629 1630 return false; 1631 } 1632 1633 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1634 { 1635 struct request_queue *q = bdev_get_queue(bdev); 1636 1637 if (q) 1638 return blk_queue_zone_sectors(q); 1639 return 0; 1640 } 1641 1642 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 1643 { 1644 struct request_queue *q = bdev_get_queue(bdev); 1645 1646 if (q) 1647 return blk_queue_nr_zones(q); 1648 return 0; 1649 } 1650 1651 static inline int queue_dma_alignment(struct request_queue *q) 1652 { 1653 return q ? q->dma_alignment : 511; 1654 } 1655 1656 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1657 unsigned int len) 1658 { 1659 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1660 return !(addr & alignment) && !(len & alignment); 1661 } 1662 1663 /* assumes size > 256 */ 1664 static inline unsigned int blksize_bits(unsigned int size) 1665 { 1666 unsigned int bits = 8; 1667 do { 1668 bits++; 1669 size >>= 1; 1670 } while (size > 256); 1671 return bits; 1672 } 1673 1674 static inline unsigned int block_size(struct block_device *bdev) 1675 { 1676 return bdev->bd_block_size; 1677 } 1678 1679 static inline bool queue_flush_queueable(struct request_queue *q) 1680 { 1681 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1682 } 1683 1684 typedef struct {struct page *v;} Sector; 1685 1686 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1687 1688 static inline void put_dev_sector(Sector p) 1689 { 1690 put_page(p.v); 1691 } 1692 1693 static inline bool __bvec_gap_to_prev(struct request_queue *q, 1694 struct bio_vec *bprv, unsigned int offset) 1695 { 1696 return offset || 1697 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1698 } 1699 1700 /* 1701 * Check if adding a bio_vec after bprv with offset would create a gap in 1702 * the SG list. Most drivers don't care about this, but some do. 1703 */ 1704 static inline bool bvec_gap_to_prev(struct request_queue *q, 1705 struct bio_vec *bprv, unsigned int offset) 1706 { 1707 if (!queue_virt_boundary(q)) 1708 return false; 1709 return __bvec_gap_to_prev(q, bprv, offset); 1710 } 1711 1712 /* 1713 * Check if the two bvecs from two bios can be merged to one segment. 1714 * If yes, no need to check gap between the two bios since the 1st bio 1715 * and the 1st bvec in the 2nd bio can be handled in one segment. 1716 */ 1717 static inline bool bios_segs_mergeable(struct request_queue *q, 1718 struct bio *prev, struct bio_vec *prev_last_bv, 1719 struct bio_vec *next_first_bv) 1720 { 1721 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1722 return false; 1723 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1724 return false; 1725 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1726 queue_max_segment_size(q)) 1727 return false; 1728 return true; 1729 } 1730 1731 static inline bool bio_will_gap(struct request_queue *q, 1732 struct request *prev_rq, 1733 struct bio *prev, 1734 struct bio *next) 1735 { 1736 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1737 struct bio_vec pb, nb; 1738 1739 /* 1740 * don't merge if the 1st bio starts with non-zero 1741 * offset, otherwise it is quite difficult to respect 1742 * sg gap limit. We work hard to merge a huge number of small 1743 * single bios in case of mkfs. 1744 */ 1745 if (prev_rq) 1746 bio_get_first_bvec(prev_rq->bio, &pb); 1747 else 1748 bio_get_first_bvec(prev, &pb); 1749 if (pb.bv_offset) 1750 return true; 1751 1752 /* 1753 * We don't need to worry about the situation that the 1754 * merged segment ends in unaligned virt boundary: 1755 * 1756 * - if 'pb' ends aligned, the merged segment ends aligned 1757 * - if 'pb' ends unaligned, the next bio must include 1758 * one single bvec of 'nb', otherwise the 'nb' can't 1759 * merge with 'pb' 1760 */ 1761 bio_get_last_bvec(prev, &pb); 1762 bio_get_first_bvec(next, &nb); 1763 1764 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1765 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1766 } 1767 1768 return false; 1769 } 1770 1771 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1772 { 1773 return bio_will_gap(req->q, req, req->biotail, bio); 1774 } 1775 1776 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1777 { 1778 return bio_will_gap(req->q, NULL, bio, req->bio); 1779 } 1780 1781 int kblockd_schedule_work(struct work_struct *work); 1782 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1783 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1784 1785 #ifdef CONFIG_BLK_CGROUP 1786 /* 1787 * This should not be using sched_clock(). A real patch is in progress 1788 * to fix this up, until that is in place we need to disable preemption 1789 * around sched_clock() in this function and set_io_start_time_ns(). 1790 */ 1791 static inline void set_start_time_ns(struct request *req) 1792 { 1793 preempt_disable(); 1794 req->start_time_ns = sched_clock(); 1795 preempt_enable(); 1796 } 1797 1798 static inline void set_io_start_time_ns(struct request *req) 1799 { 1800 preempt_disable(); 1801 req->io_start_time_ns = sched_clock(); 1802 preempt_enable(); 1803 } 1804 1805 static inline uint64_t rq_start_time_ns(struct request *req) 1806 { 1807 return req->start_time_ns; 1808 } 1809 1810 static inline uint64_t rq_io_start_time_ns(struct request *req) 1811 { 1812 return req->io_start_time_ns; 1813 } 1814 #else 1815 static inline void set_start_time_ns(struct request *req) {} 1816 static inline void set_io_start_time_ns(struct request *req) {} 1817 static inline uint64_t rq_start_time_ns(struct request *req) 1818 { 1819 return 0; 1820 } 1821 static inline uint64_t rq_io_start_time_ns(struct request *req) 1822 { 1823 return 0; 1824 } 1825 #endif 1826 1827 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1828 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1829 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1830 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1831 1832 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1833 1834 enum blk_integrity_flags { 1835 BLK_INTEGRITY_VERIFY = 1 << 0, 1836 BLK_INTEGRITY_GENERATE = 1 << 1, 1837 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1838 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1839 }; 1840 1841 struct blk_integrity_iter { 1842 void *prot_buf; 1843 void *data_buf; 1844 sector_t seed; 1845 unsigned int data_size; 1846 unsigned short interval; 1847 const char *disk_name; 1848 }; 1849 1850 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1851 1852 struct blk_integrity_profile { 1853 integrity_processing_fn *generate_fn; 1854 integrity_processing_fn *verify_fn; 1855 const char *name; 1856 }; 1857 1858 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1859 extern void blk_integrity_unregister(struct gendisk *); 1860 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1861 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1862 struct scatterlist *); 1863 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1864 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1865 struct request *); 1866 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1867 struct bio *); 1868 1869 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1870 { 1871 struct blk_integrity *bi = &disk->queue->integrity; 1872 1873 if (!bi->profile) 1874 return NULL; 1875 1876 return bi; 1877 } 1878 1879 static inline 1880 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1881 { 1882 return blk_get_integrity(bdev->bd_disk); 1883 } 1884 1885 static inline bool blk_integrity_rq(struct request *rq) 1886 { 1887 return rq->cmd_flags & REQ_INTEGRITY; 1888 } 1889 1890 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1891 unsigned int segs) 1892 { 1893 q->limits.max_integrity_segments = segs; 1894 } 1895 1896 static inline unsigned short 1897 queue_max_integrity_segments(struct request_queue *q) 1898 { 1899 return q->limits.max_integrity_segments; 1900 } 1901 1902 static inline bool integrity_req_gap_back_merge(struct request *req, 1903 struct bio *next) 1904 { 1905 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1906 struct bio_integrity_payload *bip_next = bio_integrity(next); 1907 1908 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1909 bip_next->bip_vec[0].bv_offset); 1910 } 1911 1912 static inline bool integrity_req_gap_front_merge(struct request *req, 1913 struct bio *bio) 1914 { 1915 struct bio_integrity_payload *bip = bio_integrity(bio); 1916 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1917 1918 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1919 bip_next->bip_vec[0].bv_offset); 1920 } 1921 1922 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1923 1924 struct bio; 1925 struct block_device; 1926 struct gendisk; 1927 struct blk_integrity; 1928 1929 static inline int blk_integrity_rq(struct request *rq) 1930 { 1931 return 0; 1932 } 1933 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1934 struct bio *b) 1935 { 1936 return 0; 1937 } 1938 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1939 struct bio *b, 1940 struct scatterlist *s) 1941 { 1942 return 0; 1943 } 1944 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1945 { 1946 return NULL; 1947 } 1948 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1949 { 1950 return NULL; 1951 } 1952 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1953 { 1954 return 0; 1955 } 1956 static inline void blk_integrity_register(struct gendisk *d, 1957 struct blk_integrity *b) 1958 { 1959 } 1960 static inline void blk_integrity_unregister(struct gendisk *d) 1961 { 1962 } 1963 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1964 unsigned int segs) 1965 { 1966 } 1967 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1968 { 1969 return 0; 1970 } 1971 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1972 struct request *r1, 1973 struct request *r2) 1974 { 1975 return true; 1976 } 1977 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1978 struct request *r, 1979 struct bio *b) 1980 { 1981 return true; 1982 } 1983 1984 static inline bool integrity_req_gap_back_merge(struct request *req, 1985 struct bio *next) 1986 { 1987 return false; 1988 } 1989 static inline bool integrity_req_gap_front_merge(struct request *req, 1990 struct bio *bio) 1991 { 1992 return false; 1993 } 1994 1995 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1996 1997 struct block_device_operations { 1998 int (*open) (struct block_device *, fmode_t); 1999 void (*release) (struct gendisk *, fmode_t); 2000 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 2001 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 2002 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 2003 unsigned int (*check_events) (struct gendisk *disk, 2004 unsigned int clearing); 2005 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 2006 int (*media_changed) (struct gendisk *); 2007 void (*unlock_native_capacity) (struct gendisk *); 2008 int (*revalidate_disk) (struct gendisk *); 2009 int (*getgeo)(struct block_device *, struct hd_geometry *); 2010 /* this callback is with swap_lock and sometimes page table lock held */ 2011 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 2012 struct module *owner; 2013 const struct pr_ops *pr_ops; 2014 }; 2015 2016 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 2017 unsigned long); 2018 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 2019 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 2020 struct writeback_control *); 2021 2022 #ifdef CONFIG_BLK_DEV_ZONED 2023 bool blk_req_needs_zone_write_lock(struct request *rq); 2024 void __blk_req_zone_write_lock(struct request *rq); 2025 void __blk_req_zone_write_unlock(struct request *rq); 2026 2027 static inline void blk_req_zone_write_lock(struct request *rq) 2028 { 2029 if (blk_req_needs_zone_write_lock(rq)) 2030 __blk_req_zone_write_lock(rq); 2031 } 2032 2033 static inline void blk_req_zone_write_unlock(struct request *rq) 2034 { 2035 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 2036 __blk_req_zone_write_unlock(rq); 2037 } 2038 2039 static inline bool blk_req_zone_is_write_locked(struct request *rq) 2040 { 2041 return rq->q->seq_zones_wlock && 2042 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 2043 } 2044 2045 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 2046 { 2047 if (!blk_req_needs_zone_write_lock(rq)) 2048 return true; 2049 return !blk_req_zone_is_write_locked(rq); 2050 } 2051 #else 2052 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 2053 { 2054 return false; 2055 } 2056 2057 static inline void blk_req_zone_write_lock(struct request *rq) 2058 { 2059 } 2060 2061 static inline void blk_req_zone_write_unlock(struct request *rq) 2062 { 2063 } 2064 static inline bool blk_req_zone_is_write_locked(struct request *rq) 2065 { 2066 return false; 2067 } 2068 2069 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 2070 { 2071 return true; 2072 } 2073 #endif /* CONFIG_BLK_DEV_ZONED */ 2074 2075 #else /* CONFIG_BLOCK */ 2076 2077 struct block_device; 2078 2079 /* 2080 * stubs for when the block layer is configured out 2081 */ 2082 #define buffer_heads_over_limit 0 2083 2084 static inline long nr_blockdev_pages(void) 2085 { 2086 return 0; 2087 } 2088 2089 struct blk_plug { 2090 }; 2091 2092 static inline void blk_start_plug(struct blk_plug *plug) 2093 { 2094 } 2095 2096 static inline void blk_finish_plug(struct blk_plug *plug) 2097 { 2098 } 2099 2100 static inline void blk_flush_plug(struct task_struct *task) 2101 { 2102 } 2103 2104 static inline void blk_schedule_flush_plug(struct task_struct *task) 2105 { 2106 } 2107 2108 2109 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 2110 { 2111 return false; 2112 } 2113 2114 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 2115 sector_t *error_sector) 2116 { 2117 return 0; 2118 } 2119 2120 #endif /* CONFIG_BLOCK */ 2121 2122 #endif 2123