1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 31 struct module; 32 struct scsi_ioctl_command; 33 34 struct request_queue; 35 struct elevator_queue; 36 struct blk_trace; 37 struct request; 38 struct sg_io_hdr; 39 struct bsg_job; 40 struct blkcg_gq; 41 struct blk_flush_queue; 42 struct pr_ops; 43 struct rq_qos; 44 struct blk_queue_stats; 45 struct blk_stat_callback; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* 54 * Maximum number of blkcg policies allowed to be registered concurrently. 55 * Defined here to simplify include dependency. 56 */ 57 #define BLKCG_MAX_POLS 5 58 59 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 60 61 /* 62 * request flags */ 63 typedef __u32 __bitwise req_flags_t; 64 65 /* elevator knows about this request */ 66 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 67 /* drive already may have started this one */ 68 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 69 /* may not be passed by ioscheduler */ 70 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 71 /* request for flush sequence */ 72 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 73 /* merge of different types, fail separately */ 74 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 75 /* track inflight for MQ */ 76 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 77 /* don't call prep for this one */ 78 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 79 /* set for "ide_preempt" requests and also for requests for which the SCSI 80 "quiesce" state must be ignored. */ 81 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 82 /* contains copies of user pages */ 83 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 84 /* vaguely specified driver internal error. Ignored by the block layer */ 85 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 86 /* don't warn about errors */ 87 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 88 /* elevator private data attached */ 89 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 90 /* account into disk and partition IO statistics */ 91 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 92 /* request came from our alloc pool */ 93 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 94 /* runtime pm request */ 95 #define RQF_PM ((__force req_flags_t)(1 << 15)) 96 /* on IO scheduler merge hash */ 97 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 98 /* track IO completion time */ 99 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 100 /* Look at ->special_vec for the actual data payload instead of the 101 bio chain. */ 102 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 103 /* The per-zone write lock is held for this request */ 104 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 105 /* already slept for hybrid poll */ 106 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 107 /* ->timeout has been called, don't expire again */ 108 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 109 110 /* flags that prevent us from merging requests: */ 111 #define RQF_NOMERGE_FLAGS \ 112 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 113 114 /* 115 * Request state for blk-mq. 116 */ 117 enum mq_rq_state { 118 MQ_RQ_IDLE = 0, 119 MQ_RQ_IN_FLIGHT = 1, 120 MQ_RQ_COMPLETE = 2, 121 }; 122 123 /* 124 * Try to put the fields that are referenced together in the same cacheline. 125 * 126 * If you modify this structure, make sure to update blk_rq_init() and 127 * especially blk_mq_rq_ctx_init() to take care of the added fields. 128 */ 129 struct request { 130 struct request_queue *q; 131 struct blk_mq_ctx *mq_ctx; 132 struct blk_mq_hw_ctx *mq_hctx; 133 134 unsigned int cmd_flags; /* op and common flags */ 135 req_flags_t rq_flags; 136 137 int internal_tag; 138 139 /* the following two fields are internal, NEVER access directly */ 140 unsigned int __data_len; /* total data len */ 141 int tag; 142 sector_t __sector; /* sector cursor */ 143 144 struct bio *bio; 145 struct bio *biotail; 146 147 struct list_head queuelist; 148 149 /* 150 * The hash is used inside the scheduler, and killed once the 151 * request reaches the dispatch list. The ipi_list is only used 152 * to queue the request for softirq completion, which is long 153 * after the request has been unhashed (and even removed from 154 * the dispatch list). 155 */ 156 union { 157 struct hlist_node hash; /* merge hash */ 158 struct list_head ipi_list; 159 }; 160 161 /* 162 * The rb_node is only used inside the io scheduler, requests 163 * are pruned when moved to the dispatch queue. So let the 164 * completion_data share space with the rb_node. 165 */ 166 union { 167 struct rb_node rb_node; /* sort/lookup */ 168 struct bio_vec special_vec; 169 void *completion_data; 170 int error_count; /* for legacy drivers, don't use */ 171 }; 172 173 /* 174 * Three pointers are available for the IO schedulers, if they need 175 * more they have to dynamically allocate it. Flush requests are 176 * never put on the IO scheduler. So let the flush fields share 177 * space with the elevator data. 178 */ 179 union { 180 struct { 181 struct io_cq *icq; 182 void *priv[2]; 183 } elv; 184 185 struct { 186 unsigned int seq; 187 struct list_head list; 188 rq_end_io_fn *saved_end_io; 189 } flush; 190 }; 191 192 struct gendisk *rq_disk; 193 struct hd_struct *part; 194 /* Time that I/O was submitted to the kernel. */ 195 u64 start_time_ns; 196 /* Time that I/O was submitted to the device. */ 197 u64 io_start_time_ns; 198 199 #ifdef CONFIG_BLK_WBT 200 unsigned short wbt_flags; 201 #endif 202 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 203 unsigned short throtl_size; 204 #endif 205 206 /* 207 * Number of scatter-gather DMA addr+len pairs after 208 * physical address coalescing is performed. 209 */ 210 unsigned short nr_phys_segments; 211 212 #if defined(CONFIG_BLK_DEV_INTEGRITY) 213 unsigned short nr_integrity_segments; 214 #endif 215 216 unsigned short write_hint; 217 unsigned short ioprio; 218 219 unsigned int extra_len; /* length of alignment and padding */ 220 221 enum mq_rq_state state; 222 refcount_t ref; 223 224 unsigned int timeout; 225 unsigned long deadline; 226 227 union { 228 struct __call_single_data csd; 229 u64 fifo_time; 230 }; 231 232 /* 233 * completion callback. 234 */ 235 rq_end_io_fn *end_io; 236 void *end_io_data; 237 }; 238 239 static inline bool blk_op_is_scsi(unsigned int op) 240 { 241 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 242 } 243 244 static inline bool blk_op_is_private(unsigned int op) 245 { 246 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 247 } 248 249 static inline bool blk_rq_is_scsi(struct request *rq) 250 { 251 return blk_op_is_scsi(req_op(rq)); 252 } 253 254 static inline bool blk_rq_is_private(struct request *rq) 255 { 256 return blk_op_is_private(req_op(rq)); 257 } 258 259 static inline bool blk_rq_is_passthrough(struct request *rq) 260 { 261 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 262 } 263 264 static inline bool bio_is_passthrough(struct bio *bio) 265 { 266 unsigned op = bio_op(bio); 267 268 return blk_op_is_scsi(op) || blk_op_is_private(op); 269 } 270 271 static inline unsigned short req_get_ioprio(struct request *req) 272 { 273 return req->ioprio; 274 } 275 276 #include <linux/elevator.h> 277 278 struct blk_queue_ctx; 279 280 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 281 282 struct bio_vec; 283 typedef int (dma_drain_needed_fn)(struct request *); 284 285 enum blk_eh_timer_return { 286 BLK_EH_DONE, /* drivers has completed the command */ 287 BLK_EH_RESET_TIMER, /* reset timer and try again */ 288 }; 289 290 enum blk_queue_state { 291 Queue_down, 292 Queue_up, 293 }; 294 295 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 296 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 297 298 #define BLK_SCSI_MAX_CMDS (256) 299 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 300 301 /* 302 * Zoned block device models (zoned limit). 303 */ 304 enum blk_zoned_model { 305 BLK_ZONED_NONE, /* Regular block device */ 306 BLK_ZONED_HA, /* Host-aware zoned block device */ 307 BLK_ZONED_HM, /* Host-managed zoned block device */ 308 }; 309 310 struct queue_limits { 311 unsigned long bounce_pfn; 312 unsigned long seg_boundary_mask; 313 unsigned long virt_boundary_mask; 314 315 unsigned int max_hw_sectors; 316 unsigned int max_dev_sectors; 317 unsigned int chunk_sectors; 318 unsigned int max_sectors; 319 unsigned int max_segment_size; 320 unsigned int physical_block_size; 321 unsigned int alignment_offset; 322 unsigned int io_min; 323 unsigned int io_opt; 324 unsigned int max_discard_sectors; 325 unsigned int max_hw_discard_sectors; 326 unsigned int max_write_same_sectors; 327 unsigned int max_write_zeroes_sectors; 328 unsigned int discard_granularity; 329 unsigned int discard_alignment; 330 331 unsigned short logical_block_size; 332 unsigned short max_segments; 333 unsigned short max_integrity_segments; 334 unsigned short max_discard_segments; 335 336 unsigned char misaligned; 337 unsigned char discard_misaligned; 338 unsigned char raid_partial_stripes_expensive; 339 enum blk_zoned_model zoned; 340 }; 341 342 #ifdef CONFIG_BLK_DEV_ZONED 343 344 extern unsigned int blkdev_nr_zones(struct block_device *bdev); 345 extern int blkdev_report_zones(struct block_device *bdev, 346 sector_t sector, struct blk_zone *zones, 347 unsigned int *nr_zones, gfp_t gfp_mask); 348 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 349 sector_t nr_sectors, gfp_t gfp_mask); 350 extern int blk_revalidate_disk_zones(struct gendisk *disk); 351 352 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 353 unsigned int cmd, unsigned long arg); 354 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 355 unsigned int cmd, unsigned long arg); 356 357 #else /* CONFIG_BLK_DEV_ZONED */ 358 359 static inline unsigned int blkdev_nr_zones(struct block_device *bdev) 360 { 361 return 0; 362 } 363 364 static inline int blk_revalidate_disk_zones(struct gendisk *disk) 365 { 366 return 0; 367 } 368 369 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 370 fmode_t mode, unsigned int cmd, 371 unsigned long arg) 372 { 373 return -ENOTTY; 374 } 375 376 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 377 fmode_t mode, unsigned int cmd, 378 unsigned long arg) 379 { 380 return -ENOTTY; 381 } 382 383 #endif /* CONFIG_BLK_DEV_ZONED */ 384 385 struct request_queue { 386 /* 387 * Together with queue_head for cacheline sharing 388 */ 389 struct list_head queue_head; 390 struct request *last_merge; 391 struct elevator_queue *elevator; 392 393 struct blk_queue_stats *stats; 394 struct rq_qos *rq_qos; 395 396 make_request_fn *make_request_fn; 397 dma_drain_needed_fn *dma_drain_needed; 398 399 const struct blk_mq_ops *mq_ops; 400 401 /* sw queues */ 402 struct blk_mq_ctx __percpu *queue_ctx; 403 unsigned int nr_queues; 404 405 unsigned int queue_depth; 406 407 /* hw dispatch queues */ 408 struct blk_mq_hw_ctx **queue_hw_ctx; 409 unsigned int nr_hw_queues; 410 411 struct backing_dev_info *backing_dev_info; 412 413 /* 414 * The queue owner gets to use this for whatever they like. 415 * ll_rw_blk doesn't touch it. 416 */ 417 void *queuedata; 418 419 /* 420 * various queue flags, see QUEUE_* below 421 */ 422 unsigned long queue_flags; 423 /* 424 * Number of contexts that have called blk_set_pm_only(). If this 425 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 426 * processed. 427 */ 428 atomic_t pm_only; 429 430 /* 431 * ida allocated id for this queue. Used to index queues from 432 * ioctx. 433 */ 434 int id; 435 436 /* 437 * queue needs bounce pages for pages above this limit 438 */ 439 gfp_t bounce_gfp; 440 441 spinlock_t queue_lock; 442 443 /* 444 * queue kobject 445 */ 446 struct kobject kobj; 447 448 /* 449 * mq queue kobject 450 */ 451 struct kobject *mq_kobj; 452 453 #ifdef CONFIG_BLK_DEV_INTEGRITY 454 struct blk_integrity integrity; 455 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 456 457 #ifdef CONFIG_PM 458 struct device *dev; 459 int rpm_status; 460 unsigned int nr_pending; 461 #endif 462 463 /* 464 * queue settings 465 */ 466 unsigned long nr_requests; /* Max # of requests */ 467 468 unsigned int dma_drain_size; 469 void *dma_drain_buffer; 470 unsigned int dma_pad_mask; 471 unsigned int dma_alignment; 472 473 unsigned int rq_timeout; 474 int poll_nsec; 475 476 struct blk_stat_callback *poll_cb; 477 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 478 479 struct timer_list timeout; 480 struct work_struct timeout_work; 481 482 struct list_head icq_list; 483 #ifdef CONFIG_BLK_CGROUP 484 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 485 struct blkcg_gq *root_blkg; 486 struct list_head blkg_list; 487 #endif 488 489 struct queue_limits limits; 490 491 #ifdef CONFIG_BLK_DEV_ZONED 492 /* 493 * Zoned block device information for request dispatch control. 494 * nr_zones is the total number of zones of the device. This is always 495 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones 496 * bits which indicates if a zone is conventional (bit clear) or 497 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones 498 * bits which indicates if a zone is write locked, that is, if a write 499 * request targeting the zone was dispatched. All three fields are 500 * initialized by the low level device driver (e.g. scsi/sd.c). 501 * Stacking drivers (device mappers) may or may not initialize 502 * these fields. 503 * 504 * Reads of this information must be protected with blk_queue_enter() / 505 * blk_queue_exit(). Modifying this information is only allowed while 506 * no requests are being processed. See also blk_mq_freeze_queue() and 507 * blk_mq_unfreeze_queue(). 508 */ 509 unsigned int nr_zones; 510 unsigned long *seq_zones_bitmap; 511 unsigned long *seq_zones_wlock; 512 #endif /* CONFIG_BLK_DEV_ZONED */ 513 514 /* 515 * sg stuff 516 */ 517 unsigned int sg_timeout; 518 unsigned int sg_reserved_size; 519 int node; 520 #ifdef CONFIG_BLK_DEV_IO_TRACE 521 struct blk_trace *blk_trace; 522 struct mutex blk_trace_mutex; 523 #endif 524 /* 525 * for flush operations 526 */ 527 struct blk_flush_queue *fq; 528 529 struct list_head requeue_list; 530 spinlock_t requeue_lock; 531 struct delayed_work requeue_work; 532 533 struct mutex sysfs_lock; 534 535 atomic_t mq_freeze_depth; 536 537 #if defined(CONFIG_BLK_DEV_BSG) 538 struct bsg_class_device bsg_dev; 539 #endif 540 541 #ifdef CONFIG_BLK_DEV_THROTTLING 542 /* Throttle data */ 543 struct throtl_data *td; 544 #endif 545 struct rcu_head rcu_head; 546 wait_queue_head_t mq_freeze_wq; 547 struct percpu_ref q_usage_counter; 548 struct list_head all_q_node; 549 550 struct blk_mq_tag_set *tag_set; 551 struct list_head tag_set_list; 552 struct bio_set bio_split; 553 554 #ifdef CONFIG_BLK_DEBUG_FS 555 struct dentry *debugfs_dir; 556 struct dentry *sched_debugfs_dir; 557 struct dentry *rqos_debugfs_dir; 558 #endif 559 560 bool mq_sysfs_init_done; 561 562 size_t cmd_size; 563 564 struct work_struct release_work; 565 566 #define BLK_MAX_WRITE_HINTS 5 567 u64 write_hints[BLK_MAX_WRITE_HINTS]; 568 }; 569 570 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 571 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 572 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 573 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 574 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 575 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 576 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 577 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 578 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 579 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 580 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 581 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 582 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 583 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 584 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 585 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 586 #define QUEUE_FLAG_WC 17 /* Write back caching */ 587 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 588 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 589 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 590 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 591 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 592 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 593 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 594 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 595 596 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 597 (1 << QUEUE_FLAG_SAME_COMP)) 598 599 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 600 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 601 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 602 603 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 604 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 605 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 606 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 607 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 608 #define blk_queue_noxmerges(q) \ 609 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 610 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 611 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 612 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 613 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 614 #define blk_queue_secure_erase(q) \ 615 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 616 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 617 #define blk_queue_scsi_passthrough(q) \ 618 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 619 #define blk_queue_pci_p2pdma(q) \ 620 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 621 622 #define blk_noretry_request(rq) \ 623 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 624 REQ_FAILFAST_DRIVER)) 625 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 626 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 627 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 628 629 extern void blk_set_pm_only(struct request_queue *q); 630 extern void blk_clear_pm_only(struct request_queue *q); 631 632 static inline bool blk_account_rq(struct request *rq) 633 { 634 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 635 } 636 637 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 638 639 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 640 641 static inline bool queue_is_mq(struct request_queue *q) 642 { 643 return q->mq_ops; 644 } 645 646 static inline enum blk_zoned_model 647 blk_queue_zoned_model(struct request_queue *q) 648 { 649 return q->limits.zoned; 650 } 651 652 static inline bool blk_queue_is_zoned(struct request_queue *q) 653 { 654 switch (blk_queue_zoned_model(q)) { 655 case BLK_ZONED_HA: 656 case BLK_ZONED_HM: 657 return true; 658 default: 659 return false; 660 } 661 } 662 663 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 664 { 665 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 666 } 667 668 #ifdef CONFIG_BLK_DEV_ZONED 669 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 670 { 671 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 672 } 673 674 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 675 sector_t sector) 676 { 677 if (!blk_queue_is_zoned(q)) 678 return 0; 679 return sector >> ilog2(q->limits.chunk_sectors); 680 } 681 682 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 683 sector_t sector) 684 { 685 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) 686 return false; 687 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); 688 } 689 #else /* CONFIG_BLK_DEV_ZONED */ 690 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 691 { 692 return 0; 693 } 694 #endif /* CONFIG_BLK_DEV_ZONED */ 695 696 static inline bool rq_is_sync(struct request *rq) 697 { 698 return op_is_sync(rq->cmd_flags); 699 } 700 701 static inline bool rq_mergeable(struct request *rq) 702 { 703 if (blk_rq_is_passthrough(rq)) 704 return false; 705 706 if (req_op(rq) == REQ_OP_FLUSH) 707 return false; 708 709 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 710 return false; 711 712 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 713 return false; 714 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 715 return false; 716 717 return true; 718 } 719 720 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 721 { 722 if (bio_page(a) == bio_page(b) && 723 bio_offset(a) == bio_offset(b)) 724 return true; 725 726 return false; 727 } 728 729 static inline unsigned int blk_queue_depth(struct request_queue *q) 730 { 731 if (q->queue_depth) 732 return q->queue_depth; 733 734 return q->nr_requests; 735 } 736 737 extern unsigned long blk_max_low_pfn, blk_max_pfn; 738 739 /* 740 * standard bounce addresses: 741 * 742 * BLK_BOUNCE_HIGH : bounce all highmem pages 743 * BLK_BOUNCE_ANY : don't bounce anything 744 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 745 */ 746 747 #if BITS_PER_LONG == 32 748 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 749 #else 750 #define BLK_BOUNCE_HIGH -1ULL 751 #endif 752 #define BLK_BOUNCE_ANY (-1ULL) 753 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 754 755 /* 756 * default timeout for SG_IO if none specified 757 */ 758 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 759 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 760 761 struct rq_map_data { 762 struct page **pages; 763 int page_order; 764 int nr_entries; 765 unsigned long offset; 766 int null_mapped; 767 int from_user; 768 }; 769 770 struct req_iterator { 771 struct bvec_iter iter; 772 struct bio *bio; 773 }; 774 775 /* This should not be used directly - use rq_for_each_segment */ 776 #define for_each_bio(_bio) \ 777 for (; _bio; _bio = _bio->bi_next) 778 #define __rq_for_each_bio(_bio, rq) \ 779 if ((rq->bio)) \ 780 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 781 782 #define rq_for_each_segment(bvl, _rq, _iter) \ 783 __rq_for_each_bio(_iter.bio, _rq) \ 784 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 785 786 #define rq_for_each_bvec(bvl, _rq, _iter) \ 787 __rq_for_each_bio(_iter.bio, _rq) \ 788 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 789 790 #define rq_iter_last(bvec, _iter) \ 791 (_iter.bio->bi_next == NULL && \ 792 bio_iter_last(bvec, _iter.iter)) 793 794 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 795 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 796 #endif 797 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 798 extern void rq_flush_dcache_pages(struct request *rq); 799 #else 800 static inline void rq_flush_dcache_pages(struct request *rq) 801 { 802 } 803 #endif 804 805 extern int blk_register_queue(struct gendisk *disk); 806 extern void blk_unregister_queue(struct gendisk *disk); 807 extern blk_qc_t generic_make_request(struct bio *bio); 808 extern blk_qc_t direct_make_request(struct bio *bio); 809 extern void blk_rq_init(struct request_queue *q, struct request *rq); 810 extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 811 extern void blk_put_request(struct request *); 812 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 813 blk_mq_req_flags_t flags); 814 extern int blk_lld_busy(struct request_queue *q); 815 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 816 struct bio_set *bs, gfp_t gfp_mask, 817 int (*bio_ctr)(struct bio *, struct bio *, void *), 818 void *data); 819 extern void blk_rq_unprep_clone(struct request *rq); 820 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 821 struct request *rq); 822 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 823 extern void blk_queue_split(struct request_queue *, struct bio **); 824 extern void blk_recount_segments(struct request_queue *, struct bio *); 825 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 826 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 827 unsigned int, void __user *); 828 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 829 unsigned int, void __user *); 830 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 831 struct scsi_ioctl_command __user *); 832 833 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 834 extern void blk_queue_exit(struct request_queue *q); 835 extern void blk_sync_queue(struct request_queue *q); 836 extern int blk_rq_map_user(struct request_queue *, struct request *, 837 struct rq_map_data *, void __user *, unsigned long, 838 gfp_t); 839 extern int blk_rq_unmap_user(struct bio *); 840 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 841 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 842 struct rq_map_data *, const struct iov_iter *, 843 gfp_t); 844 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 845 struct request *, int); 846 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 847 struct request *, int, rq_end_io_fn *); 848 849 int blk_status_to_errno(blk_status_t status); 850 blk_status_t errno_to_blk_status(int errno); 851 852 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 853 854 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 855 { 856 return bdev->bd_disk->queue; /* this is never NULL */ 857 } 858 859 /* 860 * The basic unit of block I/O is a sector. It is used in a number of contexts 861 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 862 * bytes. Variables of type sector_t represent an offset or size that is a 863 * multiple of 512 bytes. Hence these two constants. 864 */ 865 #ifndef SECTOR_SHIFT 866 #define SECTOR_SHIFT 9 867 #endif 868 #ifndef SECTOR_SIZE 869 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 870 #endif 871 872 /* 873 * blk_rq_pos() : the current sector 874 * blk_rq_bytes() : bytes left in the entire request 875 * blk_rq_cur_bytes() : bytes left in the current segment 876 * blk_rq_err_bytes() : bytes left till the next error boundary 877 * blk_rq_sectors() : sectors left in the entire request 878 * blk_rq_cur_sectors() : sectors left in the current segment 879 */ 880 static inline sector_t blk_rq_pos(const struct request *rq) 881 { 882 return rq->__sector; 883 } 884 885 static inline unsigned int blk_rq_bytes(const struct request *rq) 886 { 887 return rq->__data_len; 888 } 889 890 static inline int blk_rq_cur_bytes(const struct request *rq) 891 { 892 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 893 } 894 895 extern unsigned int blk_rq_err_bytes(const struct request *rq); 896 897 static inline unsigned int blk_rq_sectors(const struct request *rq) 898 { 899 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 900 } 901 902 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 903 { 904 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 905 } 906 907 #ifdef CONFIG_BLK_DEV_ZONED 908 static inline unsigned int blk_rq_zone_no(struct request *rq) 909 { 910 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 911 } 912 913 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 914 { 915 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 916 } 917 #endif /* CONFIG_BLK_DEV_ZONED */ 918 919 /* 920 * Some commands like WRITE SAME have a payload or data transfer size which 921 * is different from the size of the request. Any driver that supports such 922 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 923 * calculate the data transfer size. 924 */ 925 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 926 { 927 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 928 return rq->special_vec.bv_len; 929 return blk_rq_bytes(rq); 930 } 931 932 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 933 int op) 934 { 935 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 936 return min(q->limits.max_discard_sectors, 937 UINT_MAX >> SECTOR_SHIFT); 938 939 if (unlikely(op == REQ_OP_WRITE_SAME)) 940 return q->limits.max_write_same_sectors; 941 942 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 943 return q->limits.max_write_zeroes_sectors; 944 945 return q->limits.max_sectors; 946 } 947 948 /* 949 * Return maximum size of a request at given offset. Only valid for 950 * file system requests. 951 */ 952 static inline unsigned int blk_max_size_offset(struct request_queue *q, 953 sector_t offset) 954 { 955 if (!q->limits.chunk_sectors) 956 return q->limits.max_sectors; 957 958 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 959 (offset & (q->limits.chunk_sectors - 1)))); 960 } 961 962 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 963 sector_t offset) 964 { 965 struct request_queue *q = rq->q; 966 967 if (blk_rq_is_passthrough(rq)) 968 return q->limits.max_hw_sectors; 969 970 if (!q->limits.chunk_sectors || 971 req_op(rq) == REQ_OP_DISCARD || 972 req_op(rq) == REQ_OP_SECURE_ERASE) 973 return blk_queue_get_max_sectors(q, req_op(rq)); 974 975 return min(blk_max_size_offset(q, offset), 976 blk_queue_get_max_sectors(q, req_op(rq))); 977 } 978 979 static inline unsigned int blk_rq_count_bios(struct request *rq) 980 { 981 unsigned int nr_bios = 0; 982 struct bio *bio; 983 984 __rq_for_each_bio(bio, rq) 985 nr_bios++; 986 987 return nr_bios; 988 } 989 990 void blk_steal_bios(struct bio_list *list, struct request *rq); 991 992 /* 993 * Request completion related functions. 994 * 995 * blk_update_request() completes given number of bytes and updates 996 * the request without completing it. 997 * 998 * blk_end_request() and friends. __blk_end_request() must be called 999 * with the request queue spinlock acquired. 1000 * 1001 * Several drivers define their own end_request and call 1002 * blk_end_request() for parts of the original function. 1003 * This prevents code duplication in drivers. 1004 */ 1005 extern bool blk_update_request(struct request *rq, blk_status_t error, 1006 unsigned int nr_bytes); 1007 extern void blk_end_request_all(struct request *rq, blk_status_t error); 1008 extern bool __blk_end_request(struct request *rq, blk_status_t error, 1009 unsigned int nr_bytes); 1010 extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1011 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1012 1013 extern void __blk_complete_request(struct request *); 1014 extern void blk_abort_request(struct request *); 1015 1016 /* 1017 * Access functions for manipulating queue properties 1018 */ 1019 extern void blk_cleanup_queue(struct request_queue *); 1020 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1021 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1022 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1023 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1024 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1025 extern void blk_queue_max_discard_segments(struct request_queue *, 1026 unsigned short); 1027 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1028 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1029 unsigned int max_discard_sectors); 1030 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1031 unsigned int max_write_same_sectors); 1032 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1033 unsigned int max_write_same_sectors); 1034 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1035 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1036 extern void blk_queue_alignment_offset(struct request_queue *q, 1037 unsigned int alignment); 1038 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1039 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1040 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1041 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1042 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1043 extern void blk_set_default_limits(struct queue_limits *lim); 1044 extern void blk_set_stacking_limits(struct queue_limits *lim); 1045 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1046 sector_t offset); 1047 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1048 sector_t offset); 1049 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1050 sector_t offset); 1051 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1052 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1053 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1054 extern int blk_queue_dma_drain(struct request_queue *q, 1055 dma_drain_needed_fn *dma_drain_needed, 1056 void *buf, unsigned int size); 1057 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1058 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1059 extern void blk_queue_dma_alignment(struct request_queue *, int); 1060 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1061 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1062 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1063 1064 /* 1065 * Number of physical segments as sent to the device. 1066 * 1067 * Normally this is the number of discontiguous data segments sent by the 1068 * submitter. But for data-less command like discard we might have no 1069 * actual data segments submitted, but the driver might have to add it's 1070 * own special payload. In that case we still return 1 here so that this 1071 * special payload will be mapped. 1072 */ 1073 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1074 { 1075 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1076 return 1; 1077 return rq->nr_phys_segments; 1078 } 1079 1080 /* 1081 * Number of discard segments (or ranges) the driver needs to fill in. 1082 * Each discard bio merged into a request is counted as one segment. 1083 */ 1084 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1085 { 1086 return max_t(unsigned short, rq->nr_phys_segments, 1); 1087 } 1088 1089 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1090 extern void blk_dump_rq_flags(struct request *, char *); 1091 extern long nr_blockdev_pages(void); 1092 1093 bool __must_check blk_get_queue(struct request_queue *); 1094 struct request_queue *blk_alloc_queue(gfp_t); 1095 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id); 1096 extern void blk_put_queue(struct request_queue *); 1097 extern void blk_set_queue_dying(struct request_queue *); 1098 1099 /* 1100 * blk_plug permits building a queue of related requests by holding the I/O 1101 * fragments for a short period. This allows merging of sequential requests 1102 * into single larger request. As the requests are moved from a per-task list to 1103 * the device's request_queue in a batch, this results in improved scalability 1104 * as the lock contention for request_queue lock is reduced. 1105 * 1106 * It is ok not to disable preemption when adding the request to the plug list 1107 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1108 * the plug list when the task sleeps by itself. For details, please see 1109 * schedule() where blk_schedule_flush_plug() is called. 1110 */ 1111 struct blk_plug { 1112 struct list_head mq_list; /* blk-mq requests */ 1113 struct list_head cb_list; /* md requires an unplug callback */ 1114 unsigned short rq_count; 1115 bool multiple_queues; 1116 }; 1117 #define BLK_MAX_REQUEST_COUNT 16 1118 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1119 1120 struct blk_plug_cb; 1121 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1122 struct blk_plug_cb { 1123 struct list_head list; 1124 blk_plug_cb_fn callback; 1125 void *data; 1126 }; 1127 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1128 void *data, int size); 1129 extern void blk_start_plug(struct blk_plug *); 1130 extern void blk_finish_plug(struct blk_plug *); 1131 extern void blk_flush_plug_list(struct blk_plug *, bool); 1132 1133 static inline void blk_flush_plug(struct task_struct *tsk) 1134 { 1135 struct blk_plug *plug = tsk->plug; 1136 1137 if (plug) 1138 blk_flush_plug_list(plug, false); 1139 } 1140 1141 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1142 { 1143 struct blk_plug *plug = tsk->plug; 1144 1145 if (plug) 1146 blk_flush_plug_list(plug, true); 1147 } 1148 1149 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1150 { 1151 struct blk_plug *plug = tsk->plug; 1152 1153 return plug && 1154 (!list_empty(&plug->mq_list) || 1155 !list_empty(&plug->cb_list)); 1156 } 1157 1158 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1159 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1160 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1161 1162 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1163 1164 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1165 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1166 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1167 sector_t nr_sects, gfp_t gfp_mask, int flags, 1168 struct bio **biop); 1169 1170 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1171 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1172 1173 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1174 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1175 unsigned flags); 1176 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1177 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1178 1179 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1180 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1181 { 1182 return blkdev_issue_discard(sb->s_bdev, 1183 block << (sb->s_blocksize_bits - 1184 SECTOR_SHIFT), 1185 nr_blocks << (sb->s_blocksize_bits - 1186 SECTOR_SHIFT), 1187 gfp_mask, flags); 1188 } 1189 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1190 sector_t nr_blocks, gfp_t gfp_mask) 1191 { 1192 return blkdev_issue_zeroout(sb->s_bdev, 1193 block << (sb->s_blocksize_bits - 1194 SECTOR_SHIFT), 1195 nr_blocks << (sb->s_blocksize_bits - 1196 SECTOR_SHIFT), 1197 gfp_mask, 0); 1198 } 1199 1200 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1201 1202 enum blk_default_limits { 1203 BLK_MAX_SEGMENTS = 128, 1204 BLK_SAFE_MAX_SECTORS = 255, 1205 BLK_DEF_MAX_SECTORS = 2560, 1206 BLK_MAX_SEGMENT_SIZE = 65536, 1207 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1208 }; 1209 1210 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1211 { 1212 return q->limits.seg_boundary_mask; 1213 } 1214 1215 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1216 { 1217 return q->limits.virt_boundary_mask; 1218 } 1219 1220 static inline unsigned int queue_max_sectors(struct request_queue *q) 1221 { 1222 return q->limits.max_sectors; 1223 } 1224 1225 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1226 { 1227 return q->limits.max_hw_sectors; 1228 } 1229 1230 static inline unsigned short queue_max_segments(struct request_queue *q) 1231 { 1232 return q->limits.max_segments; 1233 } 1234 1235 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1236 { 1237 return q->limits.max_discard_segments; 1238 } 1239 1240 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1241 { 1242 return q->limits.max_segment_size; 1243 } 1244 1245 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1246 { 1247 int retval = 512; 1248 1249 if (q && q->limits.logical_block_size) 1250 retval = q->limits.logical_block_size; 1251 1252 return retval; 1253 } 1254 1255 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1256 { 1257 return queue_logical_block_size(bdev_get_queue(bdev)); 1258 } 1259 1260 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1261 { 1262 return q->limits.physical_block_size; 1263 } 1264 1265 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1266 { 1267 return queue_physical_block_size(bdev_get_queue(bdev)); 1268 } 1269 1270 static inline unsigned int queue_io_min(struct request_queue *q) 1271 { 1272 return q->limits.io_min; 1273 } 1274 1275 static inline int bdev_io_min(struct block_device *bdev) 1276 { 1277 return queue_io_min(bdev_get_queue(bdev)); 1278 } 1279 1280 static inline unsigned int queue_io_opt(struct request_queue *q) 1281 { 1282 return q->limits.io_opt; 1283 } 1284 1285 static inline int bdev_io_opt(struct block_device *bdev) 1286 { 1287 return queue_io_opt(bdev_get_queue(bdev)); 1288 } 1289 1290 static inline int queue_alignment_offset(struct request_queue *q) 1291 { 1292 if (q->limits.misaligned) 1293 return -1; 1294 1295 return q->limits.alignment_offset; 1296 } 1297 1298 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1299 { 1300 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1301 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1302 << SECTOR_SHIFT; 1303 1304 return (granularity + lim->alignment_offset - alignment) % granularity; 1305 } 1306 1307 static inline int bdev_alignment_offset(struct block_device *bdev) 1308 { 1309 struct request_queue *q = bdev_get_queue(bdev); 1310 1311 if (q->limits.misaligned) 1312 return -1; 1313 1314 if (bdev != bdev->bd_contains) 1315 return bdev->bd_part->alignment_offset; 1316 1317 return q->limits.alignment_offset; 1318 } 1319 1320 static inline int queue_discard_alignment(struct request_queue *q) 1321 { 1322 if (q->limits.discard_misaligned) 1323 return -1; 1324 1325 return q->limits.discard_alignment; 1326 } 1327 1328 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1329 { 1330 unsigned int alignment, granularity, offset; 1331 1332 if (!lim->max_discard_sectors) 1333 return 0; 1334 1335 /* Why are these in bytes, not sectors? */ 1336 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1337 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1338 if (!granularity) 1339 return 0; 1340 1341 /* Offset of the partition start in 'granularity' sectors */ 1342 offset = sector_div(sector, granularity); 1343 1344 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1345 offset = (granularity + alignment - offset) % granularity; 1346 1347 /* Turn it back into bytes, gaah */ 1348 return offset << SECTOR_SHIFT; 1349 } 1350 1351 static inline int bdev_discard_alignment(struct block_device *bdev) 1352 { 1353 struct request_queue *q = bdev_get_queue(bdev); 1354 1355 if (bdev != bdev->bd_contains) 1356 return bdev->bd_part->discard_alignment; 1357 1358 return q->limits.discard_alignment; 1359 } 1360 1361 static inline unsigned int bdev_write_same(struct block_device *bdev) 1362 { 1363 struct request_queue *q = bdev_get_queue(bdev); 1364 1365 if (q) 1366 return q->limits.max_write_same_sectors; 1367 1368 return 0; 1369 } 1370 1371 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1372 { 1373 struct request_queue *q = bdev_get_queue(bdev); 1374 1375 if (q) 1376 return q->limits.max_write_zeroes_sectors; 1377 1378 return 0; 1379 } 1380 1381 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1382 { 1383 struct request_queue *q = bdev_get_queue(bdev); 1384 1385 if (q) 1386 return blk_queue_zoned_model(q); 1387 1388 return BLK_ZONED_NONE; 1389 } 1390 1391 static inline bool bdev_is_zoned(struct block_device *bdev) 1392 { 1393 struct request_queue *q = bdev_get_queue(bdev); 1394 1395 if (q) 1396 return blk_queue_is_zoned(q); 1397 1398 return false; 1399 } 1400 1401 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1402 { 1403 struct request_queue *q = bdev_get_queue(bdev); 1404 1405 if (q) 1406 return blk_queue_zone_sectors(q); 1407 return 0; 1408 } 1409 1410 static inline int queue_dma_alignment(struct request_queue *q) 1411 { 1412 return q ? q->dma_alignment : 511; 1413 } 1414 1415 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1416 unsigned int len) 1417 { 1418 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1419 return !(addr & alignment) && !(len & alignment); 1420 } 1421 1422 /* assumes size > 256 */ 1423 static inline unsigned int blksize_bits(unsigned int size) 1424 { 1425 unsigned int bits = 8; 1426 do { 1427 bits++; 1428 size >>= 1; 1429 } while (size > 256); 1430 return bits; 1431 } 1432 1433 static inline unsigned int block_size(struct block_device *bdev) 1434 { 1435 return bdev->bd_block_size; 1436 } 1437 1438 typedef struct {struct page *v;} Sector; 1439 1440 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1441 1442 static inline void put_dev_sector(Sector p) 1443 { 1444 put_page(p.v); 1445 } 1446 1447 int kblockd_schedule_work(struct work_struct *work); 1448 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1449 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1450 1451 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1452 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1453 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1454 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1455 1456 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1457 1458 enum blk_integrity_flags { 1459 BLK_INTEGRITY_VERIFY = 1 << 0, 1460 BLK_INTEGRITY_GENERATE = 1 << 1, 1461 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1462 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1463 }; 1464 1465 struct blk_integrity_iter { 1466 void *prot_buf; 1467 void *data_buf; 1468 sector_t seed; 1469 unsigned int data_size; 1470 unsigned short interval; 1471 const char *disk_name; 1472 }; 1473 1474 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1475 1476 struct blk_integrity_profile { 1477 integrity_processing_fn *generate_fn; 1478 integrity_processing_fn *verify_fn; 1479 const char *name; 1480 }; 1481 1482 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1483 extern void blk_integrity_unregister(struct gendisk *); 1484 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1485 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1486 struct scatterlist *); 1487 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1488 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1489 struct request *); 1490 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1491 struct bio *); 1492 1493 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1494 { 1495 struct blk_integrity *bi = &disk->queue->integrity; 1496 1497 if (!bi->profile) 1498 return NULL; 1499 1500 return bi; 1501 } 1502 1503 static inline 1504 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1505 { 1506 return blk_get_integrity(bdev->bd_disk); 1507 } 1508 1509 static inline bool blk_integrity_rq(struct request *rq) 1510 { 1511 return rq->cmd_flags & REQ_INTEGRITY; 1512 } 1513 1514 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1515 unsigned int segs) 1516 { 1517 q->limits.max_integrity_segments = segs; 1518 } 1519 1520 static inline unsigned short 1521 queue_max_integrity_segments(struct request_queue *q) 1522 { 1523 return q->limits.max_integrity_segments; 1524 } 1525 1526 /** 1527 * bio_integrity_intervals - Return number of integrity intervals for a bio 1528 * @bi: blk_integrity profile for device 1529 * @sectors: Size of the bio in 512-byte sectors 1530 * 1531 * Description: The block layer calculates everything in 512 byte 1532 * sectors but integrity metadata is done in terms of the data integrity 1533 * interval size of the storage device. Convert the block layer sectors 1534 * to the appropriate number of integrity intervals. 1535 */ 1536 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1537 unsigned int sectors) 1538 { 1539 return sectors >> (bi->interval_exp - 9); 1540 } 1541 1542 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1543 unsigned int sectors) 1544 { 1545 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1546 } 1547 1548 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1549 1550 struct bio; 1551 struct block_device; 1552 struct gendisk; 1553 struct blk_integrity; 1554 1555 static inline int blk_integrity_rq(struct request *rq) 1556 { 1557 return 0; 1558 } 1559 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1560 struct bio *b) 1561 { 1562 return 0; 1563 } 1564 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1565 struct bio *b, 1566 struct scatterlist *s) 1567 { 1568 return 0; 1569 } 1570 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1571 { 1572 return NULL; 1573 } 1574 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1575 { 1576 return NULL; 1577 } 1578 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1579 { 1580 return 0; 1581 } 1582 static inline void blk_integrity_register(struct gendisk *d, 1583 struct blk_integrity *b) 1584 { 1585 } 1586 static inline void blk_integrity_unregister(struct gendisk *d) 1587 { 1588 } 1589 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1590 unsigned int segs) 1591 { 1592 } 1593 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1594 { 1595 return 0; 1596 } 1597 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1598 struct request *r1, 1599 struct request *r2) 1600 { 1601 return true; 1602 } 1603 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1604 struct request *r, 1605 struct bio *b) 1606 { 1607 return true; 1608 } 1609 1610 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1611 unsigned int sectors) 1612 { 1613 return 0; 1614 } 1615 1616 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1617 unsigned int sectors) 1618 { 1619 return 0; 1620 } 1621 1622 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1623 1624 struct block_device_operations { 1625 int (*open) (struct block_device *, fmode_t); 1626 void (*release) (struct gendisk *, fmode_t); 1627 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1628 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1629 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1630 unsigned int (*check_events) (struct gendisk *disk, 1631 unsigned int clearing); 1632 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1633 int (*media_changed) (struct gendisk *); 1634 void (*unlock_native_capacity) (struct gendisk *); 1635 int (*revalidate_disk) (struct gendisk *); 1636 int (*getgeo)(struct block_device *, struct hd_geometry *); 1637 /* this callback is with swap_lock and sometimes page table lock held */ 1638 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1639 int (*report_zones)(struct gendisk *, sector_t sector, 1640 struct blk_zone *zones, unsigned int *nr_zones, 1641 gfp_t gfp_mask); 1642 struct module *owner; 1643 const struct pr_ops *pr_ops; 1644 }; 1645 1646 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1647 unsigned long); 1648 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1649 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1650 struct writeback_control *); 1651 1652 #ifdef CONFIG_BLK_DEV_ZONED 1653 bool blk_req_needs_zone_write_lock(struct request *rq); 1654 void __blk_req_zone_write_lock(struct request *rq); 1655 void __blk_req_zone_write_unlock(struct request *rq); 1656 1657 static inline void blk_req_zone_write_lock(struct request *rq) 1658 { 1659 if (blk_req_needs_zone_write_lock(rq)) 1660 __blk_req_zone_write_lock(rq); 1661 } 1662 1663 static inline void blk_req_zone_write_unlock(struct request *rq) 1664 { 1665 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1666 __blk_req_zone_write_unlock(rq); 1667 } 1668 1669 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1670 { 1671 return rq->q->seq_zones_wlock && 1672 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1673 } 1674 1675 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1676 { 1677 if (!blk_req_needs_zone_write_lock(rq)) 1678 return true; 1679 return !blk_req_zone_is_write_locked(rq); 1680 } 1681 #else 1682 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1683 { 1684 return false; 1685 } 1686 1687 static inline void blk_req_zone_write_lock(struct request *rq) 1688 { 1689 } 1690 1691 static inline void blk_req_zone_write_unlock(struct request *rq) 1692 { 1693 } 1694 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1695 { 1696 return false; 1697 } 1698 1699 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1700 { 1701 return true; 1702 } 1703 #endif /* CONFIG_BLK_DEV_ZONED */ 1704 1705 #else /* CONFIG_BLOCK */ 1706 1707 struct block_device; 1708 1709 /* 1710 * stubs for when the block layer is configured out 1711 */ 1712 #define buffer_heads_over_limit 0 1713 1714 static inline long nr_blockdev_pages(void) 1715 { 1716 return 0; 1717 } 1718 1719 struct blk_plug { 1720 }; 1721 1722 static inline void blk_start_plug(struct blk_plug *plug) 1723 { 1724 } 1725 1726 static inline void blk_finish_plug(struct blk_plug *plug) 1727 { 1728 } 1729 1730 static inline void blk_flush_plug(struct task_struct *task) 1731 { 1732 } 1733 1734 static inline void blk_schedule_flush_plug(struct task_struct *task) 1735 { 1736 } 1737 1738 1739 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1740 { 1741 return false; 1742 } 1743 1744 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1745 sector_t *error_sector) 1746 { 1747 return 0; 1748 } 1749 1750 #endif /* CONFIG_BLOCK */ 1751 1752 static inline void blk_wake_io_task(struct task_struct *waiter) 1753 { 1754 /* 1755 * If we're polling, the task itself is doing the completions. For 1756 * that case, we don't need to signal a wakeup, it's enough to just 1757 * mark us as RUNNING. 1758 */ 1759 if (waiter == current) 1760 __set_current_state(TASK_RUNNING); 1761 else 1762 wake_up_process(waiter); 1763 } 1764 1765 #endif 1766