1 #ifndef _LINUX_BLKDEV_H 2 #define _LINUX_BLKDEV_H 3 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 7 #ifdef CONFIG_BLOCK 8 9 #include <linux/major.h> 10 #include <linux/genhd.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/timer.h> 14 #include <linux/workqueue.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev-defs.h> 17 #include <linux/wait.h> 18 #include <linux/mempool.h> 19 #include <linux/pfn.h> 20 #include <linux/bio.h> 21 #include <linux/stringify.h> 22 #include <linux/gfp.h> 23 #include <linux/bsg.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate.h> 26 #include <linux/percpu-refcount.h> 27 #include <linux/scatterlist.h> 28 #include <linux/blkzoned.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_wb; 43 44 #define BLKDEV_MIN_RQ 4 45 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 46 47 /* 48 * Maximum number of blkcg policies allowed to be registered concurrently. 49 * Defined here to simplify include dependency. 50 */ 51 #define BLKCG_MAX_POLS 2 52 53 typedef void (rq_end_io_fn)(struct request *, int); 54 55 #define BLK_RL_SYNCFULL (1U << 0) 56 #define BLK_RL_ASYNCFULL (1U << 1) 57 58 struct request_list { 59 struct request_queue *q; /* the queue this rl belongs to */ 60 #ifdef CONFIG_BLK_CGROUP 61 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 62 #endif 63 /* 64 * count[], starved[], and wait[] are indexed by 65 * BLK_RW_SYNC/BLK_RW_ASYNC 66 */ 67 int count[2]; 68 int starved[2]; 69 mempool_t *rq_pool; 70 wait_queue_head_t wait[2]; 71 unsigned int flags; 72 }; 73 74 /* 75 * request flags */ 76 typedef __u32 __bitwise req_flags_t; 77 78 /* elevator knows about this request */ 79 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 80 /* drive already may have started this one */ 81 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 82 /* uses tagged queueing */ 83 #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 84 /* may not be passed by ioscheduler */ 85 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 86 /* request for flush sequence */ 87 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 88 /* merge of different types, fail separately */ 89 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 90 /* track inflight for MQ */ 91 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 92 /* don't call prep for this one */ 93 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 94 /* set for "ide_preempt" requests and also for requests for which the SCSI 95 "quiesce" state must be ignored. */ 96 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 97 /* contains copies of user pages */ 98 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 99 /* vaguely specified driver internal error. Ignored by the block layer */ 100 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 101 /* don't warn about errors */ 102 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 103 /* elevator private data attached */ 104 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 105 /* account I/O stat */ 106 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 107 /* request came from our alloc pool */ 108 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 109 /* runtime pm request */ 110 #define RQF_PM ((__force req_flags_t)(1 << 15)) 111 /* on IO scheduler merge hash */ 112 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 113 /* IO stats tracking on */ 114 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 115 /* Look at ->special_vec for the actual data payload instead of the 116 bio chain. */ 117 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 118 119 /* flags that prevent us from merging requests: */ 120 #define RQF_NOMERGE_FLAGS \ 121 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 122 123 /* 124 * Try to put the fields that are referenced together in the same cacheline. 125 * 126 * If you modify this structure, make sure to update blk_rq_init() and 127 * especially blk_mq_rq_ctx_init() to take care of the added fields. 128 */ 129 struct request { 130 struct list_head queuelist; 131 union { 132 struct call_single_data csd; 133 u64 fifo_time; 134 }; 135 136 struct request_queue *q; 137 struct blk_mq_ctx *mq_ctx; 138 139 int cpu; 140 unsigned int cmd_flags; /* op and common flags */ 141 req_flags_t rq_flags; 142 143 int internal_tag; 144 145 unsigned long atomic_flags; 146 147 /* the following two fields are internal, NEVER access directly */ 148 unsigned int __data_len; /* total data len */ 149 int tag; 150 sector_t __sector; /* sector cursor */ 151 152 struct bio *bio; 153 struct bio *biotail; 154 155 /* 156 * The hash is used inside the scheduler, and killed once the 157 * request reaches the dispatch list. The ipi_list is only used 158 * to queue the request for softirq completion, which is long 159 * after the request has been unhashed (and even removed from 160 * the dispatch list). 161 */ 162 union { 163 struct hlist_node hash; /* merge hash */ 164 struct list_head ipi_list; 165 }; 166 167 /* 168 * The rb_node is only used inside the io scheduler, requests 169 * are pruned when moved to the dispatch queue. So let the 170 * completion_data share space with the rb_node. 171 */ 172 union { 173 struct rb_node rb_node; /* sort/lookup */ 174 struct bio_vec special_vec; 175 void *completion_data; 176 }; 177 178 /* 179 * Three pointers are available for the IO schedulers, if they need 180 * more they have to dynamically allocate it. Flush requests are 181 * never put on the IO scheduler. So let the flush fields share 182 * space with the elevator data. 183 */ 184 union { 185 struct { 186 struct io_cq *icq; 187 void *priv[2]; 188 } elv; 189 190 struct { 191 unsigned int seq; 192 struct list_head list; 193 rq_end_io_fn *saved_end_io; 194 } flush; 195 }; 196 197 struct gendisk *rq_disk; 198 struct hd_struct *part; 199 unsigned long start_time; 200 struct blk_issue_stat issue_stat; 201 #ifdef CONFIG_BLK_CGROUP 202 struct request_list *rl; /* rl this rq is alloced from */ 203 unsigned long long start_time_ns; 204 unsigned long long io_start_time_ns; /* when passed to hardware */ 205 #endif 206 /* Number of scatter-gather DMA addr+len pairs after 207 * physical address coalescing is performed. 208 */ 209 unsigned short nr_phys_segments; 210 #if defined(CONFIG_BLK_DEV_INTEGRITY) 211 unsigned short nr_integrity_segments; 212 #endif 213 214 unsigned short ioprio; 215 216 void *special; /* opaque pointer available for LLD use */ 217 218 int errors; 219 220 unsigned int extra_len; /* length of alignment and padding */ 221 222 unsigned long deadline; 223 struct list_head timeout_list; 224 unsigned int timeout; 225 int retries; 226 227 /* 228 * completion callback. 229 */ 230 rq_end_io_fn *end_io; 231 void *end_io_data; 232 233 /* for bidi */ 234 struct request *next_rq; 235 }; 236 237 static inline bool blk_rq_is_scsi(struct request *rq) 238 { 239 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT; 240 } 241 242 static inline bool blk_rq_is_private(struct request *rq) 243 { 244 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT; 245 } 246 247 static inline bool blk_rq_is_passthrough(struct request *rq) 248 { 249 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 250 } 251 252 static inline unsigned short req_get_ioprio(struct request *req) 253 { 254 return req->ioprio; 255 } 256 257 #include <linux/elevator.h> 258 259 struct blk_queue_ctx; 260 261 typedef void (request_fn_proc) (struct request_queue *q); 262 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 263 typedef int (prep_rq_fn) (struct request_queue *, struct request *); 264 typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 265 266 struct bio_vec; 267 typedef void (softirq_done_fn)(struct request *); 268 typedef int (dma_drain_needed_fn)(struct request *); 269 typedef int (lld_busy_fn) (struct request_queue *q); 270 typedef int (bsg_job_fn) (struct bsg_job *); 271 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 272 typedef void (exit_rq_fn)(struct request_queue *, struct request *); 273 274 enum blk_eh_timer_return { 275 BLK_EH_NOT_HANDLED, 276 BLK_EH_HANDLED, 277 BLK_EH_RESET_TIMER, 278 }; 279 280 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 281 282 enum blk_queue_state { 283 Queue_down, 284 Queue_up, 285 }; 286 287 struct blk_queue_tag { 288 struct request **tag_index; /* map of busy tags */ 289 unsigned long *tag_map; /* bit map of free/busy tags */ 290 int max_depth; /* what we will send to device */ 291 int real_max_depth; /* what the array can hold */ 292 atomic_t refcnt; /* map can be shared */ 293 int alloc_policy; /* tag allocation policy */ 294 int next_tag; /* next tag */ 295 }; 296 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 297 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 298 299 #define BLK_SCSI_MAX_CMDS (256) 300 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 301 302 /* 303 * Zoned block device models (zoned limit). 304 */ 305 enum blk_zoned_model { 306 BLK_ZONED_NONE, /* Regular block device */ 307 BLK_ZONED_HA, /* Host-aware zoned block device */ 308 BLK_ZONED_HM, /* Host-managed zoned block device */ 309 }; 310 311 struct queue_limits { 312 unsigned long bounce_pfn; 313 unsigned long seg_boundary_mask; 314 unsigned long virt_boundary_mask; 315 316 unsigned int max_hw_sectors; 317 unsigned int max_dev_sectors; 318 unsigned int chunk_sectors; 319 unsigned int max_sectors; 320 unsigned int max_segment_size; 321 unsigned int physical_block_size; 322 unsigned int alignment_offset; 323 unsigned int io_min; 324 unsigned int io_opt; 325 unsigned int max_discard_sectors; 326 unsigned int max_hw_discard_sectors; 327 unsigned int max_write_same_sectors; 328 unsigned int max_write_zeroes_sectors; 329 unsigned int discard_granularity; 330 unsigned int discard_alignment; 331 332 unsigned short logical_block_size; 333 unsigned short max_segments; 334 unsigned short max_integrity_segments; 335 unsigned short max_discard_segments; 336 337 unsigned char misaligned; 338 unsigned char discard_misaligned; 339 unsigned char cluster; 340 unsigned char discard_zeroes_data; 341 unsigned char raid_partial_stripes_expensive; 342 enum blk_zoned_model zoned; 343 }; 344 345 #ifdef CONFIG_BLK_DEV_ZONED 346 347 struct blk_zone_report_hdr { 348 unsigned int nr_zones; 349 u8 padding[60]; 350 }; 351 352 extern int blkdev_report_zones(struct block_device *bdev, 353 sector_t sector, struct blk_zone *zones, 354 unsigned int *nr_zones, gfp_t gfp_mask); 355 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 356 sector_t nr_sectors, gfp_t gfp_mask); 357 358 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 359 unsigned int cmd, unsigned long arg); 360 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 361 unsigned int cmd, unsigned long arg); 362 363 #else /* CONFIG_BLK_DEV_ZONED */ 364 365 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 366 fmode_t mode, unsigned int cmd, 367 unsigned long arg) 368 { 369 return -ENOTTY; 370 } 371 372 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 373 fmode_t mode, unsigned int cmd, 374 unsigned long arg) 375 { 376 return -ENOTTY; 377 } 378 379 #endif /* CONFIG_BLK_DEV_ZONED */ 380 381 struct request_queue { 382 /* 383 * Together with queue_head for cacheline sharing 384 */ 385 struct list_head queue_head; 386 struct request *last_merge; 387 struct elevator_queue *elevator; 388 int nr_rqs[2]; /* # allocated [a]sync rqs */ 389 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 390 391 struct rq_wb *rq_wb; 392 393 /* 394 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 395 * is used, root blkg allocates from @q->root_rl and all other 396 * blkgs from their own blkg->rl. Which one to use should be 397 * determined using bio_request_list(). 398 */ 399 struct request_list root_rl; 400 401 request_fn_proc *request_fn; 402 make_request_fn *make_request_fn; 403 prep_rq_fn *prep_rq_fn; 404 unprep_rq_fn *unprep_rq_fn; 405 softirq_done_fn *softirq_done_fn; 406 rq_timed_out_fn *rq_timed_out_fn; 407 dma_drain_needed_fn *dma_drain_needed; 408 lld_busy_fn *lld_busy_fn; 409 init_rq_fn *init_rq_fn; 410 exit_rq_fn *exit_rq_fn; 411 412 const struct blk_mq_ops *mq_ops; 413 414 unsigned int *mq_map; 415 416 /* sw queues */ 417 struct blk_mq_ctx __percpu *queue_ctx; 418 unsigned int nr_queues; 419 420 unsigned int queue_depth; 421 422 /* hw dispatch queues */ 423 struct blk_mq_hw_ctx **queue_hw_ctx; 424 unsigned int nr_hw_queues; 425 426 /* 427 * Dispatch queue sorting 428 */ 429 sector_t end_sector; 430 struct request *boundary_rq; 431 432 /* 433 * Delayed queue handling 434 */ 435 struct delayed_work delay_work; 436 437 struct backing_dev_info *backing_dev_info; 438 struct disk_devt *disk_devt; 439 440 /* 441 * The queue owner gets to use this for whatever they like. 442 * ll_rw_blk doesn't touch it. 443 */ 444 void *queuedata; 445 446 /* 447 * various queue flags, see QUEUE_* below 448 */ 449 unsigned long queue_flags; 450 451 /* 452 * ida allocated id for this queue. Used to index queues from 453 * ioctx. 454 */ 455 int id; 456 457 /* 458 * queue needs bounce pages for pages above this limit 459 */ 460 gfp_t bounce_gfp; 461 462 /* 463 * protects queue structures from reentrancy. ->__queue_lock should 464 * _never_ be used directly, it is queue private. always use 465 * ->queue_lock. 466 */ 467 spinlock_t __queue_lock; 468 spinlock_t *queue_lock; 469 470 /* 471 * queue kobject 472 */ 473 struct kobject kobj; 474 475 /* 476 * mq queue kobject 477 */ 478 struct kobject mq_kobj; 479 480 #ifdef CONFIG_BLK_DEV_INTEGRITY 481 struct blk_integrity integrity; 482 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 483 484 #ifdef CONFIG_PM 485 struct device *dev; 486 int rpm_status; 487 unsigned int nr_pending; 488 #endif 489 490 /* 491 * queue settings 492 */ 493 unsigned long nr_requests; /* Max # of requests */ 494 unsigned int nr_congestion_on; 495 unsigned int nr_congestion_off; 496 unsigned int nr_batching; 497 498 unsigned int dma_drain_size; 499 void *dma_drain_buffer; 500 unsigned int dma_pad_mask; 501 unsigned int dma_alignment; 502 503 struct blk_queue_tag *queue_tags; 504 struct list_head tag_busy_list; 505 506 unsigned int nr_sorted; 507 unsigned int in_flight[2]; 508 509 struct blk_rq_stat rq_stats[2]; 510 511 /* 512 * Number of active block driver functions for which blk_drain_queue() 513 * must wait. Must be incremented around functions that unlock the 514 * queue_lock internally, e.g. scsi_request_fn(). 515 */ 516 unsigned int request_fn_active; 517 518 unsigned int rq_timeout; 519 int poll_nsec; 520 struct timer_list timeout; 521 struct work_struct timeout_work; 522 struct list_head timeout_list; 523 524 struct list_head icq_list; 525 #ifdef CONFIG_BLK_CGROUP 526 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 527 struct blkcg_gq *root_blkg; 528 struct list_head blkg_list; 529 #endif 530 531 struct queue_limits limits; 532 533 /* 534 * sg stuff 535 */ 536 unsigned int sg_timeout; 537 unsigned int sg_reserved_size; 538 int node; 539 #ifdef CONFIG_BLK_DEV_IO_TRACE 540 struct blk_trace *blk_trace; 541 #endif 542 /* 543 * for flush operations 544 */ 545 struct blk_flush_queue *fq; 546 547 struct list_head requeue_list; 548 spinlock_t requeue_lock; 549 struct delayed_work requeue_work; 550 551 struct mutex sysfs_lock; 552 553 int bypass_depth; 554 atomic_t mq_freeze_depth; 555 556 #if defined(CONFIG_BLK_DEV_BSG) 557 bsg_job_fn *bsg_job_fn; 558 int bsg_job_size; 559 struct bsg_class_device bsg_dev; 560 #endif 561 562 #ifdef CONFIG_BLK_DEV_THROTTLING 563 /* Throttle data */ 564 struct throtl_data *td; 565 #endif 566 struct rcu_head rcu_head; 567 wait_queue_head_t mq_freeze_wq; 568 struct percpu_ref q_usage_counter; 569 struct list_head all_q_node; 570 571 struct blk_mq_tag_set *tag_set; 572 struct list_head tag_set_list; 573 struct bio_set *bio_split; 574 575 #ifdef CONFIG_BLK_DEBUG_FS 576 struct dentry *debugfs_dir; 577 struct dentry *mq_debugfs_dir; 578 #endif 579 580 bool mq_sysfs_init_done; 581 582 size_t cmd_size; 583 void *rq_alloc_data; 584 }; 585 586 #define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */ 587 #define QUEUE_FLAG_STOPPED 2 /* queue is stopped */ 588 #define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */ 589 #define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */ 590 #define QUEUE_FLAG_DYING 5 /* queue being torn down */ 591 #define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */ 592 #define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */ 593 #define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */ 594 #define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */ 595 #define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */ 596 #define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */ 597 #define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */ 598 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 599 #define QUEUE_FLAG_IO_STAT 13 /* do IO stats */ 600 #define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */ 601 #define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */ 602 #define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */ 603 #define QUEUE_FLAG_SECERASE 17 /* supports secure erase */ 604 #define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */ 605 #define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */ 606 #define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */ 607 #define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/ 608 #define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */ 609 #define QUEUE_FLAG_WC 23 /* Write back caching */ 610 #define QUEUE_FLAG_FUA 24 /* device supports FUA writes */ 611 #define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */ 612 #define QUEUE_FLAG_DAX 26 /* device supports DAX */ 613 #define QUEUE_FLAG_STATS 27 /* track rq completion times */ 614 #define QUEUE_FLAG_RESTART 28 /* queue needs restart at completion */ 615 616 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 617 (1 << QUEUE_FLAG_STACKABLE) | \ 618 (1 << QUEUE_FLAG_SAME_COMP) | \ 619 (1 << QUEUE_FLAG_ADD_RANDOM)) 620 621 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 622 (1 << QUEUE_FLAG_STACKABLE) | \ 623 (1 << QUEUE_FLAG_SAME_COMP) | \ 624 (1 << QUEUE_FLAG_POLL)) 625 626 static inline void queue_lockdep_assert_held(struct request_queue *q) 627 { 628 if (q->queue_lock) 629 lockdep_assert_held(q->queue_lock); 630 } 631 632 static inline void queue_flag_set_unlocked(unsigned int flag, 633 struct request_queue *q) 634 { 635 __set_bit(flag, &q->queue_flags); 636 } 637 638 static inline int queue_flag_test_and_clear(unsigned int flag, 639 struct request_queue *q) 640 { 641 queue_lockdep_assert_held(q); 642 643 if (test_bit(flag, &q->queue_flags)) { 644 __clear_bit(flag, &q->queue_flags); 645 return 1; 646 } 647 648 return 0; 649 } 650 651 static inline int queue_flag_test_and_set(unsigned int flag, 652 struct request_queue *q) 653 { 654 queue_lockdep_assert_held(q); 655 656 if (!test_bit(flag, &q->queue_flags)) { 657 __set_bit(flag, &q->queue_flags); 658 return 0; 659 } 660 661 return 1; 662 } 663 664 static inline void queue_flag_set(unsigned int flag, struct request_queue *q) 665 { 666 queue_lockdep_assert_held(q); 667 __set_bit(flag, &q->queue_flags); 668 } 669 670 static inline void queue_flag_clear_unlocked(unsigned int flag, 671 struct request_queue *q) 672 { 673 __clear_bit(flag, &q->queue_flags); 674 } 675 676 static inline int queue_in_flight(struct request_queue *q) 677 { 678 return q->in_flight[0] + q->in_flight[1]; 679 } 680 681 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) 682 { 683 queue_lockdep_assert_held(q); 684 __clear_bit(flag, &q->queue_flags); 685 } 686 687 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 688 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 689 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 690 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 691 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 692 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 693 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 694 #define blk_queue_noxmerges(q) \ 695 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 696 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 697 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 698 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 699 #define blk_queue_stackable(q) \ 700 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags) 701 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 702 #define blk_queue_secure_erase(q) \ 703 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 704 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 705 706 #define blk_noretry_request(rq) \ 707 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 708 REQ_FAILFAST_DRIVER)) 709 710 static inline bool blk_account_rq(struct request *rq) 711 { 712 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 713 } 714 715 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 716 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 717 /* rq->queuelist of dequeued request must be list_empty() */ 718 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 719 720 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 721 722 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 723 724 /* 725 * Driver can handle struct request, if it either has an old style 726 * request_fn defined, or is blk-mq based. 727 */ 728 static inline bool queue_is_rq_based(struct request_queue *q) 729 { 730 return q->request_fn || q->mq_ops; 731 } 732 733 static inline unsigned int blk_queue_cluster(struct request_queue *q) 734 { 735 return q->limits.cluster; 736 } 737 738 static inline enum blk_zoned_model 739 blk_queue_zoned_model(struct request_queue *q) 740 { 741 return q->limits.zoned; 742 } 743 744 static inline bool blk_queue_is_zoned(struct request_queue *q) 745 { 746 switch (blk_queue_zoned_model(q)) { 747 case BLK_ZONED_HA: 748 case BLK_ZONED_HM: 749 return true; 750 default: 751 return false; 752 } 753 } 754 755 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 756 { 757 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 758 } 759 760 static inline bool rq_is_sync(struct request *rq) 761 { 762 return op_is_sync(rq->cmd_flags); 763 } 764 765 static inline bool blk_rl_full(struct request_list *rl, bool sync) 766 { 767 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 768 769 return rl->flags & flag; 770 } 771 772 static inline void blk_set_rl_full(struct request_list *rl, bool sync) 773 { 774 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 775 776 rl->flags |= flag; 777 } 778 779 static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 780 { 781 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 782 783 rl->flags &= ~flag; 784 } 785 786 static inline bool rq_mergeable(struct request *rq) 787 { 788 if (blk_rq_is_passthrough(rq)) 789 return false; 790 791 if (req_op(rq) == REQ_OP_FLUSH) 792 return false; 793 794 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 795 return false; 796 797 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 798 return false; 799 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 800 return false; 801 802 return true; 803 } 804 805 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 806 { 807 if (bio_data(a) == bio_data(b)) 808 return true; 809 810 return false; 811 } 812 813 static inline unsigned int blk_queue_depth(struct request_queue *q) 814 { 815 if (q->queue_depth) 816 return q->queue_depth; 817 818 return q->nr_requests; 819 } 820 821 /* 822 * q->prep_rq_fn return values 823 */ 824 enum { 825 BLKPREP_OK, /* serve it */ 826 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 827 BLKPREP_DEFER, /* leave on queue */ 828 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 829 }; 830 831 extern unsigned long blk_max_low_pfn, blk_max_pfn; 832 833 /* 834 * standard bounce addresses: 835 * 836 * BLK_BOUNCE_HIGH : bounce all highmem pages 837 * BLK_BOUNCE_ANY : don't bounce anything 838 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 839 */ 840 841 #if BITS_PER_LONG == 32 842 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 843 #else 844 #define BLK_BOUNCE_HIGH -1ULL 845 #endif 846 #define BLK_BOUNCE_ANY (-1ULL) 847 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 848 849 /* 850 * default timeout for SG_IO if none specified 851 */ 852 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 853 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 854 855 #ifdef CONFIG_BOUNCE 856 extern int init_emergency_isa_pool(void); 857 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); 858 #else 859 static inline int init_emergency_isa_pool(void) 860 { 861 return 0; 862 } 863 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) 864 { 865 } 866 #endif /* CONFIG_MMU */ 867 868 struct rq_map_data { 869 struct page **pages; 870 int page_order; 871 int nr_entries; 872 unsigned long offset; 873 int null_mapped; 874 int from_user; 875 }; 876 877 struct req_iterator { 878 struct bvec_iter iter; 879 struct bio *bio; 880 }; 881 882 /* This should not be used directly - use rq_for_each_segment */ 883 #define for_each_bio(_bio) \ 884 for (; _bio; _bio = _bio->bi_next) 885 #define __rq_for_each_bio(_bio, rq) \ 886 if ((rq->bio)) \ 887 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 888 889 #define rq_for_each_segment(bvl, _rq, _iter) \ 890 __rq_for_each_bio(_iter.bio, _rq) \ 891 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 892 893 #define rq_iter_last(bvec, _iter) \ 894 (_iter.bio->bi_next == NULL && \ 895 bio_iter_last(bvec, _iter.iter)) 896 897 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 898 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 899 #endif 900 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 901 extern void rq_flush_dcache_pages(struct request *rq); 902 #else 903 static inline void rq_flush_dcache_pages(struct request *rq) 904 { 905 } 906 #endif 907 908 #ifdef CONFIG_PRINTK 909 #define vfs_msg(sb, level, fmt, ...) \ 910 __vfs_msg(sb, level, fmt, ##__VA_ARGS__) 911 #else 912 #define vfs_msg(sb, level, fmt, ...) \ 913 do { \ 914 no_printk(fmt, ##__VA_ARGS__); \ 915 __vfs_msg(sb, "", " "); \ 916 } while (0) 917 #endif 918 919 extern int blk_register_queue(struct gendisk *disk); 920 extern void blk_unregister_queue(struct gendisk *disk); 921 extern blk_qc_t generic_make_request(struct bio *bio); 922 extern void blk_rq_init(struct request_queue *q, struct request *rq); 923 extern void blk_put_request(struct request *); 924 extern void __blk_put_request(struct request_queue *, struct request *); 925 extern struct request *blk_get_request(struct request_queue *, int, gfp_t); 926 extern void blk_requeue_request(struct request_queue *, struct request *); 927 extern int blk_lld_busy(struct request_queue *q); 928 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 929 struct bio_set *bs, gfp_t gfp_mask, 930 int (*bio_ctr)(struct bio *, struct bio *, void *), 931 void *data); 932 extern void blk_rq_unprep_clone(struct request *rq); 933 extern int blk_insert_cloned_request(struct request_queue *q, 934 struct request *rq); 935 extern int blk_rq_append_bio(struct request *rq, struct bio *bio); 936 extern void blk_delay_queue(struct request_queue *, unsigned long); 937 extern void blk_queue_split(struct request_queue *, struct bio **, 938 struct bio_set *); 939 extern void blk_recount_segments(struct request_queue *, struct bio *); 940 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 941 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 942 unsigned int, void __user *); 943 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 944 unsigned int, void __user *); 945 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 946 struct scsi_ioctl_command __user *); 947 948 extern int blk_queue_enter(struct request_queue *q, bool nowait); 949 extern void blk_queue_exit(struct request_queue *q); 950 extern void blk_start_queue(struct request_queue *q); 951 extern void blk_start_queue_async(struct request_queue *q); 952 extern void blk_stop_queue(struct request_queue *q); 953 extern void blk_sync_queue(struct request_queue *q); 954 extern void __blk_stop_queue(struct request_queue *q); 955 extern void __blk_run_queue(struct request_queue *q); 956 extern void __blk_run_queue_uncond(struct request_queue *q); 957 extern void blk_run_queue(struct request_queue *); 958 extern void blk_run_queue_async(struct request_queue *q); 959 extern void blk_mq_quiesce_queue(struct request_queue *q); 960 extern int blk_rq_map_user(struct request_queue *, struct request *, 961 struct rq_map_data *, void __user *, unsigned long, 962 gfp_t); 963 extern int blk_rq_unmap_user(struct bio *); 964 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 965 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 966 struct rq_map_data *, const struct iov_iter *, 967 gfp_t); 968 extern int blk_execute_rq(struct request_queue *, struct gendisk *, 969 struct request *, int); 970 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 971 struct request *, int, rq_end_io_fn *); 972 973 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 974 975 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 976 { 977 return bdev->bd_disk->queue; /* this is never NULL */ 978 } 979 980 /* 981 * blk_rq_pos() : the current sector 982 * blk_rq_bytes() : bytes left in the entire request 983 * blk_rq_cur_bytes() : bytes left in the current segment 984 * blk_rq_err_bytes() : bytes left till the next error boundary 985 * blk_rq_sectors() : sectors left in the entire request 986 * blk_rq_cur_sectors() : sectors left in the current segment 987 */ 988 static inline sector_t blk_rq_pos(const struct request *rq) 989 { 990 return rq->__sector; 991 } 992 993 static inline unsigned int blk_rq_bytes(const struct request *rq) 994 { 995 return rq->__data_len; 996 } 997 998 static inline int blk_rq_cur_bytes(const struct request *rq) 999 { 1000 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1001 } 1002 1003 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1004 1005 static inline unsigned int blk_rq_sectors(const struct request *rq) 1006 { 1007 return blk_rq_bytes(rq) >> 9; 1008 } 1009 1010 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1011 { 1012 return blk_rq_cur_bytes(rq) >> 9; 1013 } 1014 1015 /* 1016 * Some commands like WRITE SAME have a payload or data transfer size which 1017 * is different from the size of the request. Any driver that supports such 1018 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1019 * calculate the data transfer size. 1020 */ 1021 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1022 { 1023 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1024 return rq->special_vec.bv_len; 1025 return blk_rq_bytes(rq); 1026 } 1027 1028 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1029 int op) 1030 { 1031 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1032 return min(q->limits.max_discard_sectors, UINT_MAX >> 9); 1033 1034 if (unlikely(op == REQ_OP_WRITE_SAME)) 1035 return q->limits.max_write_same_sectors; 1036 1037 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1038 return q->limits.max_write_zeroes_sectors; 1039 1040 return q->limits.max_sectors; 1041 } 1042 1043 /* 1044 * Return maximum size of a request at given offset. Only valid for 1045 * file system requests. 1046 */ 1047 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1048 sector_t offset) 1049 { 1050 if (!q->limits.chunk_sectors) 1051 return q->limits.max_sectors; 1052 1053 return q->limits.chunk_sectors - 1054 (offset & (q->limits.chunk_sectors - 1)); 1055 } 1056 1057 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1058 sector_t offset) 1059 { 1060 struct request_queue *q = rq->q; 1061 1062 if (blk_rq_is_passthrough(rq)) 1063 return q->limits.max_hw_sectors; 1064 1065 if (!q->limits.chunk_sectors || 1066 req_op(rq) == REQ_OP_DISCARD || 1067 req_op(rq) == REQ_OP_SECURE_ERASE) 1068 return blk_queue_get_max_sectors(q, req_op(rq)); 1069 1070 return min(blk_max_size_offset(q, offset), 1071 blk_queue_get_max_sectors(q, req_op(rq))); 1072 } 1073 1074 static inline unsigned int blk_rq_count_bios(struct request *rq) 1075 { 1076 unsigned int nr_bios = 0; 1077 struct bio *bio; 1078 1079 __rq_for_each_bio(bio, rq) 1080 nr_bios++; 1081 1082 return nr_bios; 1083 } 1084 1085 /* 1086 * blk_rq_set_prio - associate a request with prio from ioc 1087 * @rq: request of interest 1088 * @ioc: target iocontext 1089 * 1090 * Assocate request prio with ioc prio so request based drivers 1091 * can leverage priority information. 1092 */ 1093 static inline void blk_rq_set_prio(struct request *rq, struct io_context *ioc) 1094 { 1095 if (ioc) 1096 rq->ioprio = ioc->ioprio; 1097 } 1098 1099 /* 1100 * Request issue related functions. 1101 */ 1102 extern struct request *blk_peek_request(struct request_queue *q); 1103 extern void blk_start_request(struct request *rq); 1104 extern struct request *blk_fetch_request(struct request_queue *q); 1105 1106 /* 1107 * Request completion related functions. 1108 * 1109 * blk_update_request() completes given number of bytes and updates 1110 * the request without completing it. 1111 * 1112 * blk_end_request() and friends. __blk_end_request() must be called 1113 * with the request queue spinlock acquired. 1114 * 1115 * Several drivers define their own end_request and call 1116 * blk_end_request() for parts of the original function. 1117 * This prevents code duplication in drivers. 1118 */ 1119 extern bool blk_update_request(struct request *rq, int error, 1120 unsigned int nr_bytes); 1121 extern void blk_finish_request(struct request *rq, int error); 1122 extern bool blk_end_request(struct request *rq, int error, 1123 unsigned int nr_bytes); 1124 extern void blk_end_request_all(struct request *rq, int error); 1125 extern bool blk_end_request_cur(struct request *rq, int error); 1126 extern bool blk_end_request_err(struct request *rq, int error); 1127 extern bool __blk_end_request(struct request *rq, int error, 1128 unsigned int nr_bytes); 1129 extern void __blk_end_request_all(struct request *rq, int error); 1130 extern bool __blk_end_request_cur(struct request *rq, int error); 1131 extern bool __blk_end_request_err(struct request *rq, int error); 1132 1133 extern void blk_complete_request(struct request *); 1134 extern void __blk_complete_request(struct request *); 1135 extern void blk_abort_request(struct request *); 1136 extern void blk_unprep_request(struct request *); 1137 1138 /* 1139 * Access functions for manipulating queue properties 1140 */ 1141 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1142 spinlock_t *lock, int node_id); 1143 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1144 extern int blk_init_allocated_queue(struct request_queue *); 1145 extern void blk_cleanup_queue(struct request_queue *); 1146 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1147 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1148 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1149 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1150 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1151 extern void blk_queue_max_discard_segments(struct request_queue *, 1152 unsigned short); 1153 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1154 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1155 unsigned int max_discard_sectors); 1156 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1157 unsigned int max_write_same_sectors); 1158 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1159 unsigned int max_write_same_sectors); 1160 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1161 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1162 extern void blk_queue_alignment_offset(struct request_queue *q, 1163 unsigned int alignment); 1164 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1165 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1166 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1167 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1168 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1169 extern void blk_set_default_limits(struct queue_limits *lim); 1170 extern void blk_set_stacking_limits(struct queue_limits *lim); 1171 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1172 sector_t offset); 1173 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1174 sector_t offset); 1175 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1176 sector_t offset); 1177 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1178 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1179 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1180 extern int blk_queue_dma_drain(struct request_queue *q, 1181 dma_drain_needed_fn *dma_drain_needed, 1182 void *buf, unsigned int size); 1183 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1184 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1185 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1186 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1187 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1188 extern void blk_queue_dma_alignment(struct request_queue *, int); 1189 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1190 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1191 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1192 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1193 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1194 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1195 1196 /* 1197 * Number of physical segments as sent to the device. 1198 * 1199 * Normally this is the number of discontiguous data segments sent by the 1200 * submitter. But for data-less command like discard we might have no 1201 * actual data segments submitted, but the driver might have to add it's 1202 * own special payload. In that case we still return 1 here so that this 1203 * special payload will be mapped. 1204 */ 1205 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1206 { 1207 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1208 return 1; 1209 return rq->nr_phys_segments; 1210 } 1211 1212 /* 1213 * Number of discard segments (or ranges) the driver needs to fill in. 1214 * Each discard bio merged into a request is counted as one segment. 1215 */ 1216 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1217 { 1218 return max_t(unsigned short, rq->nr_phys_segments, 1); 1219 } 1220 1221 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1222 extern void blk_dump_rq_flags(struct request *, char *); 1223 extern long nr_blockdev_pages(void); 1224 1225 bool __must_check blk_get_queue(struct request_queue *); 1226 struct request_queue *blk_alloc_queue(gfp_t); 1227 struct request_queue *blk_alloc_queue_node(gfp_t, int); 1228 extern void blk_put_queue(struct request_queue *); 1229 extern void blk_set_queue_dying(struct request_queue *); 1230 1231 /* 1232 * block layer runtime pm functions 1233 */ 1234 #ifdef CONFIG_PM 1235 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1236 extern int blk_pre_runtime_suspend(struct request_queue *q); 1237 extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1238 extern void blk_pre_runtime_resume(struct request_queue *q); 1239 extern void blk_post_runtime_resume(struct request_queue *q, int err); 1240 extern void blk_set_runtime_active(struct request_queue *q); 1241 #else 1242 static inline void blk_pm_runtime_init(struct request_queue *q, 1243 struct device *dev) {} 1244 static inline int blk_pre_runtime_suspend(struct request_queue *q) 1245 { 1246 return -ENOSYS; 1247 } 1248 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1249 static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1250 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1251 static inline void blk_set_runtime_active(struct request_queue *q) {} 1252 #endif 1253 1254 /* 1255 * blk_plug permits building a queue of related requests by holding the I/O 1256 * fragments for a short period. This allows merging of sequential requests 1257 * into single larger request. As the requests are moved from a per-task list to 1258 * the device's request_queue in a batch, this results in improved scalability 1259 * as the lock contention for request_queue lock is reduced. 1260 * 1261 * It is ok not to disable preemption when adding the request to the plug list 1262 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1263 * the plug list when the task sleeps by itself. For details, please see 1264 * schedule() where blk_schedule_flush_plug() is called. 1265 */ 1266 struct blk_plug { 1267 struct list_head list; /* requests */ 1268 struct list_head mq_list; /* blk-mq requests */ 1269 struct list_head cb_list; /* md requires an unplug callback */ 1270 }; 1271 #define BLK_MAX_REQUEST_COUNT 16 1272 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1273 1274 struct blk_plug_cb; 1275 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1276 struct blk_plug_cb { 1277 struct list_head list; 1278 blk_plug_cb_fn callback; 1279 void *data; 1280 }; 1281 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1282 void *data, int size); 1283 extern void blk_start_plug(struct blk_plug *); 1284 extern void blk_finish_plug(struct blk_plug *); 1285 extern void blk_flush_plug_list(struct blk_plug *, bool); 1286 1287 static inline void blk_flush_plug(struct task_struct *tsk) 1288 { 1289 struct blk_plug *plug = tsk->plug; 1290 1291 if (plug) 1292 blk_flush_plug_list(plug, false); 1293 } 1294 1295 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1296 { 1297 struct blk_plug *plug = tsk->plug; 1298 1299 if (plug) 1300 blk_flush_plug_list(plug, true); 1301 } 1302 1303 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1304 { 1305 struct blk_plug *plug = tsk->plug; 1306 1307 return plug && 1308 (!list_empty(&plug->list) || 1309 !list_empty(&plug->mq_list) || 1310 !list_empty(&plug->cb_list)); 1311 } 1312 1313 /* 1314 * tag stuff 1315 */ 1316 extern int blk_queue_start_tag(struct request_queue *, struct request *); 1317 extern struct request *blk_queue_find_tag(struct request_queue *, int); 1318 extern void blk_queue_end_tag(struct request_queue *, struct request *); 1319 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1320 extern void blk_queue_free_tags(struct request_queue *); 1321 extern int blk_queue_resize_tags(struct request_queue *, int); 1322 extern void blk_queue_invalidate_tags(struct request_queue *); 1323 extern struct blk_queue_tag *blk_init_tags(int, int); 1324 extern void blk_free_tags(struct blk_queue_tag *); 1325 1326 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1327 int tag) 1328 { 1329 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1330 return NULL; 1331 return bqt->tag_index[tag]; 1332 } 1333 1334 1335 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1336 #define BLKDEV_DISCARD_ZERO (1 << 1) /* must reliably zero data */ 1337 1338 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1339 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1340 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1341 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1342 sector_t nr_sects, gfp_t gfp_mask, int flags, 1343 struct bio **biop); 1344 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1345 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1346 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1347 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1348 bool discard); 1349 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1350 sector_t nr_sects, gfp_t gfp_mask, bool discard); 1351 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1352 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1353 { 1354 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9), 1355 nr_blocks << (sb->s_blocksize_bits - 9), 1356 gfp_mask, flags); 1357 } 1358 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1359 sector_t nr_blocks, gfp_t gfp_mask) 1360 { 1361 return blkdev_issue_zeroout(sb->s_bdev, 1362 block << (sb->s_blocksize_bits - 9), 1363 nr_blocks << (sb->s_blocksize_bits - 9), 1364 gfp_mask, true); 1365 } 1366 1367 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm); 1368 1369 enum blk_default_limits { 1370 BLK_MAX_SEGMENTS = 128, 1371 BLK_SAFE_MAX_SECTORS = 255, 1372 BLK_DEF_MAX_SECTORS = 2560, 1373 BLK_MAX_SEGMENT_SIZE = 65536, 1374 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1375 }; 1376 1377 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1378 1379 static inline unsigned long queue_bounce_pfn(struct request_queue *q) 1380 { 1381 return q->limits.bounce_pfn; 1382 } 1383 1384 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1385 { 1386 return q->limits.seg_boundary_mask; 1387 } 1388 1389 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1390 { 1391 return q->limits.virt_boundary_mask; 1392 } 1393 1394 static inline unsigned int queue_max_sectors(struct request_queue *q) 1395 { 1396 return q->limits.max_sectors; 1397 } 1398 1399 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1400 { 1401 return q->limits.max_hw_sectors; 1402 } 1403 1404 static inline unsigned short queue_max_segments(struct request_queue *q) 1405 { 1406 return q->limits.max_segments; 1407 } 1408 1409 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1410 { 1411 return q->limits.max_discard_segments; 1412 } 1413 1414 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1415 { 1416 return q->limits.max_segment_size; 1417 } 1418 1419 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1420 { 1421 int retval = 512; 1422 1423 if (q && q->limits.logical_block_size) 1424 retval = q->limits.logical_block_size; 1425 1426 return retval; 1427 } 1428 1429 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1430 { 1431 return queue_logical_block_size(bdev_get_queue(bdev)); 1432 } 1433 1434 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1435 { 1436 return q->limits.physical_block_size; 1437 } 1438 1439 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1440 { 1441 return queue_physical_block_size(bdev_get_queue(bdev)); 1442 } 1443 1444 static inline unsigned int queue_io_min(struct request_queue *q) 1445 { 1446 return q->limits.io_min; 1447 } 1448 1449 static inline int bdev_io_min(struct block_device *bdev) 1450 { 1451 return queue_io_min(bdev_get_queue(bdev)); 1452 } 1453 1454 static inline unsigned int queue_io_opt(struct request_queue *q) 1455 { 1456 return q->limits.io_opt; 1457 } 1458 1459 static inline int bdev_io_opt(struct block_device *bdev) 1460 { 1461 return queue_io_opt(bdev_get_queue(bdev)); 1462 } 1463 1464 static inline int queue_alignment_offset(struct request_queue *q) 1465 { 1466 if (q->limits.misaligned) 1467 return -1; 1468 1469 return q->limits.alignment_offset; 1470 } 1471 1472 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1473 { 1474 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1475 unsigned int alignment = sector_div(sector, granularity >> 9) << 9; 1476 1477 return (granularity + lim->alignment_offset - alignment) % granularity; 1478 } 1479 1480 static inline int bdev_alignment_offset(struct block_device *bdev) 1481 { 1482 struct request_queue *q = bdev_get_queue(bdev); 1483 1484 if (q->limits.misaligned) 1485 return -1; 1486 1487 if (bdev != bdev->bd_contains) 1488 return bdev->bd_part->alignment_offset; 1489 1490 return q->limits.alignment_offset; 1491 } 1492 1493 static inline int queue_discard_alignment(struct request_queue *q) 1494 { 1495 if (q->limits.discard_misaligned) 1496 return -1; 1497 1498 return q->limits.discard_alignment; 1499 } 1500 1501 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1502 { 1503 unsigned int alignment, granularity, offset; 1504 1505 if (!lim->max_discard_sectors) 1506 return 0; 1507 1508 /* Why are these in bytes, not sectors? */ 1509 alignment = lim->discard_alignment >> 9; 1510 granularity = lim->discard_granularity >> 9; 1511 if (!granularity) 1512 return 0; 1513 1514 /* Offset of the partition start in 'granularity' sectors */ 1515 offset = sector_div(sector, granularity); 1516 1517 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1518 offset = (granularity + alignment - offset) % granularity; 1519 1520 /* Turn it back into bytes, gaah */ 1521 return offset << 9; 1522 } 1523 1524 static inline int bdev_discard_alignment(struct block_device *bdev) 1525 { 1526 struct request_queue *q = bdev_get_queue(bdev); 1527 1528 if (bdev != bdev->bd_contains) 1529 return bdev->bd_part->discard_alignment; 1530 1531 return q->limits.discard_alignment; 1532 } 1533 1534 static inline unsigned int queue_discard_zeroes_data(struct request_queue *q) 1535 { 1536 if (q->limits.max_discard_sectors && q->limits.discard_zeroes_data == 1) 1537 return 1; 1538 1539 return 0; 1540 } 1541 1542 static inline unsigned int bdev_discard_zeroes_data(struct block_device *bdev) 1543 { 1544 return queue_discard_zeroes_data(bdev_get_queue(bdev)); 1545 } 1546 1547 static inline unsigned int bdev_write_same(struct block_device *bdev) 1548 { 1549 struct request_queue *q = bdev_get_queue(bdev); 1550 1551 if (q) 1552 return q->limits.max_write_same_sectors; 1553 1554 return 0; 1555 } 1556 1557 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1558 { 1559 struct request_queue *q = bdev_get_queue(bdev); 1560 1561 if (q) 1562 return q->limits.max_write_zeroes_sectors; 1563 1564 return 0; 1565 } 1566 1567 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1568 { 1569 struct request_queue *q = bdev_get_queue(bdev); 1570 1571 if (q) 1572 return blk_queue_zoned_model(q); 1573 1574 return BLK_ZONED_NONE; 1575 } 1576 1577 static inline bool bdev_is_zoned(struct block_device *bdev) 1578 { 1579 struct request_queue *q = bdev_get_queue(bdev); 1580 1581 if (q) 1582 return blk_queue_is_zoned(q); 1583 1584 return false; 1585 } 1586 1587 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1588 { 1589 struct request_queue *q = bdev_get_queue(bdev); 1590 1591 if (q) 1592 return blk_queue_zone_sectors(q); 1593 1594 return 0; 1595 } 1596 1597 static inline int queue_dma_alignment(struct request_queue *q) 1598 { 1599 return q ? q->dma_alignment : 511; 1600 } 1601 1602 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1603 unsigned int len) 1604 { 1605 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1606 return !(addr & alignment) && !(len & alignment); 1607 } 1608 1609 /* assumes size > 256 */ 1610 static inline unsigned int blksize_bits(unsigned int size) 1611 { 1612 unsigned int bits = 8; 1613 do { 1614 bits++; 1615 size >>= 1; 1616 } while (size > 256); 1617 return bits; 1618 } 1619 1620 static inline unsigned int block_size(struct block_device *bdev) 1621 { 1622 return bdev->bd_block_size; 1623 } 1624 1625 static inline bool queue_flush_queueable(struct request_queue *q) 1626 { 1627 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1628 } 1629 1630 typedef struct {struct page *v;} Sector; 1631 1632 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1633 1634 static inline void put_dev_sector(Sector p) 1635 { 1636 put_page(p.v); 1637 } 1638 1639 static inline bool __bvec_gap_to_prev(struct request_queue *q, 1640 struct bio_vec *bprv, unsigned int offset) 1641 { 1642 return offset || 1643 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1644 } 1645 1646 /* 1647 * Check if adding a bio_vec after bprv with offset would create a gap in 1648 * the SG list. Most drivers don't care about this, but some do. 1649 */ 1650 static inline bool bvec_gap_to_prev(struct request_queue *q, 1651 struct bio_vec *bprv, unsigned int offset) 1652 { 1653 if (!queue_virt_boundary(q)) 1654 return false; 1655 return __bvec_gap_to_prev(q, bprv, offset); 1656 } 1657 1658 /* 1659 * Check if the two bvecs from two bios can be merged to one segment. 1660 * If yes, no need to check gap between the two bios since the 1st bio 1661 * and the 1st bvec in the 2nd bio can be handled in one segment. 1662 */ 1663 static inline bool bios_segs_mergeable(struct request_queue *q, 1664 struct bio *prev, struct bio_vec *prev_last_bv, 1665 struct bio_vec *next_first_bv) 1666 { 1667 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1668 return false; 1669 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1670 return false; 1671 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1672 queue_max_segment_size(q)) 1673 return false; 1674 return true; 1675 } 1676 1677 static inline bool bio_will_gap(struct request_queue *q, struct bio *prev, 1678 struct bio *next) 1679 { 1680 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1681 struct bio_vec pb, nb; 1682 1683 bio_get_last_bvec(prev, &pb); 1684 bio_get_first_bvec(next, &nb); 1685 1686 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1687 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1688 } 1689 1690 return false; 1691 } 1692 1693 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1694 { 1695 return bio_will_gap(req->q, req->biotail, bio); 1696 } 1697 1698 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1699 { 1700 return bio_will_gap(req->q, bio, req->bio); 1701 } 1702 1703 int kblockd_schedule_work(struct work_struct *work); 1704 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1705 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay); 1706 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1707 1708 #ifdef CONFIG_BLK_CGROUP 1709 /* 1710 * This should not be using sched_clock(). A real patch is in progress 1711 * to fix this up, until that is in place we need to disable preemption 1712 * around sched_clock() in this function and set_io_start_time_ns(). 1713 */ 1714 static inline void set_start_time_ns(struct request *req) 1715 { 1716 preempt_disable(); 1717 req->start_time_ns = sched_clock(); 1718 preempt_enable(); 1719 } 1720 1721 static inline void set_io_start_time_ns(struct request *req) 1722 { 1723 preempt_disable(); 1724 req->io_start_time_ns = sched_clock(); 1725 preempt_enable(); 1726 } 1727 1728 static inline uint64_t rq_start_time_ns(struct request *req) 1729 { 1730 return req->start_time_ns; 1731 } 1732 1733 static inline uint64_t rq_io_start_time_ns(struct request *req) 1734 { 1735 return req->io_start_time_ns; 1736 } 1737 #else 1738 static inline void set_start_time_ns(struct request *req) {} 1739 static inline void set_io_start_time_ns(struct request *req) {} 1740 static inline uint64_t rq_start_time_ns(struct request *req) 1741 { 1742 return 0; 1743 } 1744 static inline uint64_t rq_io_start_time_ns(struct request *req) 1745 { 1746 return 0; 1747 } 1748 #endif 1749 1750 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1751 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1752 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1753 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1754 1755 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1756 1757 enum blk_integrity_flags { 1758 BLK_INTEGRITY_VERIFY = 1 << 0, 1759 BLK_INTEGRITY_GENERATE = 1 << 1, 1760 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1761 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1762 }; 1763 1764 struct blk_integrity_iter { 1765 void *prot_buf; 1766 void *data_buf; 1767 sector_t seed; 1768 unsigned int data_size; 1769 unsigned short interval; 1770 const char *disk_name; 1771 }; 1772 1773 typedef int (integrity_processing_fn) (struct blk_integrity_iter *); 1774 1775 struct blk_integrity_profile { 1776 integrity_processing_fn *generate_fn; 1777 integrity_processing_fn *verify_fn; 1778 const char *name; 1779 }; 1780 1781 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1782 extern void blk_integrity_unregister(struct gendisk *); 1783 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1784 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1785 struct scatterlist *); 1786 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1787 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1788 struct request *); 1789 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1790 struct bio *); 1791 1792 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1793 { 1794 struct blk_integrity *bi = &disk->queue->integrity; 1795 1796 if (!bi->profile) 1797 return NULL; 1798 1799 return bi; 1800 } 1801 1802 static inline 1803 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1804 { 1805 return blk_get_integrity(bdev->bd_disk); 1806 } 1807 1808 static inline bool blk_integrity_rq(struct request *rq) 1809 { 1810 return rq->cmd_flags & REQ_INTEGRITY; 1811 } 1812 1813 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1814 unsigned int segs) 1815 { 1816 q->limits.max_integrity_segments = segs; 1817 } 1818 1819 static inline unsigned short 1820 queue_max_integrity_segments(struct request_queue *q) 1821 { 1822 return q->limits.max_integrity_segments; 1823 } 1824 1825 static inline bool integrity_req_gap_back_merge(struct request *req, 1826 struct bio *next) 1827 { 1828 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1829 struct bio_integrity_payload *bip_next = bio_integrity(next); 1830 1831 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1832 bip_next->bip_vec[0].bv_offset); 1833 } 1834 1835 static inline bool integrity_req_gap_front_merge(struct request *req, 1836 struct bio *bio) 1837 { 1838 struct bio_integrity_payload *bip = bio_integrity(bio); 1839 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1840 1841 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1842 bip_next->bip_vec[0].bv_offset); 1843 } 1844 1845 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1846 1847 struct bio; 1848 struct block_device; 1849 struct gendisk; 1850 struct blk_integrity; 1851 1852 static inline int blk_integrity_rq(struct request *rq) 1853 { 1854 return 0; 1855 } 1856 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1857 struct bio *b) 1858 { 1859 return 0; 1860 } 1861 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1862 struct bio *b, 1863 struct scatterlist *s) 1864 { 1865 return 0; 1866 } 1867 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1868 { 1869 return NULL; 1870 } 1871 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1872 { 1873 return NULL; 1874 } 1875 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1876 { 1877 return 0; 1878 } 1879 static inline void blk_integrity_register(struct gendisk *d, 1880 struct blk_integrity *b) 1881 { 1882 } 1883 static inline void blk_integrity_unregister(struct gendisk *d) 1884 { 1885 } 1886 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1887 unsigned int segs) 1888 { 1889 } 1890 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1891 { 1892 return 0; 1893 } 1894 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1895 struct request *r1, 1896 struct request *r2) 1897 { 1898 return true; 1899 } 1900 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1901 struct request *r, 1902 struct bio *b) 1903 { 1904 return true; 1905 } 1906 1907 static inline bool integrity_req_gap_back_merge(struct request *req, 1908 struct bio *next) 1909 { 1910 return false; 1911 } 1912 static inline bool integrity_req_gap_front_merge(struct request *req, 1913 struct bio *bio) 1914 { 1915 return false; 1916 } 1917 1918 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1919 1920 /** 1921 * struct blk_dax_ctl - control and output parameters for ->direct_access 1922 * @sector: (input) offset relative to a block_device 1923 * @addr: (output) kernel virtual address for @sector populated by driver 1924 * @pfn: (output) page frame number for @addr populated by driver 1925 * @size: (input) number of bytes requested 1926 */ 1927 struct blk_dax_ctl { 1928 sector_t sector; 1929 void *addr; 1930 long size; 1931 pfn_t pfn; 1932 }; 1933 1934 struct block_device_operations { 1935 int (*open) (struct block_device *, fmode_t); 1936 void (*release) (struct gendisk *, fmode_t); 1937 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 1938 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1939 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1940 long (*direct_access)(struct block_device *, sector_t, void **, pfn_t *, 1941 long); 1942 unsigned int (*check_events) (struct gendisk *disk, 1943 unsigned int clearing); 1944 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1945 int (*media_changed) (struct gendisk *); 1946 void (*unlock_native_capacity) (struct gendisk *); 1947 int (*revalidate_disk) (struct gendisk *); 1948 int (*getgeo)(struct block_device *, struct hd_geometry *); 1949 /* this callback is with swap_lock and sometimes page table lock held */ 1950 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1951 struct module *owner; 1952 const struct pr_ops *pr_ops; 1953 }; 1954 1955 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1956 unsigned long); 1957 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1958 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1959 struct writeback_control *); 1960 extern long bdev_direct_access(struct block_device *, struct blk_dax_ctl *); 1961 extern int bdev_dax_supported(struct super_block *, int); 1962 extern bool bdev_dax_capable(struct block_device *); 1963 #else /* CONFIG_BLOCK */ 1964 1965 struct block_device; 1966 1967 /* 1968 * stubs for when the block layer is configured out 1969 */ 1970 #define buffer_heads_over_limit 0 1971 1972 static inline long nr_blockdev_pages(void) 1973 { 1974 return 0; 1975 } 1976 1977 struct blk_plug { 1978 }; 1979 1980 static inline void blk_start_plug(struct blk_plug *plug) 1981 { 1982 } 1983 1984 static inline void blk_finish_plug(struct blk_plug *plug) 1985 { 1986 } 1987 1988 static inline void blk_flush_plug(struct task_struct *task) 1989 { 1990 } 1991 1992 static inline void blk_schedule_flush_plug(struct task_struct *task) 1993 { 1994 } 1995 1996 1997 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1998 { 1999 return false; 2000 } 2001 2002 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 2003 sector_t *error_sector) 2004 { 2005 return 0; 2006 } 2007 2008 #endif /* CONFIG_BLOCK */ 2009 2010 #endif 2011