1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/pagemap.h> 15 #include <linux/backing-dev-defs.h> 16 #include <linux/wait.h> 17 #include <linux/mempool.h> 18 #include <linux/pfn.h> 19 #include <linux/bio.h> 20 #include <linux/stringify.h> 21 #include <linux/gfp.h> 22 #include <linux/bsg.h> 23 #include <linux/smp.h> 24 #include <linux/rcupdate.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/scatterlist.h> 27 #include <linux/blkzoned.h> 28 #include <linux/pm.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_qos; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 struct blk_keyslot_manager; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* drive already may have started this one */ 69 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 70 /* may not be passed by ioscheduler */ 71 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 72 /* request for flush sequence */ 73 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 74 /* merge of different types, fail separately */ 75 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 76 /* track inflight for MQ */ 77 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 78 /* don't call prep for this one */ 79 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 80 /* vaguely specified driver internal error. Ignored by the block layer */ 81 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 82 /* don't warn about errors */ 83 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 84 /* elevator private data attached */ 85 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 86 /* account into disk and partition IO statistics */ 87 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 88 /* runtime pm request */ 89 #define RQF_PM ((__force req_flags_t)(1 << 15)) 90 /* on IO scheduler merge hash */ 91 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 92 /* track IO completion time */ 93 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 94 /* Look at ->special_vec for the actual data payload instead of the 95 bio chain. */ 96 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 97 /* The per-zone write lock is held for this request */ 98 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 99 /* already slept for hybrid poll */ 100 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 101 /* ->timeout has been called, don't expire again */ 102 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 103 104 /* flags that prevent us from merging requests: */ 105 #define RQF_NOMERGE_FLAGS \ 106 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 107 108 /* 109 * Request state for blk-mq. 110 */ 111 enum mq_rq_state { 112 MQ_RQ_IDLE = 0, 113 MQ_RQ_IN_FLIGHT = 1, 114 MQ_RQ_COMPLETE = 2, 115 }; 116 117 /* 118 * Try to put the fields that are referenced together in the same cacheline. 119 * 120 * If you modify this structure, make sure to update blk_rq_init() and 121 * especially blk_mq_rq_ctx_init() to take care of the added fields. 122 */ 123 struct request { 124 struct request_queue *q; 125 struct blk_mq_ctx *mq_ctx; 126 struct blk_mq_hw_ctx *mq_hctx; 127 128 unsigned int cmd_flags; /* op and common flags */ 129 req_flags_t rq_flags; 130 131 int tag; 132 int internal_tag; 133 134 /* the following two fields are internal, NEVER access directly */ 135 unsigned int __data_len; /* total data len */ 136 sector_t __sector; /* sector cursor */ 137 138 struct bio *bio; 139 struct bio *biotail; 140 141 struct list_head queuelist; 142 143 /* 144 * The hash is used inside the scheduler, and killed once the 145 * request reaches the dispatch list. The ipi_list is only used 146 * to queue the request for softirq completion, which is long 147 * after the request has been unhashed (and even removed from 148 * the dispatch list). 149 */ 150 union { 151 struct hlist_node hash; /* merge hash */ 152 struct llist_node ipi_list; 153 }; 154 155 /* 156 * The rb_node is only used inside the io scheduler, requests 157 * are pruned when moved to the dispatch queue. So let the 158 * completion_data share space with the rb_node. 159 */ 160 union { 161 struct rb_node rb_node; /* sort/lookup */ 162 struct bio_vec special_vec; 163 void *completion_data; 164 int error_count; /* for legacy drivers, don't use */ 165 }; 166 167 /* 168 * Three pointers are available for the IO schedulers, if they need 169 * more they have to dynamically allocate it. Flush requests are 170 * never put on the IO scheduler. So let the flush fields share 171 * space with the elevator data. 172 */ 173 union { 174 struct { 175 struct io_cq *icq; 176 void *priv[2]; 177 } elv; 178 179 struct { 180 unsigned int seq; 181 struct list_head list; 182 rq_end_io_fn *saved_end_io; 183 } flush; 184 }; 185 186 struct gendisk *rq_disk; 187 struct block_device *part; 188 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 189 /* Time that the first bio started allocating this request. */ 190 u64 alloc_time_ns; 191 #endif 192 /* Time that this request was allocated for this IO. */ 193 u64 start_time_ns; 194 /* Time that I/O was submitted to the device. */ 195 u64 io_start_time_ns; 196 197 #ifdef CONFIG_BLK_WBT 198 unsigned short wbt_flags; 199 #endif 200 /* 201 * rq sectors used for blk stats. It has the same value 202 * with blk_rq_sectors(rq), except that it never be zeroed 203 * by completion. 204 */ 205 unsigned short stats_sectors; 206 207 /* 208 * Number of scatter-gather DMA addr+len pairs after 209 * physical address coalescing is performed. 210 */ 211 unsigned short nr_phys_segments; 212 213 #if defined(CONFIG_BLK_DEV_INTEGRITY) 214 unsigned short nr_integrity_segments; 215 #endif 216 217 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 218 struct bio_crypt_ctx *crypt_ctx; 219 struct blk_ksm_keyslot *crypt_keyslot; 220 #endif 221 222 unsigned short write_hint; 223 unsigned short ioprio; 224 225 enum mq_rq_state state; 226 refcount_t ref; 227 228 unsigned int timeout; 229 unsigned long deadline; 230 231 union { 232 struct __call_single_data csd; 233 u64 fifo_time; 234 }; 235 236 /* 237 * completion callback. 238 */ 239 rq_end_io_fn *end_io; 240 void *end_io_data; 241 }; 242 243 static inline bool blk_op_is_scsi(unsigned int op) 244 { 245 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 246 } 247 248 static inline bool blk_op_is_private(unsigned int op) 249 { 250 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 251 } 252 253 static inline bool blk_rq_is_scsi(struct request *rq) 254 { 255 return blk_op_is_scsi(req_op(rq)); 256 } 257 258 static inline bool blk_rq_is_private(struct request *rq) 259 { 260 return blk_op_is_private(req_op(rq)); 261 } 262 263 static inline bool blk_rq_is_passthrough(struct request *rq) 264 { 265 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 266 } 267 268 static inline bool bio_is_passthrough(struct bio *bio) 269 { 270 unsigned op = bio_op(bio); 271 272 return blk_op_is_scsi(op) || blk_op_is_private(op); 273 } 274 275 static inline bool blk_op_is_passthrough(unsigned int op) 276 { 277 return (blk_op_is_scsi(op & REQ_OP_MASK) || 278 blk_op_is_private(op & REQ_OP_MASK)); 279 } 280 281 static inline unsigned short req_get_ioprio(struct request *req) 282 { 283 return req->ioprio; 284 } 285 286 #include <linux/elevator.h> 287 288 struct blk_queue_ctx; 289 290 struct bio_vec; 291 292 enum blk_eh_timer_return { 293 BLK_EH_DONE, /* drivers has completed the command */ 294 BLK_EH_RESET_TIMER, /* reset timer and try again */ 295 }; 296 297 enum blk_queue_state { 298 Queue_down, 299 Queue_up, 300 }; 301 302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 304 305 #define BLK_SCSI_MAX_CMDS (256) 306 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 307 308 /* 309 * Zoned block device models (zoned limit). 310 * 311 * Note: This needs to be ordered from the least to the most severe 312 * restrictions for the inheritance in blk_stack_limits() to work. 313 */ 314 enum blk_zoned_model { 315 BLK_ZONED_NONE = 0, /* Regular block device */ 316 BLK_ZONED_HA, /* Host-aware zoned block device */ 317 BLK_ZONED_HM, /* Host-managed zoned block device */ 318 }; 319 320 /* 321 * BLK_BOUNCE_NONE: never bounce (default) 322 * BLK_BOUNCE_HIGH: bounce all highmem pages 323 */ 324 enum blk_bounce { 325 BLK_BOUNCE_NONE, 326 BLK_BOUNCE_HIGH, 327 }; 328 329 struct queue_limits { 330 enum blk_bounce bounce; 331 unsigned long seg_boundary_mask; 332 unsigned long virt_boundary_mask; 333 334 unsigned int max_hw_sectors; 335 unsigned int max_dev_sectors; 336 unsigned int chunk_sectors; 337 unsigned int max_sectors; 338 unsigned int max_segment_size; 339 unsigned int physical_block_size; 340 unsigned int logical_block_size; 341 unsigned int alignment_offset; 342 unsigned int io_min; 343 unsigned int io_opt; 344 unsigned int max_discard_sectors; 345 unsigned int max_hw_discard_sectors; 346 unsigned int max_write_same_sectors; 347 unsigned int max_write_zeroes_sectors; 348 unsigned int max_zone_append_sectors; 349 unsigned int discard_granularity; 350 unsigned int discard_alignment; 351 unsigned int zone_write_granularity; 352 353 unsigned short max_segments; 354 unsigned short max_integrity_segments; 355 unsigned short max_discard_segments; 356 357 unsigned char misaligned; 358 unsigned char discard_misaligned; 359 unsigned char raid_partial_stripes_expensive; 360 enum blk_zoned_model zoned; 361 }; 362 363 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 364 void *data); 365 366 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 367 368 #ifdef CONFIG_BLK_DEV_ZONED 369 370 #define BLK_ALL_ZONES ((unsigned int)-1) 371 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 372 unsigned int nr_zones, report_zones_cb cb, void *data); 373 unsigned int blkdev_nr_zones(struct gendisk *disk); 374 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 375 sector_t sectors, sector_t nr_sectors, 376 gfp_t gfp_mask); 377 int blk_revalidate_disk_zones(struct gendisk *disk, 378 void (*update_driver_data)(struct gendisk *disk)); 379 380 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 381 unsigned int cmd, unsigned long arg); 382 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 383 unsigned int cmd, unsigned long arg); 384 385 #else /* CONFIG_BLK_DEV_ZONED */ 386 387 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 388 { 389 return 0; 390 } 391 392 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 393 fmode_t mode, unsigned int cmd, 394 unsigned long arg) 395 { 396 return -ENOTTY; 397 } 398 399 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 400 fmode_t mode, unsigned int cmd, 401 unsigned long arg) 402 { 403 return -ENOTTY; 404 } 405 406 #endif /* CONFIG_BLK_DEV_ZONED */ 407 408 struct request_queue { 409 struct request *last_merge; 410 struct elevator_queue *elevator; 411 412 struct percpu_ref q_usage_counter; 413 414 struct blk_queue_stats *stats; 415 struct rq_qos *rq_qos; 416 417 const struct blk_mq_ops *mq_ops; 418 419 /* sw queues */ 420 struct blk_mq_ctx __percpu *queue_ctx; 421 422 unsigned int queue_depth; 423 424 /* hw dispatch queues */ 425 struct blk_mq_hw_ctx **queue_hw_ctx; 426 unsigned int nr_hw_queues; 427 428 struct backing_dev_info *backing_dev_info; 429 430 /* 431 * The queue owner gets to use this for whatever they like. 432 * ll_rw_blk doesn't touch it. 433 */ 434 void *queuedata; 435 436 /* 437 * various queue flags, see QUEUE_* below 438 */ 439 unsigned long queue_flags; 440 /* 441 * Number of contexts that have called blk_set_pm_only(). If this 442 * counter is above zero then only RQF_PM requests are processed. 443 */ 444 atomic_t pm_only; 445 446 /* 447 * ida allocated id for this queue. Used to index queues from 448 * ioctx. 449 */ 450 int id; 451 452 spinlock_t queue_lock; 453 454 /* 455 * queue kobject 456 */ 457 struct kobject kobj; 458 459 /* 460 * mq queue kobject 461 */ 462 struct kobject *mq_kobj; 463 464 #ifdef CONFIG_BLK_DEV_INTEGRITY 465 struct blk_integrity integrity; 466 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 467 468 #ifdef CONFIG_PM 469 struct device *dev; 470 enum rpm_status rpm_status; 471 #endif 472 473 /* 474 * queue settings 475 */ 476 unsigned long nr_requests; /* Max # of requests */ 477 478 unsigned int dma_pad_mask; 479 unsigned int dma_alignment; 480 481 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 482 /* Inline crypto capabilities */ 483 struct blk_keyslot_manager *ksm; 484 #endif 485 486 unsigned int rq_timeout; 487 int poll_nsec; 488 489 struct blk_stat_callback *poll_cb; 490 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 491 492 struct timer_list timeout; 493 struct work_struct timeout_work; 494 495 atomic_t nr_active_requests_shared_sbitmap; 496 497 struct list_head icq_list; 498 #ifdef CONFIG_BLK_CGROUP 499 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 500 struct blkcg_gq *root_blkg; 501 struct list_head blkg_list; 502 #endif 503 504 struct queue_limits limits; 505 506 unsigned int required_elevator_features; 507 508 #ifdef CONFIG_BLK_DEV_ZONED 509 /* 510 * Zoned block device information for request dispatch control. 511 * nr_zones is the total number of zones of the device. This is always 512 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 513 * bits which indicates if a zone is conventional (bit set) or 514 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 515 * bits which indicates if a zone is write locked, that is, if a write 516 * request targeting the zone was dispatched. All three fields are 517 * initialized by the low level device driver (e.g. scsi/sd.c). 518 * Stacking drivers (device mappers) may or may not initialize 519 * these fields. 520 * 521 * Reads of this information must be protected with blk_queue_enter() / 522 * blk_queue_exit(). Modifying this information is only allowed while 523 * no requests are being processed. See also blk_mq_freeze_queue() and 524 * blk_mq_unfreeze_queue(). 525 */ 526 unsigned int nr_zones; 527 unsigned long *conv_zones_bitmap; 528 unsigned long *seq_zones_wlock; 529 unsigned int max_open_zones; 530 unsigned int max_active_zones; 531 #endif /* CONFIG_BLK_DEV_ZONED */ 532 533 /* 534 * sg stuff 535 */ 536 unsigned int sg_timeout; 537 unsigned int sg_reserved_size; 538 int node; 539 struct mutex debugfs_mutex; 540 #ifdef CONFIG_BLK_DEV_IO_TRACE 541 struct blk_trace __rcu *blk_trace; 542 #endif 543 /* 544 * for flush operations 545 */ 546 struct blk_flush_queue *fq; 547 548 struct list_head requeue_list; 549 spinlock_t requeue_lock; 550 struct delayed_work requeue_work; 551 552 struct mutex sysfs_lock; 553 struct mutex sysfs_dir_lock; 554 555 /* 556 * for reusing dead hctx instance in case of updating 557 * nr_hw_queues 558 */ 559 struct list_head unused_hctx_list; 560 spinlock_t unused_hctx_lock; 561 562 int mq_freeze_depth; 563 564 #if defined(CONFIG_BLK_DEV_BSG) 565 struct bsg_class_device bsg_dev; 566 #endif 567 568 #ifdef CONFIG_BLK_DEV_THROTTLING 569 /* Throttle data */ 570 struct throtl_data *td; 571 #endif 572 struct rcu_head rcu_head; 573 wait_queue_head_t mq_freeze_wq; 574 /* 575 * Protect concurrent access to q_usage_counter by 576 * percpu_ref_kill() and percpu_ref_reinit(). 577 */ 578 struct mutex mq_freeze_lock; 579 580 struct blk_mq_tag_set *tag_set; 581 struct list_head tag_set_list; 582 struct bio_set bio_split; 583 584 struct dentry *debugfs_dir; 585 586 #ifdef CONFIG_BLK_DEBUG_FS 587 struct dentry *sched_debugfs_dir; 588 struct dentry *rqos_debugfs_dir; 589 #endif 590 591 bool mq_sysfs_init_done; 592 593 size_t cmd_size; 594 595 #define BLK_MAX_WRITE_HINTS 5 596 u64 write_hints[BLK_MAX_WRITE_HINTS]; 597 }; 598 599 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 600 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 601 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 602 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 603 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 604 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 605 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 606 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 607 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 608 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 609 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 610 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 611 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 612 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 613 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 614 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 615 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 616 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 617 #define QUEUE_FLAG_WC 17 /* Write back caching */ 618 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 619 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 620 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 621 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 622 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 623 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 624 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 625 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 626 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 627 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 628 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 629 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 630 631 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 632 (1 << QUEUE_FLAG_SAME_COMP) | \ 633 (1 << QUEUE_FLAG_NOWAIT)) 634 635 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 636 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 637 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 638 639 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 640 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 641 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 642 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 643 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 644 #define blk_queue_noxmerges(q) \ 645 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 646 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 647 #define blk_queue_stable_writes(q) \ 648 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 649 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 650 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 651 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 652 #define blk_queue_zone_resetall(q) \ 653 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 654 #define blk_queue_secure_erase(q) \ 655 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 656 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 657 #define blk_queue_scsi_passthrough(q) \ 658 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 659 #define blk_queue_pci_p2pdma(q) \ 660 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 661 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 662 #define blk_queue_rq_alloc_time(q) \ 663 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 664 #else 665 #define blk_queue_rq_alloc_time(q) false 666 #endif 667 668 #define blk_noretry_request(rq) \ 669 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 670 REQ_FAILFAST_DRIVER)) 671 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 672 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 673 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 674 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 675 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 676 677 extern void blk_set_pm_only(struct request_queue *q); 678 extern void blk_clear_pm_only(struct request_queue *q); 679 680 static inline bool blk_account_rq(struct request *rq) 681 { 682 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 683 } 684 685 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 686 687 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 688 689 #define rq_dma_dir(rq) \ 690 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 691 692 #define dma_map_bvec(dev, bv, dir, attrs) \ 693 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 694 (dir), (attrs)) 695 696 #define queue_to_disk(q) (dev_to_disk(kobj_to_dev((q)->kobj.parent))) 697 698 static inline bool queue_is_mq(struct request_queue *q) 699 { 700 return q->mq_ops; 701 } 702 703 #ifdef CONFIG_PM 704 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 705 { 706 return q->rpm_status; 707 } 708 #else 709 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 710 { 711 return RPM_ACTIVE; 712 } 713 #endif 714 715 static inline enum blk_zoned_model 716 blk_queue_zoned_model(struct request_queue *q) 717 { 718 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 719 return q->limits.zoned; 720 return BLK_ZONED_NONE; 721 } 722 723 static inline bool blk_queue_is_zoned(struct request_queue *q) 724 { 725 switch (blk_queue_zoned_model(q)) { 726 case BLK_ZONED_HA: 727 case BLK_ZONED_HM: 728 return true; 729 default: 730 return false; 731 } 732 } 733 734 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 735 { 736 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 737 } 738 739 #ifdef CONFIG_BLK_DEV_ZONED 740 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 741 { 742 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 743 } 744 745 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 746 sector_t sector) 747 { 748 if (!blk_queue_is_zoned(q)) 749 return 0; 750 return sector >> ilog2(q->limits.chunk_sectors); 751 } 752 753 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 754 sector_t sector) 755 { 756 if (!blk_queue_is_zoned(q)) 757 return false; 758 if (!q->conv_zones_bitmap) 759 return true; 760 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 761 } 762 763 static inline void blk_queue_max_open_zones(struct request_queue *q, 764 unsigned int max_open_zones) 765 { 766 q->max_open_zones = max_open_zones; 767 } 768 769 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 770 { 771 return q->max_open_zones; 772 } 773 774 static inline void blk_queue_max_active_zones(struct request_queue *q, 775 unsigned int max_active_zones) 776 { 777 q->max_active_zones = max_active_zones; 778 } 779 780 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 781 { 782 return q->max_active_zones; 783 } 784 #else /* CONFIG_BLK_DEV_ZONED */ 785 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 786 { 787 return 0; 788 } 789 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 790 sector_t sector) 791 { 792 return false; 793 } 794 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 795 sector_t sector) 796 { 797 return 0; 798 } 799 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 800 { 801 return 0; 802 } 803 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 804 { 805 return 0; 806 } 807 #endif /* CONFIG_BLK_DEV_ZONED */ 808 809 static inline bool rq_is_sync(struct request *rq) 810 { 811 return op_is_sync(rq->cmd_flags); 812 } 813 814 static inline bool rq_mergeable(struct request *rq) 815 { 816 if (blk_rq_is_passthrough(rq)) 817 return false; 818 819 if (req_op(rq) == REQ_OP_FLUSH) 820 return false; 821 822 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 823 return false; 824 825 if (req_op(rq) == REQ_OP_ZONE_APPEND) 826 return false; 827 828 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 829 return false; 830 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 831 return false; 832 833 return true; 834 } 835 836 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 837 { 838 if (bio_page(a) == bio_page(b) && 839 bio_offset(a) == bio_offset(b)) 840 return true; 841 842 return false; 843 } 844 845 static inline unsigned int blk_queue_depth(struct request_queue *q) 846 { 847 if (q->queue_depth) 848 return q->queue_depth; 849 850 return q->nr_requests; 851 } 852 853 /* 854 * default timeout for SG_IO if none specified 855 */ 856 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 857 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 858 859 struct rq_map_data { 860 struct page **pages; 861 int page_order; 862 int nr_entries; 863 unsigned long offset; 864 int null_mapped; 865 int from_user; 866 }; 867 868 struct req_iterator { 869 struct bvec_iter iter; 870 struct bio *bio; 871 }; 872 873 /* This should not be used directly - use rq_for_each_segment */ 874 #define for_each_bio(_bio) \ 875 for (; _bio; _bio = _bio->bi_next) 876 #define __rq_for_each_bio(_bio, rq) \ 877 if ((rq->bio)) \ 878 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 879 880 #define rq_for_each_segment(bvl, _rq, _iter) \ 881 __rq_for_each_bio(_iter.bio, _rq) \ 882 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 883 884 #define rq_for_each_bvec(bvl, _rq, _iter) \ 885 __rq_for_each_bio(_iter.bio, _rq) \ 886 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 887 888 #define rq_iter_last(bvec, _iter) \ 889 (_iter.bio->bi_next == NULL && \ 890 bio_iter_last(bvec, _iter.iter)) 891 892 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 893 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 894 #endif 895 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 896 extern void rq_flush_dcache_pages(struct request *rq); 897 #else 898 static inline void rq_flush_dcache_pages(struct request *rq) 899 { 900 } 901 #endif 902 903 extern int blk_register_queue(struct gendisk *disk); 904 extern void blk_unregister_queue(struct gendisk *disk); 905 blk_qc_t submit_bio_noacct(struct bio *bio); 906 extern void blk_rq_init(struct request_queue *q, struct request *rq); 907 extern void blk_put_request(struct request *); 908 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 909 blk_mq_req_flags_t flags); 910 extern int blk_lld_busy(struct request_queue *q); 911 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 912 struct bio_set *bs, gfp_t gfp_mask, 913 int (*bio_ctr)(struct bio *, struct bio *, void *), 914 void *data); 915 extern void blk_rq_unprep_clone(struct request *rq); 916 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 917 struct request *rq); 918 int blk_rq_append_bio(struct request *rq, struct bio *bio); 919 extern void blk_queue_split(struct bio **); 920 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 921 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 922 unsigned int, void __user *); 923 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 924 unsigned int, void __user *); 925 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 926 struct scsi_ioctl_command __user *); 927 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 928 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 929 930 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 931 extern void blk_queue_exit(struct request_queue *q); 932 extern void blk_sync_queue(struct request_queue *q); 933 extern int blk_rq_map_user(struct request_queue *, struct request *, 934 struct rq_map_data *, void __user *, unsigned long, 935 gfp_t); 936 extern int blk_rq_unmap_user(struct bio *); 937 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 938 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 939 struct rq_map_data *, const struct iov_iter *, 940 gfp_t); 941 extern void blk_execute_rq(struct gendisk *, struct request *, int); 942 extern void blk_execute_rq_nowait(struct gendisk *, 943 struct request *, int, rq_end_io_fn *); 944 945 /* Helper to convert REQ_OP_XXX to its string format XXX */ 946 extern const char *blk_op_str(unsigned int op); 947 948 int blk_status_to_errno(blk_status_t status); 949 blk_status_t errno_to_blk_status(int errno); 950 951 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 952 953 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 954 { 955 return bdev->bd_disk->queue; /* this is never NULL */ 956 } 957 958 /* 959 * The basic unit of block I/O is a sector. It is used in a number of contexts 960 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 961 * bytes. Variables of type sector_t represent an offset or size that is a 962 * multiple of 512 bytes. Hence these two constants. 963 */ 964 #ifndef SECTOR_SHIFT 965 #define SECTOR_SHIFT 9 966 #endif 967 #ifndef SECTOR_SIZE 968 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 969 #endif 970 971 /* 972 * blk_rq_pos() : the current sector 973 * blk_rq_bytes() : bytes left in the entire request 974 * blk_rq_cur_bytes() : bytes left in the current segment 975 * blk_rq_err_bytes() : bytes left till the next error boundary 976 * blk_rq_sectors() : sectors left in the entire request 977 * blk_rq_cur_sectors() : sectors left in the current segment 978 * blk_rq_stats_sectors() : sectors of the entire request used for stats 979 */ 980 static inline sector_t blk_rq_pos(const struct request *rq) 981 { 982 return rq->__sector; 983 } 984 985 static inline unsigned int blk_rq_bytes(const struct request *rq) 986 { 987 return rq->__data_len; 988 } 989 990 static inline int blk_rq_cur_bytes(const struct request *rq) 991 { 992 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 993 } 994 995 extern unsigned int blk_rq_err_bytes(const struct request *rq); 996 997 static inline unsigned int blk_rq_sectors(const struct request *rq) 998 { 999 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1000 } 1001 1002 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1003 { 1004 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1005 } 1006 1007 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1008 { 1009 return rq->stats_sectors; 1010 } 1011 1012 #ifdef CONFIG_BLK_DEV_ZONED 1013 1014 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1015 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1016 1017 static inline unsigned int blk_rq_zone_no(struct request *rq) 1018 { 1019 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1020 } 1021 1022 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1023 { 1024 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1025 } 1026 #endif /* CONFIG_BLK_DEV_ZONED */ 1027 1028 /* 1029 * Some commands like WRITE SAME have a payload or data transfer size which 1030 * is different from the size of the request. Any driver that supports such 1031 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1032 * calculate the data transfer size. 1033 */ 1034 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1035 { 1036 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1037 return rq->special_vec.bv_len; 1038 return blk_rq_bytes(rq); 1039 } 1040 1041 /* 1042 * Return the first full biovec in the request. The caller needs to check that 1043 * there are any bvecs before calling this helper. 1044 */ 1045 static inline struct bio_vec req_bvec(struct request *rq) 1046 { 1047 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1048 return rq->special_vec; 1049 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1050 } 1051 1052 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1053 int op) 1054 { 1055 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1056 return min(q->limits.max_discard_sectors, 1057 UINT_MAX >> SECTOR_SHIFT); 1058 1059 if (unlikely(op == REQ_OP_WRITE_SAME)) 1060 return q->limits.max_write_same_sectors; 1061 1062 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1063 return q->limits.max_write_zeroes_sectors; 1064 1065 return q->limits.max_sectors; 1066 } 1067 1068 /* 1069 * Return maximum size of a request at given offset. Only valid for 1070 * file system requests. 1071 */ 1072 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1073 sector_t offset, 1074 unsigned int chunk_sectors) 1075 { 1076 if (!chunk_sectors) { 1077 if (q->limits.chunk_sectors) 1078 chunk_sectors = q->limits.chunk_sectors; 1079 else 1080 return q->limits.max_sectors; 1081 } 1082 1083 if (likely(is_power_of_2(chunk_sectors))) 1084 chunk_sectors -= offset & (chunk_sectors - 1); 1085 else 1086 chunk_sectors -= sector_div(offset, chunk_sectors); 1087 1088 return min(q->limits.max_sectors, chunk_sectors); 1089 } 1090 1091 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1092 sector_t offset) 1093 { 1094 struct request_queue *q = rq->q; 1095 1096 if (blk_rq_is_passthrough(rq)) 1097 return q->limits.max_hw_sectors; 1098 1099 if (!q->limits.chunk_sectors || 1100 req_op(rq) == REQ_OP_DISCARD || 1101 req_op(rq) == REQ_OP_SECURE_ERASE) 1102 return blk_queue_get_max_sectors(q, req_op(rq)); 1103 1104 return min(blk_max_size_offset(q, offset, 0), 1105 blk_queue_get_max_sectors(q, req_op(rq))); 1106 } 1107 1108 static inline unsigned int blk_rq_count_bios(struct request *rq) 1109 { 1110 unsigned int nr_bios = 0; 1111 struct bio *bio; 1112 1113 __rq_for_each_bio(bio, rq) 1114 nr_bios++; 1115 1116 return nr_bios; 1117 } 1118 1119 void blk_steal_bios(struct bio_list *list, struct request *rq); 1120 1121 /* 1122 * Request completion related functions. 1123 * 1124 * blk_update_request() completes given number of bytes and updates 1125 * the request without completing it. 1126 */ 1127 extern bool blk_update_request(struct request *rq, blk_status_t error, 1128 unsigned int nr_bytes); 1129 1130 extern void blk_abort_request(struct request *); 1131 1132 /* 1133 * Access functions for manipulating queue properties 1134 */ 1135 extern void blk_cleanup_queue(struct request_queue *); 1136 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 1137 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1138 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1139 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1140 extern void blk_queue_max_discard_segments(struct request_queue *, 1141 unsigned short); 1142 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1143 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1144 unsigned int max_discard_sectors); 1145 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1146 unsigned int max_write_same_sectors); 1147 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1148 unsigned int max_write_same_sectors); 1149 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1150 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1151 unsigned int max_zone_append_sectors); 1152 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1153 void blk_queue_zone_write_granularity(struct request_queue *q, 1154 unsigned int size); 1155 extern void blk_queue_alignment_offset(struct request_queue *q, 1156 unsigned int alignment); 1157 void blk_queue_update_readahead(struct request_queue *q); 1158 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1159 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1160 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1161 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1162 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1163 extern void blk_set_default_limits(struct queue_limits *lim); 1164 extern void blk_set_stacking_limits(struct queue_limits *lim); 1165 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1166 sector_t offset); 1167 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1168 sector_t offset); 1169 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1170 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1171 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1172 extern void blk_queue_dma_alignment(struct request_queue *, int); 1173 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1174 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1175 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1176 extern void blk_queue_required_elevator_features(struct request_queue *q, 1177 unsigned int features); 1178 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1179 struct device *dev); 1180 1181 /* 1182 * Number of physical segments as sent to the device. 1183 * 1184 * Normally this is the number of discontiguous data segments sent by the 1185 * submitter. But for data-less command like discard we might have no 1186 * actual data segments submitted, but the driver might have to add it's 1187 * own special payload. In that case we still return 1 here so that this 1188 * special payload will be mapped. 1189 */ 1190 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1191 { 1192 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1193 return 1; 1194 return rq->nr_phys_segments; 1195 } 1196 1197 /* 1198 * Number of discard segments (or ranges) the driver needs to fill in. 1199 * Each discard bio merged into a request is counted as one segment. 1200 */ 1201 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1202 { 1203 return max_t(unsigned short, rq->nr_phys_segments, 1); 1204 } 1205 1206 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1207 struct scatterlist *sglist, struct scatterlist **last_sg); 1208 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1209 struct scatterlist *sglist) 1210 { 1211 struct scatterlist *last_sg = NULL; 1212 1213 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1214 } 1215 extern void blk_dump_rq_flags(struct request *, char *); 1216 1217 bool __must_check blk_get_queue(struct request_queue *); 1218 struct request_queue *blk_alloc_queue(int node_id); 1219 extern void blk_put_queue(struct request_queue *); 1220 extern void blk_set_queue_dying(struct request_queue *); 1221 1222 #ifdef CONFIG_BLOCK 1223 /* 1224 * blk_plug permits building a queue of related requests by holding the I/O 1225 * fragments for a short period. This allows merging of sequential requests 1226 * into single larger request. As the requests are moved from a per-task list to 1227 * the device's request_queue in a batch, this results in improved scalability 1228 * as the lock contention for request_queue lock is reduced. 1229 * 1230 * It is ok not to disable preemption when adding the request to the plug list 1231 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1232 * the plug list when the task sleeps by itself. For details, please see 1233 * schedule() where blk_schedule_flush_plug() is called. 1234 */ 1235 struct blk_plug { 1236 struct list_head mq_list; /* blk-mq requests */ 1237 struct list_head cb_list; /* md requires an unplug callback */ 1238 unsigned short rq_count; 1239 bool multiple_queues; 1240 bool nowait; 1241 }; 1242 #define BLK_MAX_REQUEST_COUNT 16 1243 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1244 1245 struct blk_plug_cb; 1246 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1247 struct blk_plug_cb { 1248 struct list_head list; 1249 blk_plug_cb_fn callback; 1250 void *data; 1251 }; 1252 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1253 void *data, int size); 1254 extern void blk_start_plug(struct blk_plug *); 1255 extern void blk_finish_plug(struct blk_plug *); 1256 extern void blk_flush_plug_list(struct blk_plug *, bool); 1257 1258 static inline void blk_flush_plug(struct task_struct *tsk) 1259 { 1260 struct blk_plug *plug = tsk->plug; 1261 1262 if (plug) 1263 blk_flush_plug_list(plug, false); 1264 } 1265 1266 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1267 { 1268 struct blk_plug *plug = tsk->plug; 1269 1270 if (plug) 1271 blk_flush_plug_list(plug, true); 1272 } 1273 1274 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1275 { 1276 struct blk_plug *plug = tsk->plug; 1277 1278 return plug && 1279 (!list_empty(&plug->mq_list) || 1280 !list_empty(&plug->cb_list)); 1281 } 1282 1283 int blkdev_issue_flush(struct block_device *bdev); 1284 long nr_blockdev_pages(void); 1285 #else /* CONFIG_BLOCK */ 1286 struct blk_plug { 1287 }; 1288 1289 static inline void blk_start_plug(struct blk_plug *plug) 1290 { 1291 } 1292 1293 static inline void blk_finish_plug(struct blk_plug *plug) 1294 { 1295 } 1296 1297 static inline void blk_flush_plug(struct task_struct *task) 1298 { 1299 } 1300 1301 static inline void blk_schedule_flush_plug(struct task_struct *task) 1302 { 1303 } 1304 1305 1306 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1307 { 1308 return false; 1309 } 1310 1311 static inline int blkdev_issue_flush(struct block_device *bdev) 1312 { 1313 return 0; 1314 } 1315 1316 static inline long nr_blockdev_pages(void) 1317 { 1318 return 0; 1319 } 1320 #endif /* CONFIG_BLOCK */ 1321 1322 extern void blk_io_schedule(void); 1323 1324 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1325 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1326 1327 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1328 1329 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1330 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1331 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1332 sector_t nr_sects, gfp_t gfp_mask, int flags, 1333 struct bio **biop); 1334 1335 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1336 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1337 1338 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1339 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1340 unsigned flags); 1341 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1342 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1343 1344 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1345 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1346 { 1347 return blkdev_issue_discard(sb->s_bdev, 1348 block << (sb->s_blocksize_bits - 1349 SECTOR_SHIFT), 1350 nr_blocks << (sb->s_blocksize_bits - 1351 SECTOR_SHIFT), 1352 gfp_mask, flags); 1353 } 1354 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1355 sector_t nr_blocks, gfp_t gfp_mask) 1356 { 1357 return blkdev_issue_zeroout(sb->s_bdev, 1358 block << (sb->s_blocksize_bits - 1359 SECTOR_SHIFT), 1360 nr_blocks << (sb->s_blocksize_bits - 1361 SECTOR_SHIFT), 1362 gfp_mask, 0); 1363 } 1364 1365 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1366 1367 static inline bool bdev_is_partition(struct block_device *bdev) 1368 { 1369 return bdev->bd_partno; 1370 } 1371 1372 enum blk_default_limits { 1373 BLK_MAX_SEGMENTS = 128, 1374 BLK_SAFE_MAX_SECTORS = 255, 1375 BLK_DEF_MAX_SECTORS = 2560, 1376 BLK_MAX_SEGMENT_SIZE = 65536, 1377 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1378 }; 1379 1380 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1381 { 1382 return q->limits.seg_boundary_mask; 1383 } 1384 1385 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1386 { 1387 return q->limits.virt_boundary_mask; 1388 } 1389 1390 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1391 { 1392 return q->limits.max_sectors; 1393 } 1394 1395 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1396 { 1397 return q->limits.max_hw_sectors; 1398 } 1399 1400 static inline unsigned short queue_max_segments(const struct request_queue *q) 1401 { 1402 return q->limits.max_segments; 1403 } 1404 1405 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1406 { 1407 return q->limits.max_discard_segments; 1408 } 1409 1410 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1411 { 1412 return q->limits.max_segment_size; 1413 } 1414 1415 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1416 { 1417 1418 const struct queue_limits *l = &q->limits; 1419 1420 return min(l->max_zone_append_sectors, l->max_sectors); 1421 } 1422 1423 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1424 { 1425 int retval = 512; 1426 1427 if (q && q->limits.logical_block_size) 1428 retval = q->limits.logical_block_size; 1429 1430 return retval; 1431 } 1432 1433 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1434 { 1435 return queue_logical_block_size(bdev_get_queue(bdev)); 1436 } 1437 1438 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1439 { 1440 return q->limits.physical_block_size; 1441 } 1442 1443 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1444 { 1445 return queue_physical_block_size(bdev_get_queue(bdev)); 1446 } 1447 1448 static inline unsigned int queue_io_min(const struct request_queue *q) 1449 { 1450 return q->limits.io_min; 1451 } 1452 1453 static inline int bdev_io_min(struct block_device *bdev) 1454 { 1455 return queue_io_min(bdev_get_queue(bdev)); 1456 } 1457 1458 static inline unsigned int queue_io_opt(const struct request_queue *q) 1459 { 1460 return q->limits.io_opt; 1461 } 1462 1463 static inline int bdev_io_opt(struct block_device *bdev) 1464 { 1465 return queue_io_opt(bdev_get_queue(bdev)); 1466 } 1467 1468 static inline unsigned int 1469 queue_zone_write_granularity(const struct request_queue *q) 1470 { 1471 return q->limits.zone_write_granularity; 1472 } 1473 1474 static inline unsigned int 1475 bdev_zone_write_granularity(struct block_device *bdev) 1476 { 1477 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1478 } 1479 1480 static inline int queue_alignment_offset(const struct request_queue *q) 1481 { 1482 if (q->limits.misaligned) 1483 return -1; 1484 1485 return q->limits.alignment_offset; 1486 } 1487 1488 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1489 { 1490 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1491 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1492 << SECTOR_SHIFT; 1493 1494 return (granularity + lim->alignment_offset - alignment) % granularity; 1495 } 1496 1497 static inline int bdev_alignment_offset(struct block_device *bdev) 1498 { 1499 struct request_queue *q = bdev_get_queue(bdev); 1500 1501 if (q->limits.misaligned) 1502 return -1; 1503 if (bdev_is_partition(bdev)) 1504 return queue_limit_alignment_offset(&q->limits, 1505 bdev->bd_start_sect); 1506 return q->limits.alignment_offset; 1507 } 1508 1509 static inline int queue_discard_alignment(const struct request_queue *q) 1510 { 1511 if (q->limits.discard_misaligned) 1512 return -1; 1513 1514 return q->limits.discard_alignment; 1515 } 1516 1517 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1518 { 1519 unsigned int alignment, granularity, offset; 1520 1521 if (!lim->max_discard_sectors) 1522 return 0; 1523 1524 /* Why are these in bytes, not sectors? */ 1525 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1526 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1527 if (!granularity) 1528 return 0; 1529 1530 /* Offset of the partition start in 'granularity' sectors */ 1531 offset = sector_div(sector, granularity); 1532 1533 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1534 offset = (granularity + alignment - offset) % granularity; 1535 1536 /* Turn it back into bytes, gaah */ 1537 return offset << SECTOR_SHIFT; 1538 } 1539 1540 static inline int bdev_discard_alignment(struct block_device *bdev) 1541 { 1542 struct request_queue *q = bdev_get_queue(bdev); 1543 1544 if (bdev_is_partition(bdev)) 1545 return queue_limit_discard_alignment(&q->limits, 1546 bdev->bd_start_sect); 1547 return q->limits.discard_alignment; 1548 } 1549 1550 static inline unsigned int bdev_write_same(struct block_device *bdev) 1551 { 1552 struct request_queue *q = bdev_get_queue(bdev); 1553 1554 if (q) 1555 return q->limits.max_write_same_sectors; 1556 1557 return 0; 1558 } 1559 1560 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1561 { 1562 struct request_queue *q = bdev_get_queue(bdev); 1563 1564 if (q) 1565 return q->limits.max_write_zeroes_sectors; 1566 1567 return 0; 1568 } 1569 1570 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1571 { 1572 struct request_queue *q = bdev_get_queue(bdev); 1573 1574 if (q) 1575 return blk_queue_zoned_model(q); 1576 1577 return BLK_ZONED_NONE; 1578 } 1579 1580 static inline bool bdev_is_zoned(struct block_device *bdev) 1581 { 1582 struct request_queue *q = bdev_get_queue(bdev); 1583 1584 if (q) 1585 return blk_queue_is_zoned(q); 1586 1587 return false; 1588 } 1589 1590 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1591 { 1592 struct request_queue *q = bdev_get_queue(bdev); 1593 1594 if (q) 1595 return blk_queue_zone_sectors(q); 1596 return 0; 1597 } 1598 1599 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1600 { 1601 struct request_queue *q = bdev_get_queue(bdev); 1602 1603 if (q) 1604 return queue_max_open_zones(q); 1605 return 0; 1606 } 1607 1608 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1609 { 1610 struct request_queue *q = bdev_get_queue(bdev); 1611 1612 if (q) 1613 return queue_max_active_zones(q); 1614 return 0; 1615 } 1616 1617 static inline int queue_dma_alignment(const struct request_queue *q) 1618 { 1619 return q ? q->dma_alignment : 511; 1620 } 1621 1622 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1623 unsigned int len) 1624 { 1625 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1626 return !(addr & alignment) && !(len & alignment); 1627 } 1628 1629 /* assumes size > 256 */ 1630 static inline unsigned int blksize_bits(unsigned int size) 1631 { 1632 unsigned int bits = 8; 1633 do { 1634 bits++; 1635 size >>= 1; 1636 } while (size > 256); 1637 return bits; 1638 } 1639 1640 static inline unsigned int block_size(struct block_device *bdev) 1641 { 1642 return 1 << bdev->bd_inode->i_blkbits; 1643 } 1644 1645 int kblockd_schedule_work(struct work_struct *work); 1646 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1647 1648 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1649 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1650 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1651 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1652 1653 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1654 1655 enum blk_integrity_flags { 1656 BLK_INTEGRITY_VERIFY = 1 << 0, 1657 BLK_INTEGRITY_GENERATE = 1 << 1, 1658 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1659 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1660 }; 1661 1662 struct blk_integrity_iter { 1663 void *prot_buf; 1664 void *data_buf; 1665 sector_t seed; 1666 unsigned int data_size; 1667 unsigned short interval; 1668 const char *disk_name; 1669 }; 1670 1671 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1672 typedef void (integrity_prepare_fn) (struct request *); 1673 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1674 1675 struct blk_integrity_profile { 1676 integrity_processing_fn *generate_fn; 1677 integrity_processing_fn *verify_fn; 1678 integrity_prepare_fn *prepare_fn; 1679 integrity_complete_fn *complete_fn; 1680 const char *name; 1681 }; 1682 1683 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1684 extern void blk_integrity_unregister(struct gendisk *); 1685 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1686 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1687 struct scatterlist *); 1688 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1689 1690 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1691 { 1692 struct blk_integrity *bi = &disk->queue->integrity; 1693 1694 if (!bi->profile) 1695 return NULL; 1696 1697 return bi; 1698 } 1699 1700 static inline 1701 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1702 { 1703 return blk_get_integrity(bdev->bd_disk); 1704 } 1705 1706 static inline bool 1707 blk_integrity_queue_supports_integrity(struct request_queue *q) 1708 { 1709 return q->integrity.profile; 1710 } 1711 1712 static inline bool blk_integrity_rq(struct request *rq) 1713 { 1714 return rq->cmd_flags & REQ_INTEGRITY; 1715 } 1716 1717 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1718 unsigned int segs) 1719 { 1720 q->limits.max_integrity_segments = segs; 1721 } 1722 1723 static inline unsigned short 1724 queue_max_integrity_segments(const struct request_queue *q) 1725 { 1726 return q->limits.max_integrity_segments; 1727 } 1728 1729 /** 1730 * bio_integrity_intervals - Return number of integrity intervals for a bio 1731 * @bi: blk_integrity profile for device 1732 * @sectors: Size of the bio in 512-byte sectors 1733 * 1734 * Description: The block layer calculates everything in 512 byte 1735 * sectors but integrity metadata is done in terms of the data integrity 1736 * interval size of the storage device. Convert the block layer sectors 1737 * to the appropriate number of integrity intervals. 1738 */ 1739 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1740 unsigned int sectors) 1741 { 1742 return sectors >> (bi->interval_exp - 9); 1743 } 1744 1745 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1746 unsigned int sectors) 1747 { 1748 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1749 } 1750 1751 /* 1752 * Return the first bvec that contains integrity data. Only drivers that are 1753 * limited to a single integrity segment should use this helper. 1754 */ 1755 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1756 { 1757 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1758 return NULL; 1759 return rq->bio->bi_integrity->bip_vec; 1760 } 1761 1762 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1763 1764 struct bio; 1765 struct block_device; 1766 struct gendisk; 1767 struct blk_integrity; 1768 1769 static inline int blk_integrity_rq(struct request *rq) 1770 { 1771 return 0; 1772 } 1773 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1774 struct bio *b) 1775 { 1776 return 0; 1777 } 1778 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1779 struct bio *b, 1780 struct scatterlist *s) 1781 { 1782 return 0; 1783 } 1784 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1785 { 1786 return NULL; 1787 } 1788 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1789 { 1790 return NULL; 1791 } 1792 static inline bool 1793 blk_integrity_queue_supports_integrity(struct request_queue *q) 1794 { 1795 return false; 1796 } 1797 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1798 { 1799 return 0; 1800 } 1801 static inline void blk_integrity_register(struct gendisk *d, 1802 struct blk_integrity *b) 1803 { 1804 } 1805 static inline void blk_integrity_unregister(struct gendisk *d) 1806 { 1807 } 1808 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1809 unsigned int segs) 1810 { 1811 } 1812 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1813 { 1814 return 0; 1815 } 1816 1817 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1818 unsigned int sectors) 1819 { 1820 return 0; 1821 } 1822 1823 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1824 unsigned int sectors) 1825 { 1826 return 0; 1827 } 1828 1829 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1830 { 1831 return NULL; 1832 } 1833 1834 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1835 1836 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1837 1838 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1839 1840 void blk_ksm_unregister(struct request_queue *q); 1841 1842 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1843 1844 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1845 struct request_queue *q) 1846 { 1847 return true; 1848 } 1849 1850 static inline void blk_ksm_unregister(struct request_queue *q) { } 1851 1852 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1853 1854 1855 struct block_device_operations { 1856 blk_qc_t (*submit_bio) (struct bio *bio); 1857 int (*open) (struct block_device *, fmode_t); 1858 void (*release) (struct gendisk *, fmode_t); 1859 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1860 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1861 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1862 unsigned int (*check_events) (struct gendisk *disk, 1863 unsigned int clearing); 1864 void (*unlock_native_capacity) (struct gendisk *); 1865 int (*getgeo)(struct block_device *, struct hd_geometry *); 1866 int (*set_read_only)(struct block_device *bdev, bool ro); 1867 /* this callback is with swap_lock and sometimes page table lock held */ 1868 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1869 int (*report_zones)(struct gendisk *, sector_t sector, 1870 unsigned int nr_zones, report_zones_cb cb, void *data); 1871 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1872 struct module *owner; 1873 const struct pr_ops *pr_ops; 1874 }; 1875 1876 #ifdef CONFIG_COMPAT 1877 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1878 unsigned int, unsigned long); 1879 #else 1880 #define blkdev_compat_ptr_ioctl NULL 1881 #endif 1882 1883 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1884 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1885 struct writeback_control *); 1886 1887 #ifdef CONFIG_BLK_DEV_ZONED 1888 bool blk_req_needs_zone_write_lock(struct request *rq); 1889 bool blk_req_zone_write_trylock(struct request *rq); 1890 void __blk_req_zone_write_lock(struct request *rq); 1891 void __blk_req_zone_write_unlock(struct request *rq); 1892 1893 static inline void blk_req_zone_write_lock(struct request *rq) 1894 { 1895 if (blk_req_needs_zone_write_lock(rq)) 1896 __blk_req_zone_write_lock(rq); 1897 } 1898 1899 static inline void blk_req_zone_write_unlock(struct request *rq) 1900 { 1901 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1902 __blk_req_zone_write_unlock(rq); 1903 } 1904 1905 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1906 { 1907 return rq->q->seq_zones_wlock && 1908 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1909 } 1910 1911 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1912 { 1913 if (!blk_req_needs_zone_write_lock(rq)) 1914 return true; 1915 return !blk_req_zone_is_write_locked(rq); 1916 } 1917 #else 1918 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1919 { 1920 return false; 1921 } 1922 1923 static inline void blk_req_zone_write_lock(struct request *rq) 1924 { 1925 } 1926 1927 static inline void blk_req_zone_write_unlock(struct request *rq) 1928 { 1929 } 1930 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1931 { 1932 return false; 1933 } 1934 1935 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1936 { 1937 return true; 1938 } 1939 #endif /* CONFIG_BLK_DEV_ZONED */ 1940 1941 static inline void blk_wake_io_task(struct task_struct *waiter) 1942 { 1943 /* 1944 * If we're polling, the task itself is doing the completions. For 1945 * that case, we don't need to signal a wakeup, it's enough to just 1946 * mark us as RUNNING. 1947 */ 1948 if (waiter == current) 1949 __set_current_state(TASK_RUNNING); 1950 else 1951 wake_up_process(waiter); 1952 } 1953 1954 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1955 unsigned int op); 1956 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1957 unsigned long start_time); 1958 1959 unsigned long bio_start_io_acct(struct bio *bio); 1960 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1961 struct block_device *orig_bdev); 1962 1963 /** 1964 * bio_end_io_acct - end I/O accounting for bio based drivers 1965 * @bio: bio to end account for 1966 * @start: start time returned by bio_start_io_acct() 1967 */ 1968 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1969 { 1970 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1971 } 1972 1973 int bdev_read_only(struct block_device *bdev); 1974 int set_blocksize(struct block_device *bdev, int size); 1975 1976 const char *bdevname(struct block_device *bdev, char *buffer); 1977 int lookup_bdev(const char *pathname, dev_t *dev); 1978 1979 void blkdev_show(struct seq_file *seqf, off_t offset); 1980 1981 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1982 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1983 #ifdef CONFIG_BLOCK 1984 #define BLKDEV_MAJOR_MAX 512 1985 #else 1986 #define BLKDEV_MAJOR_MAX 0 1987 #endif 1988 1989 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1990 void *holder); 1991 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1992 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1993 void bd_abort_claiming(struct block_device *bdev, void *holder); 1994 void blkdev_put(struct block_device *bdev, fmode_t mode); 1995 1996 /* just for blk-cgroup, don't use elsewhere */ 1997 struct block_device *blkdev_get_no_open(dev_t dev); 1998 void blkdev_put_no_open(struct block_device *bdev); 1999 2000 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 2001 void bdev_add(struct block_device *bdev, dev_t dev); 2002 struct block_device *I_BDEV(struct inode *inode); 2003 struct block_device *bdgrab(struct block_device *bdev); 2004 void bdput(struct block_device *); 2005 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2006 loff_t lend); 2007 2008 #ifdef CONFIG_BLOCK 2009 void invalidate_bdev(struct block_device *bdev); 2010 int sync_blockdev(struct block_device *bdev); 2011 #else 2012 static inline void invalidate_bdev(struct block_device *bdev) 2013 { 2014 } 2015 static inline int sync_blockdev(struct block_device *bdev) 2016 { 2017 return 0; 2018 } 2019 #endif 2020 int fsync_bdev(struct block_device *bdev); 2021 2022 int freeze_bdev(struct block_device *bdev); 2023 int thaw_bdev(struct block_device *bdev); 2024 2025 #endif /* _LINUX_BLKDEV_H */ 2026