1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 31 struct module; 32 struct scsi_ioctl_command; 33 34 struct request_queue; 35 struct elevator_queue; 36 struct blk_trace; 37 struct request; 38 struct sg_io_hdr; 39 struct bsg_job; 40 struct blkcg_gq; 41 struct blk_flush_queue; 42 struct pr_ops; 43 struct rq_qos; 44 struct blk_queue_stats; 45 struct blk_stat_callback; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* 54 * Maximum number of blkcg policies allowed to be registered concurrently. 55 * Defined here to simplify include dependency. 56 */ 57 #define BLKCG_MAX_POLS 3 58 59 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 60 61 #define BLK_RL_SYNCFULL (1U << 0) 62 #define BLK_RL_ASYNCFULL (1U << 1) 63 64 struct request_list { 65 struct request_queue *q; /* the queue this rl belongs to */ 66 #ifdef CONFIG_BLK_CGROUP 67 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 68 #endif 69 /* 70 * count[], starved[], and wait[] are indexed by 71 * BLK_RW_SYNC/BLK_RW_ASYNC 72 */ 73 int count[2]; 74 int starved[2]; 75 mempool_t *rq_pool; 76 wait_queue_head_t wait[2]; 77 unsigned int flags; 78 }; 79 80 /* 81 * request flags */ 82 typedef __u32 __bitwise req_flags_t; 83 84 /* elevator knows about this request */ 85 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 86 /* drive already may have started this one */ 87 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 88 /* uses tagged queueing */ 89 #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 90 /* may not be passed by ioscheduler */ 91 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 92 /* request for flush sequence */ 93 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 94 /* merge of different types, fail separately */ 95 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 96 /* track inflight for MQ */ 97 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 98 /* don't call prep for this one */ 99 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 100 /* set for "ide_preempt" requests and also for requests for which the SCSI 101 "quiesce" state must be ignored. */ 102 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 103 /* contains copies of user pages */ 104 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 105 /* vaguely specified driver internal error. Ignored by the block layer */ 106 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 107 /* don't warn about errors */ 108 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 109 /* elevator private data attached */ 110 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 111 /* account I/O stat */ 112 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 113 /* request came from our alloc pool */ 114 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 115 /* runtime pm request */ 116 #define RQF_PM ((__force req_flags_t)(1 << 15)) 117 /* on IO scheduler merge hash */ 118 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 119 /* IO stats tracking on */ 120 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 121 /* Look at ->special_vec for the actual data payload instead of the 122 bio chain. */ 123 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 124 /* The per-zone write lock is held for this request */ 125 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 126 /* already slept for hybrid poll */ 127 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 128 /* ->timeout has been called, don't expire again */ 129 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 130 131 /* flags that prevent us from merging requests: */ 132 #define RQF_NOMERGE_FLAGS \ 133 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 134 135 /* 136 * Request state for blk-mq. 137 */ 138 enum mq_rq_state { 139 MQ_RQ_IDLE = 0, 140 MQ_RQ_IN_FLIGHT = 1, 141 MQ_RQ_COMPLETE = 2, 142 }; 143 144 /* 145 * Try to put the fields that are referenced together in the same cacheline. 146 * 147 * If you modify this structure, make sure to update blk_rq_init() and 148 * especially blk_mq_rq_ctx_init() to take care of the added fields. 149 */ 150 struct request { 151 struct request_queue *q; 152 struct blk_mq_ctx *mq_ctx; 153 154 int cpu; 155 unsigned int cmd_flags; /* op and common flags */ 156 req_flags_t rq_flags; 157 158 int internal_tag; 159 160 /* the following two fields are internal, NEVER access directly */ 161 unsigned int __data_len; /* total data len */ 162 int tag; 163 sector_t __sector; /* sector cursor */ 164 165 struct bio *bio; 166 struct bio *biotail; 167 168 struct list_head queuelist; 169 170 /* 171 * The hash is used inside the scheduler, and killed once the 172 * request reaches the dispatch list. The ipi_list is only used 173 * to queue the request for softirq completion, which is long 174 * after the request has been unhashed (and even removed from 175 * the dispatch list). 176 */ 177 union { 178 struct hlist_node hash; /* merge hash */ 179 struct list_head ipi_list; 180 }; 181 182 /* 183 * The rb_node is only used inside the io scheduler, requests 184 * are pruned when moved to the dispatch queue. So let the 185 * completion_data share space with the rb_node. 186 */ 187 union { 188 struct rb_node rb_node; /* sort/lookup */ 189 struct bio_vec special_vec; 190 void *completion_data; 191 int error_count; /* for legacy drivers, don't use */ 192 }; 193 194 /* 195 * Three pointers are available for the IO schedulers, if they need 196 * more they have to dynamically allocate it. Flush requests are 197 * never put on the IO scheduler. So let the flush fields share 198 * space with the elevator data. 199 */ 200 union { 201 struct { 202 struct io_cq *icq; 203 void *priv[2]; 204 } elv; 205 206 struct { 207 unsigned int seq; 208 struct list_head list; 209 rq_end_io_fn *saved_end_io; 210 } flush; 211 }; 212 213 struct gendisk *rq_disk; 214 struct hd_struct *part; 215 /* Time that I/O was submitted to the kernel. */ 216 u64 start_time_ns; 217 /* Time that I/O was submitted to the device. */ 218 u64 io_start_time_ns; 219 220 #ifdef CONFIG_BLK_WBT 221 unsigned short wbt_flags; 222 #endif 223 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 224 unsigned short throtl_size; 225 #endif 226 227 /* 228 * Number of scatter-gather DMA addr+len pairs after 229 * physical address coalescing is performed. 230 */ 231 unsigned short nr_phys_segments; 232 233 #if defined(CONFIG_BLK_DEV_INTEGRITY) 234 unsigned short nr_integrity_segments; 235 #endif 236 237 unsigned short write_hint; 238 unsigned short ioprio; 239 240 void *special; /* opaque pointer available for LLD use */ 241 242 unsigned int extra_len; /* length of alignment and padding */ 243 244 enum mq_rq_state state; 245 refcount_t ref; 246 247 unsigned int timeout; 248 249 /* access through blk_rq_set_deadline, blk_rq_deadline */ 250 unsigned long __deadline; 251 252 struct list_head timeout_list; 253 254 union { 255 struct __call_single_data csd; 256 u64 fifo_time; 257 }; 258 259 /* 260 * completion callback. 261 */ 262 rq_end_io_fn *end_io; 263 void *end_io_data; 264 265 /* for bidi */ 266 struct request *next_rq; 267 268 #ifdef CONFIG_BLK_CGROUP 269 struct request_list *rl; /* rl this rq is alloced from */ 270 #endif 271 }; 272 273 static inline bool blk_op_is_scsi(unsigned int op) 274 { 275 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 276 } 277 278 static inline bool blk_op_is_private(unsigned int op) 279 { 280 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 281 } 282 283 static inline bool blk_rq_is_scsi(struct request *rq) 284 { 285 return blk_op_is_scsi(req_op(rq)); 286 } 287 288 static inline bool blk_rq_is_private(struct request *rq) 289 { 290 return blk_op_is_private(req_op(rq)); 291 } 292 293 static inline bool blk_rq_is_passthrough(struct request *rq) 294 { 295 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 296 } 297 298 static inline bool bio_is_passthrough(struct bio *bio) 299 { 300 unsigned op = bio_op(bio); 301 302 return blk_op_is_scsi(op) || blk_op_is_private(op); 303 } 304 305 static inline unsigned short req_get_ioprio(struct request *req) 306 { 307 return req->ioprio; 308 } 309 310 #include <linux/elevator.h> 311 312 struct blk_queue_ctx; 313 314 typedef void (request_fn_proc) (struct request_queue *q); 315 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 316 typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t); 317 typedef int (prep_rq_fn) (struct request_queue *, struct request *); 318 typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 319 320 struct bio_vec; 321 typedef void (softirq_done_fn)(struct request *); 322 typedef int (dma_drain_needed_fn)(struct request *); 323 typedef int (lld_busy_fn) (struct request_queue *q); 324 typedef int (bsg_job_fn) (struct bsg_job *); 325 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 326 typedef void (exit_rq_fn)(struct request_queue *, struct request *); 327 328 enum blk_eh_timer_return { 329 BLK_EH_DONE, /* drivers has completed the command */ 330 BLK_EH_RESET_TIMER, /* reset timer and try again */ 331 }; 332 333 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 334 335 enum blk_queue_state { 336 Queue_down, 337 Queue_up, 338 }; 339 340 struct blk_queue_tag { 341 struct request **tag_index; /* map of busy tags */ 342 unsigned long *tag_map; /* bit map of free/busy tags */ 343 int max_depth; /* what we will send to device */ 344 int real_max_depth; /* what the array can hold */ 345 atomic_t refcnt; /* map can be shared */ 346 int alloc_policy; /* tag allocation policy */ 347 int next_tag; /* next tag */ 348 }; 349 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 350 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 351 352 #define BLK_SCSI_MAX_CMDS (256) 353 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 354 355 /* 356 * Zoned block device models (zoned limit). 357 */ 358 enum blk_zoned_model { 359 BLK_ZONED_NONE, /* Regular block device */ 360 BLK_ZONED_HA, /* Host-aware zoned block device */ 361 BLK_ZONED_HM, /* Host-managed zoned block device */ 362 }; 363 364 struct queue_limits { 365 unsigned long bounce_pfn; 366 unsigned long seg_boundary_mask; 367 unsigned long virt_boundary_mask; 368 369 unsigned int max_hw_sectors; 370 unsigned int max_dev_sectors; 371 unsigned int chunk_sectors; 372 unsigned int max_sectors; 373 unsigned int max_segment_size; 374 unsigned int physical_block_size; 375 unsigned int alignment_offset; 376 unsigned int io_min; 377 unsigned int io_opt; 378 unsigned int max_discard_sectors; 379 unsigned int max_hw_discard_sectors; 380 unsigned int max_write_same_sectors; 381 unsigned int max_write_zeroes_sectors; 382 unsigned int discard_granularity; 383 unsigned int discard_alignment; 384 385 unsigned short logical_block_size; 386 unsigned short max_segments; 387 unsigned short max_integrity_segments; 388 unsigned short max_discard_segments; 389 390 unsigned char misaligned; 391 unsigned char discard_misaligned; 392 unsigned char cluster; 393 unsigned char raid_partial_stripes_expensive; 394 enum blk_zoned_model zoned; 395 }; 396 397 #ifdef CONFIG_BLK_DEV_ZONED 398 399 struct blk_zone_report_hdr { 400 unsigned int nr_zones; 401 u8 padding[60]; 402 }; 403 404 extern int blkdev_report_zones(struct block_device *bdev, 405 sector_t sector, struct blk_zone *zones, 406 unsigned int *nr_zones, gfp_t gfp_mask); 407 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 408 sector_t nr_sectors, gfp_t gfp_mask); 409 410 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 411 unsigned int cmd, unsigned long arg); 412 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 413 unsigned int cmd, unsigned long arg); 414 415 #else /* CONFIG_BLK_DEV_ZONED */ 416 417 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 418 fmode_t mode, unsigned int cmd, 419 unsigned long arg) 420 { 421 return -ENOTTY; 422 } 423 424 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 425 fmode_t mode, unsigned int cmd, 426 unsigned long arg) 427 { 428 return -ENOTTY; 429 } 430 431 #endif /* CONFIG_BLK_DEV_ZONED */ 432 433 struct request_queue { 434 /* 435 * Together with queue_head for cacheline sharing 436 */ 437 struct list_head queue_head; 438 struct request *last_merge; 439 struct elevator_queue *elevator; 440 int nr_rqs[2]; /* # allocated [a]sync rqs */ 441 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 442 443 struct blk_queue_stats *stats; 444 struct rq_qos *rq_qos; 445 446 /* 447 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 448 * is used, root blkg allocates from @q->root_rl and all other 449 * blkgs from their own blkg->rl. Which one to use should be 450 * determined using bio_request_list(). 451 */ 452 struct request_list root_rl; 453 454 request_fn_proc *request_fn; 455 make_request_fn *make_request_fn; 456 poll_q_fn *poll_fn; 457 prep_rq_fn *prep_rq_fn; 458 unprep_rq_fn *unprep_rq_fn; 459 softirq_done_fn *softirq_done_fn; 460 rq_timed_out_fn *rq_timed_out_fn; 461 dma_drain_needed_fn *dma_drain_needed; 462 lld_busy_fn *lld_busy_fn; 463 /* Called just after a request is allocated */ 464 init_rq_fn *init_rq_fn; 465 /* Called just before a request is freed */ 466 exit_rq_fn *exit_rq_fn; 467 /* Called from inside blk_get_request() */ 468 void (*initialize_rq_fn)(struct request *rq); 469 470 const struct blk_mq_ops *mq_ops; 471 472 unsigned int *mq_map; 473 474 /* sw queues */ 475 struct blk_mq_ctx __percpu *queue_ctx; 476 unsigned int nr_queues; 477 478 unsigned int queue_depth; 479 480 /* hw dispatch queues */ 481 struct blk_mq_hw_ctx **queue_hw_ctx; 482 unsigned int nr_hw_queues; 483 484 /* 485 * Dispatch queue sorting 486 */ 487 sector_t end_sector; 488 struct request *boundary_rq; 489 490 /* 491 * Delayed queue handling 492 */ 493 struct delayed_work delay_work; 494 495 struct backing_dev_info *backing_dev_info; 496 497 /* 498 * The queue owner gets to use this for whatever they like. 499 * ll_rw_blk doesn't touch it. 500 */ 501 void *queuedata; 502 503 /* 504 * various queue flags, see QUEUE_* below 505 */ 506 unsigned long queue_flags; 507 508 /* 509 * ida allocated id for this queue. Used to index queues from 510 * ioctx. 511 */ 512 int id; 513 514 /* 515 * queue needs bounce pages for pages above this limit 516 */ 517 gfp_t bounce_gfp; 518 519 /* 520 * protects queue structures from reentrancy. ->__queue_lock should 521 * _never_ be used directly, it is queue private. always use 522 * ->queue_lock. 523 */ 524 spinlock_t __queue_lock; 525 spinlock_t *queue_lock; 526 527 /* 528 * queue kobject 529 */ 530 struct kobject kobj; 531 532 /* 533 * mq queue kobject 534 */ 535 struct kobject mq_kobj; 536 537 #ifdef CONFIG_BLK_DEV_INTEGRITY 538 struct blk_integrity integrity; 539 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 540 541 #ifdef CONFIG_PM 542 struct device *dev; 543 int rpm_status; 544 unsigned int nr_pending; 545 #endif 546 547 /* 548 * queue settings 549 */ 550 unsigned long nr_requests; /* Max # of requests */ 551 unsigned int nr_congestion_on; 552 unsigned int nr_congestion_off; 553 unsigned int nr_batching; 554 555 unsigned int dma_drain_size; 556 void *dma_drain_buffer; 557 unsigned int dma_pad_mask; 558 unsigned int dma_alignment; 559 560 struct blk_queue_tag *queue_tags; 561 562 unsigned int nr_sorted; 563 unsigned int in_flight[2]; 564 565 /* 566 * Number of active block driver functions for which blk_drain_queue() 567 * must wait. Must be incremented around functions that unlock the 568 * queue_lock internally, e.g. scsi_request_fn(). 569 */ 570 unsigned int request_fn_active; 571 572 unsigned int rq_timeout; 573 int poll_nsec; 574 575 struct blk_stat_callback *poll_cb; 576 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 577 578 struct timer_list timeout; 579 struct work_struct timeout_work; 580 struct list_head timeout_list; 581 582 struct list_head icq_list; 583 #ifdef CONFIG_BLK_CGROUP 584 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 585 struct blkcg_gq *root_blkg; 586 struct list_head blkg_list; 587 #endif 588 589 struct queue_limits limits; 590 591 #ifdef CONFIG_BLK_DEV_ZONED 592 /* 593 * Zoned block device information for request dispatch control. 594 * nr_zones is the total number of zones of the device. This is always 595 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones 596 * bits which indicates if a zone is conventional (bit clear) or 597 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones 598 * bits which indicates if a zone is write locked, that is, if a write 599 * request targeting the zone was dispatched. All three fields are 600 * initialized by the low level device driver (e.g. scsi/sd.c). 601 * Stacking drivers (device mappers) may or may not initialize 602 * these fields. 603 * 604 * Reads of this information must be protected with blk_queue_enter() / 605 * blk_queue_exit(). Modifying this information is only allowed while 606 * no requests are being processed. See also blk_mq_freeze_queue() and 607 * blk_mq_unfreeze_queue(). 608 */ 609 unsigned int nr_zones; 610 unsigned long *seq_zones_bitmap; 611 unsigned long *seq_zones_wlock; 612 #endif /* CONFIG_BLK_DEV_ZONED */ 613 614 /* 615 * sg stuff 616 */ 617 unsigned int sg_timeout; 618 unsigned int sg_reserved_size; 619 int node; 620 #ifdef CONFIG_BLK_DEV_IO_TRACE 621 struct blk_trace *blk_trace; 622 struct mutex blk_trace_mutex; 623 #endif 624 /* 625 * for flush operations 626 */ 627 struct blk_flush_queue *fq; 628 629 struct list_head requeue_list; 630 spinlock_t requeue_lock; 631 struct delayed_work requeue_work; 632 633 struct mutex sysfs_lock; 634 635 int bypass_depth; 636 atomic_t mq_freeze_depth; 637 638 #if defined(CONFIG_BLK_DEV_BSG) 639 bsg_job_fn *bsg_job_fn; 640 struct bsg_class_device bsg_dev; 641 #endif 642 643 #ifdef CONFIG_BLK_DEV_THROTTLING 644 /* Throttle data */ 645 struct throtl_data *td; 646 #endif 647 struct rcu_head rcu_head; 648 wait_queue_head_t mq_freeze_wq; 649 struct percpu_ref q_usage_counter; 650 struct list_head all_q_node; 651 652 struct blk_mq_tag_set *tag_set; 653 struct list_head tag_set_list; 654 struct bio_set bio_split; 655 656 #ifdef CONFIG_BLK_DEBUG_FS 657 struct dentry *debugfs_dir; 658 struct dentry *sched_debugfs_dir; 659 #endif 660 661 bool mq_sysfs_init_done; 662 663 size_t cmd_size; 664 void *rq_alloc_data; 665 666 struct work_struct release_work; 667 668 #define BLK_MAX_WRITE_HINTS 5 669 u64 write_hints[BLK_MAX_WRITE_HINTS]; 670 }; 671 672 #define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */ 673 #define QUEUE_FLAG_STOPPED 1 /* queue is stopped */ 674 #define QUEUE_FLAG_DYING 2 /* queue being torn down */ 675 #define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */ 676 #define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */ 677 #define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */ 678 #define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */ 679 #define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */ 680 #define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */ 681 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 682 #define QUEUE_FLAG_IO_STAT 10 /* do IO stats */ 683 #define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */ 684 #define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */ 685 #define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */ 686 #define QUEUE_FLAG_SECERASE 14 /* supports secure erase */ 687 #define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */ 688 #define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */ 689 #define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */ 690 #define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/ 691 #define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */ 692 #define QUEUE_FLAG_WC 20 /* Write back caching */ 693 #define QUEUE_FLAG_FUA 21 /* device supports FUA writes */ 694 #define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */ 695 #define QUEUE_FLAG_DAX 23 /* device supports DAX */ 696 #define QUEUE_FLAG_STATS 24 /* track rq completion times */ 697 #define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */ 698 #define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */ 699 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */ 700 #define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */ 701 #define QUEUE_FLAG_PREEMPT_ONLY 29 /* only process REQ_PREEMPT requests */ 702 703 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 704 (1 << QUEUE_FLAG_SAME_COMP) | \ 705 (1 << QUEUE_FLAG_ADD_RANDOM)) 706 707 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 708 (1 << QUEUE_FLAG_SAME_COMP) | \ 709 (1 << QUEUE_FLAG_POLL)) 710 711 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 712 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 713 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 714 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q); 715 716 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 717 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 718 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 719 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 720 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 721 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 722 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 723 #define blk_queue_noxmerges(q) \ 724 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 725 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 726 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 727 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 728 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 729 #define blk_queue_secure_erase(q) \ 730 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 731 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 732 #define blk_queue_scsi_passthrough(q) \ 733 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 734 735 #define blk_noretry_request(rq) \ 736 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 737 REQ_FAILFAST_DRIVER)) 738 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 739 #define blk_queue_preempt_only(q) \ 740 test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags) 741 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 742 743 extern int blk_set_preempt_only(struct request_queue *q); 744 extern void blk_clear_preempt_only(struct request_queue *q); 745 746 static inline int queue_in_flight(struct request_queue *q) 747 { 748 return q->in_flight[0] + q->in_flight[1]; 749 } 750 751 static inline bool blk_account_rq(struct request *rq) 752 { 753 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 754 } 755 756 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 757 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 758 /* rq->queuelist of dequeued request must be list_empty() */ 759 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 760 761 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 762 763 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 764 765 /* 766 * Driver can handle struct request, if it either has an old style 767 * request_fn defined, or is blk-mq based. 768 */ 769 static inline bool queue_is_rq_based(struct request_queue *q) 770 { 771 return q->request_fn || q->mq_ops; 772 } 773 774 static inline unsigned int blk_queue_cluster(struct request_queue *q) 775 { 776 return q->limits.cluster; 777 } 778 779 static inline enum blk_zoned_model 780 blk_queue_zoned_model(struct request_queue *q) 781 { 782 return q->limits.zoned; 783 } 784 785 static inline bool blk_queue_is_zoned(struct request_queue *q) 786 { 787 switch (blk_queue_zoned_model(q)) { 788 case BLK_ZONED_HA: 789 case BLK_ZONED_HM: 790 return true; 791 default: 792 return false; 793 } 794 } 795 796 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 797 { 798 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 799 } 800 801 #ifdef CONFIG_BLK_DEV_ZONED 802 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 803 sector_t sector) 804 { 805 if (!blk_queue_is_zoned(q)) 806 return 0; 807 return sector >> ilog2(q->limits.chunk_sectors); 808 } 809 810 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 811 sector_t sector) 812 { 813 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) 814 return false; 815 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); 816 } 817 #endif /* CONFIG_BLK_DEV_ZONED */ 818 819 static inline bool rq_is_sync(struct request *rq) 820 { 821 return op_is_sync(rq->cmd_flags); 822 } 823 824 static inline bool blk_rl_full(struct request_list *rl, bool sync) 825 { 826 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 827 828 return rl->flags & flag; 829 } 830 831 static inline void blk_set_rl_full(struct request_list *rl, bool sync) 832 { 833 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 834 835 rl->flags |= flag; 836 } 837 838 static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 839 { 840 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 841 842 rl->flags &= ~flag; 843 } 844 845 static inline bool rq_mergeable(struct request *rq) 846 { 847 if (blk_rq_is_passthrough(rq)) 848 return false; 849 850 if (req_op(rq) == REQ_OP_FLUSH) 851 return false; 852 853 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 854 return false; 855 856 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 857 return false; 858 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 859 return false; 860 861 return true; 862 } 863 864 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 865 { 866 if (bio_page(a) == bio_page(b) && 867 bio_offset(a) == bio_offset(b)) 868 return true; 869 870 return false; 871 } 872 873 static inline unsigned int blk_queue_depth(struct request_queue *q) 874 { 875 if (q->queue_depth) 876 return q->queue_depth; 877 878 return q->nr_requests; 879 } 880 881 /* 882 * q->prep_rq_fn return values 883 */ 884 enum { 885 BLKPREP_OK, /* serve it */ 886 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 887 BLKPREP_DEFER, /* leave on queue */ 888 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 889 }; 890 891 extern unsigned long blk_max_low_pfn, blk_max_pfn; 892 893 /* 894 * standard bounce addresses: 895 * 896 * BLK_BOUNCE_HIGH : bounce all highmem pages 897 * BLK_BOUNCE_ANY : don't bounce anything 898 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 899 */ 900 901 #if BITS_PER_LONG == 32 902 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 903 #else 904 #define BLK_BOUNCE_HIGH -1ULL 905 #endif 906 #define BLK_BOUNCE_ANY (-1ULL) 907 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 908 909 /* 910 * default timeout for SG_IO if none specified 911 */ 912 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 913 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 914 915 struct rq_map_data { 916 struct page **pages; 917 int page_order; 918 int nr_entries; 919 unsigned long offset; 920 int null_mapped; 921 int from_user; 922 }; 923 924 struct req_iterator { 925 struct bvec_iter iter; 926 struct bio *bio; 927 }; 928 929 /* This should not be used directly - use rq_for_each_segment */ 930 #define for_each_bio(_bio) \ 931 for (; _bio; _bio = _bio->bi_next) 932 #define __rq_for_each_bio(_bio, rq) \ 933 if ((rq->bio)) \ 934 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 935 936 #define rq_for_each_segment(bvl, _rq, _iter) \ 937 __rq_for_each_bio(_iter.bio, _rq) \ 938 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 939 940 #define rq_iter_last(bvec, _iter) \ 941 (_iter.bio->bi_next == NULL && \ 942 bio_iter_last(bvec, _iter.iter)) 943 944 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 945 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 946 #endif 947 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 948 extern void rq_flush_dcache_pages(struct request *rq); 949 #else 950 static inline void rq_flush_dcache_pages(struct request *rq) 951 { 952 } 953 #endif 954 955 extern int blk_register_queue(struct gendisk *disk); 956 extern void blk_unregister_queue(struct gendisk *disk); 957 extern blk_qc_t generic_make_request(struct bio *bio); 958 extern blk_qc_t direct_make_request(struct bio *bio); 959 extern void blk_rq_init(struct request_queue *q, struct request *rq); 960 extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 961 extern void blk_put_request(struct request *); 962 extern void __blk_put_request(struct request_queue *, struct request *); 963 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 964 blk_mq_req_flags_t flags); 965 extern void blk_requeue_request(struct request_queue *, struct request *); 966 extern int blk_lld_busy(struct request_queue *q); 967 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 968 struct bio_set *bs, gfp_t gfp_mask, 969 int (*bio_ctr)(struct bio *, struct bio *, void *), 970 void *data); 971 extern void blk_rq_unprep_clone(struct request *rq); 972 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 973 struct request *rq); 974 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 975 extern void blk_delay_queue(struct request_queue *, unsigned long); 976 extern void blk_queue_split(struct request_queue *, struct bio **); 977 extern void blk_recount_segments(struct request_queue *, struct bio *); 978 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 979 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 980 unsigned int, void __user *); 981 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 982 unsigned int, void __user *); 983 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 984 struct scsi_ioctl_command __user *); 985 986 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 987 extern void blk_queue_exit(struct request_queue *q); 988 extern void blk_start_queue(struct request_queue *q); 989 extern void blk_start_queue_async(struct request_queue *q); 990 extern void blk_stop_queue(struct request_queue *q); 991 extern void blk_sync_queue(struct request_queue *q); 992 extern void __blk_stop_queue(struct request_queue *q); 993 extern void __blk_run_queue(struct request_queue *q); 994 extern void __blk_run_queue_uncond(struct request_queue *q); 995 extern void blk_run_queue(struct request_queue *); 996 extern void blk_run_queue_async(struct request_queue *q); 997 extern int blk_rq_map_user(struct request_queue *, struct request *, 998 struct rq_map_data *, void __user *, unsigned long, 999 gfp_t); 1000 extern int blk_rq_unmap_user(struct bio *); 1001 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 1002 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 1003 struct rq_map_data *, const struct iov_iter *, 1004 gfp_t); 1005 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 1006 struct request *, int); 1007 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 1008 struct request *, int, rq_end_io_fn *); 1009 1010 int blk_status_to_errno(blk_status_t status); 1011 blk_status_t errno_to_blk_status(int errno); 1012 1013 bool blk_poll(struct request_queue *q, blk_qc_t cookie); 1014 1015 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 1016 { 1017 return bdev->bd_disk->queue; /* this is never NULL */ 1018 } 1019 1020 /* 1021 * The basic unit of block I/O is a sector. It is used in a number of contexts 1022 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 1023 * bytes. Variables of type sector_t represent an offset or size that is a 1024 * multiple of 512 bytes. Hence these two constants. 1025 */ 1026 #ifndef SECTOR_SHIFT 1027 #define SECTOR_SHIFT 9 1028 #endif 1029 #ifndef SECTOR_SIZE 1030 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 1031 #endif 1032 1033 /* 1034 * blk_rq_pos() : the current sector 1035 * blk_rq_bytes() : bytes left in the entire request 1036 * blk_rq_cur_bytes() : bytes left in the current segment 1037 * blk_rq_err_bytes() : bytes left till the next error boundary 1038 * blk_rq_sectors() : sectors left in the entire request 1039 * blk_rq_cur_sectors() : sectors left in the current segment 1040 */ 1041 static inline sector_t blk_rq_pos(const struct request *rq) 1042 { 1043 return rq->__sector; 1044 } 1045 1046 static inline unsigned int blk_rq_bytes(const struct request *rq) 1047 { 1048 return rq->__data_len; 1049 } 1050 1051 static inline int blk_rq_cur_bytes(const struct request *rq) 1052 { 1053 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1054 } 1055 1056 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1057 1058 static inline unsigned int blk_rq_sectors(const struct request *rq) 1059 { 1060 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1061 } 1062 1063 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1064 { 1065 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1066 } 1067 1068 #ifdef CONFIG_BLK_DEV_ZONED 1069 static inline unsigned int blk_rq_zone_no(struct request *rq) 1070 { 1071 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1072 } 1073 1074 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1075 { 1076 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1077 } 1078 #endif /* CONFIG_BLK_DEV_ZONED */ 1079 1080 /* 1081 * Some commands like WRITE SAME have a payload or data transfer size which 1082 * is different from the size of the request. Any driver that supports such 1083 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1084 * calculate the data transfer size. 1085 */ 1086 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1087 { 1088 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1089 return rq->special_vec.bv_len; 1090 return blk_rq_bytes(rq); 1091 } 1092 1093 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1094 int op) 1095 { 1096 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1097 return min(q->limits.max_discard_sectors, 1098 UINT_MAX >> SECTOR_SHIFT); 1099 1100 if (unlikely(op == REQ_OP_WRITE_SAME)) 1101 return q->limits.max_write_same_sectors; 1102 1103 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1104 return q->limits.max_write_zeroes_sectors; 1105 1106 return q->limits.max_sectors; 1107 } 1108 1109 /* 1110 * Return maximum size of a request at given offset. Only valid for 1111 * file system requests. 1112 */ 1113 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1114 sector_t offset) 1115 { 1116 if (!q->limits.chunk_sectors) 1117 return q->limits.max_sectors; 1118 1119 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1120 (offset & (q->limits.chunk_sectors - 1)))); 1121 } 1122 1123 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1124 sector_t offset) 1125 { 1126 struct request_queue *q = rq->q; 1127 1128 if (blk_rq_is_passthrough(rq)) 1129 return q->limits.max_hw_sectors; 1130 1131 if (!q->limits.chunk_sectors || 1132 req_op(rq) == REQ_OP_DISCARD || 1133 req_op(rq) == REQ_OP_SECURE_ERASE) 1134 return blk_queue_get_max_sectors(q, req_op(rq)); 1135 1136 return min(blk_max_size_offset(q, offset), 1137 blk_queue_get_max_sectors(q, req_op(rq))); 1138 } 1139 1140 static inline unsigned int blk_rq_count_bios(struct request *rq) 1141 { 1142 unsigned int nr_bios = 0; 1143 struct bio *bio; 1144 1145 __rq_for_each_bio(bio, rq) 1146 nr_bios++; 1147 1148 return nr_bios; 1149 } 1150 1151 /* 1152 * Request issue related functions. 1153 */ 1154 extern struct request *blk_peek_request(struct request_queue *q); 1155 extern void blk_start_request(struct request *rq); 1156 extern struct request *blk_fetch_request(struct request_queue *q); 1157 1158 void blk_steal_bios(struct bio_list *list, struct request *rq); 1159 1160 /* 1161 * Request completion related functions. 1162 * 1163 * blk_update_request() completes given number of bytes and updates 1164 * the request without completing it. 1165 * 1166 * blk_end_request() and friends. __blk_end_request() must be called 1167 * with the request queue spinlock acquired. 1168 * 1169 * Several drivers define their own end_request and call 1170 * blk_end_request() for parts of the original function. 1171 * This prevents code duplication in drivers. 1172 */ 1173 extern bool blk_update_request(struct request *rq, blk_status_t error, 1174 unsigned int nr_bytes); 1175 extern void blk_finish_request(struct request *rq, blk_status_t error); 1176 extern bool blk_end_request(struct request *rq, blk_status_t error, 1177 unsigned int nr_bytes); 1178 extern void blk_end_request_all(struct request *rq, blk_status_t error); 1179 extern bool __blk_end_request(struct request *rq, blk_status_t error, 1180 unsigned int nr_bytes); 1181 extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1182 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1183 1184 extern void blk_complete_request(struct request *); 1185 extern void __blk_complete_request(struct request *); 1186 extern void blk_abort_request(struct request *); 1187 extern void blk_unprep_request(struct request *); 1188 1189 /* 1190 * Access functions for manipulating queue properties 1191 */ 1192 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1193 spinlock_t *lock, int node_id); 1194 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1195 extern int blk_init_allocated_queue(struct request_queue *); 1196 extern void blk_cleanup_queue(struct request_queue *); 1197 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1198 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1199 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1200 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1201 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1202 extern void blk_queue_max_discard_segments(struct request_queue *, 1203 unsigned short); 1204 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1205 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1206 unsigned int max_discard_sectors); 1207 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1208 unsigned int max_write_same_sectors); 1209 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1210 unsigned int max_write_same_sectors); 1211 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1212 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1213 extern void blk_queue_alignment_offset(struct request_queue *q, 1214 unsigned int alignment); 1215 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1216 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1217 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1218 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1219 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1220 extern void blk_set_default_limits(struct queue_limits *lim); 1221 extern void blk_set_stacking_limits(struct queue_limits *lim); 1222 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1223 sector_t offset); 1224 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1225 sector_t offset); 1226 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1227 sector_t offset); 1228 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1229 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1230 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1231 extern int blk_queue_dma_drain(struct request_queue *q, 1232 dma_drain_needed_fn *dma_drain_needed, 1233 void *buf, unsigned int size); 1234 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1235 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1236 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1237 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1238 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1239 extern void blk_queue_dma_alignment(struct request_queue *, int); 1240 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1241 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1242 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1243 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1244 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1245 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1246 1247 /* 1248 * Number of physical segments as sent to the device. 1249 * 1250 * Normally this is the number of discontiguous data segments sent by the 1251 * submitter. But for data-less command like discard we might have no 1252 * actual data segments submitted, but the driver might have to add it's 1253 * own special payload. In that case we still return 1 here so that this 1254 * special payload will be mapped. 1255 */ 1256 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1257 { 1258 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1259 return 1; 1260 return rq->nr_phys_segments; 1261 } 1262 1263 /* 1264 * Number of discard segments (or ranges) the driver needs to fill in. 1265 * Each discard bio merged into a request is counted as one segment. 1266 */ 1267 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1268 { 1269 return max_t(unsigned short, rq->nr_phys_segments, 1); 1270 } 1271 1272 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1273 extern void blk_dump_rq_flags(struct request *, char *); 1274 extern long nr_blockdev_pages(void); 1275 1276 bool __must_check blk_get_queue(struct request_queue *); 1277 struct request_queue *blk_alloc_queue(gfp_t); 1278 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 1279 spinlock_t *lock); 1280 extern void blk_put_queue(struct request_queue *); 1281 extern void blk_set_queue_dying(struct request_queue *); 1282 1283 /* 1284 * block layer runtime pm functions 1285 */ 1286 #ifdef CONFIG_PM 1287 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1288 extern int blk_pre_runtime_suspend(struct request_queue *q); 1289 extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1290 extern void blk_pre_runtime_resume(struct request_queue *q); 1291 extern void blk_post_runtime_resume(struct request_queue *q, int err); 1292 extern void blk_set_runtime_active(struct request_queue *q); 1293 #else 1294 static inline void blk_pm_runtime_init(struct request_queue *q, 1295 struct device *dev) {} 1296 static inline int blk_pre_runtime_suspend(struct request_queue *q) 1297 { 1298 return -ENOSYS; 1299 } 1300 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1301 static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1302 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1303 static inline void blk_set_runtime_active(struct request_queue *q) {} 1304 #endif 1305 1306 /* 1307 * blk_plug permits building a queue of related requests by holding the I/O 1308 * fragments for a short period. This allows merging of sequential requests 1309 * into single larger request. As the requests are moved from a per-task list to 1310 * the device's request_queue in a batch, this results in improved scalability 1311 * as the lock contention for request_queue lock is reduced. 1312 * 1313 * It is ok not to disable preemption when adding the request to the plug list 1314 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1315 * the plug list when the task sleeps by itself. For details, please see 1316 * schedule() where blk_schedule_flush_plug() is called. 1317 */ 1318 struct blk_plug { 1319 struct list_head list; /* requests */ 1320 struct list_head mq_list; /* blk-mq requests */ 1321 struct list_head cb_list; /* md requires an unplug callback */ 1322 }; 1323 #define BLK_MAX_REQUEST_COUNT 16 1324 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1325 1326 struct blk_plug_cb; 1327 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1328 struct blk_plug_cb { 1329 struct list_head list; 1330 blk_plug_cb_fn callback; 1331 void *data; 1332 }; 1333 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1334 void *data, int size); 1335 extern void blk_start_plug(struct blk_plug *); 1336 extern void blk_finish_plug(struct blk_plug *); 1337 extern void blk_flush_plug_list(struct blk_plug *, bool); 1338 1339 static inline void blk_flush_plug(struct task_struct *tsk) 1340 { 1341 struct blk_plug *plug = tsk->plug; 1342 1343 if (plug) 1344 blk_flush_plug_list(plug, false); 1345 } 1346 1347 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1348 { 1349 struct blk_plug *plug = tsk->plug; 1350 1351 if (plug) 1352 blk_flush_plug_list(plug, true); 1353 } 1354 1355 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1356 { 1357 struct blk_plug *plug = tsk->plug; 1358 1359 return plug && 1360 (!list_empty(&plug->list) || 1361 !list_empty(&plug->mq_list) || 1362 !list_empty(&plug->cb_list)); 1363 } 1364 1365 /* 1366 * tag stuff 1367 */ 1368 extern int blk_queue_start_tag(struct request_queue *, struct request *); 1369 extern struct request *blk_queue_find_tag(struct request_queue *, int); 1370 extern void blk_queue_end_tag(struct request_queue *, struct request *); 1371 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1372 extern void blk_queue_free_tags(struct request_queue *); 1373 extern int blk_queue_resize_tags(struct request_queue *, int); 1374 extern struct blk_queue_tag *blk_init_tags(int, int); 1375 extern void blk_free_tags(struct blk_queue_tag *); 1376 1377 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1378 int tag) 1379 { 1380 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1381 return NULL; 1382 return bqt->tag_index[tag]; 1383 } 1384 1385 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1386 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1387 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1388 1389 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1390 1391 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1392 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1393 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1394 sector_t nr_sects, gfp_t gfp_mask, int flags, 1395 struct bio **biop); 1396 1397 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1398 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1399 1400 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1401 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1402 unsigned flags); 1403 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1404 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1405 1406 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1407 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1408 { 1409 return blkdev_issue_discard(sb->s_bdev, 1410 block << (sb->s_blocksize_bits - 1411 SECTOR_SHIFT), 1412 nr_blocks << (sb->s_blocksize_bits - 1413 SECTOR_SHIFT), 1414 gfp_mask, flags); 1415 } 1416 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1417 sector_t nr_blocks, gfp_t gfp_mask) 1418 { 1419 return blkdev_issue_zeroout(sb->s_bdev, 1420 block << (sb->s_blocksize_bits - 1421 SECTOR_SHIFT), 1422 nr_blocks << (sb->s_blocksize_bits - 1423 SECTOR_SHIFT), 1424 gfp_mask, 0); 1425 } 1426 1427 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1428 1429 enum blk_default_limits { 1430 BLK_MAX_SEGMENTS = 128, 1431 BLK_SAFE_MAX_SECTORS = 255, 1432 BLK_DEF_MAX_SECTORS = 2560, 1433 BLK_MAX_SEGMENT_SIZE = 65536, 1434 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1435 }; 1436 1437 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1438 { 1439 return q->limits.seg_boundary_mask; 1440 } 1441 1442 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1443 { 1444 return q->limits.virt_boundary_mask; 1445 } 1446 1447 static inline unsigned int queue_max_sectors(struct request_queue *q) 1448 { 1449 return q->limits.max_sectors; 1450 } 1451 1452 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1453 { 1454 return q->limits.max_hw_sectors; 1455 } 1456 1457 static inline unsigned short queue_max_segments(struct request_queue *q) 1458 { 1459 return q->limits.max_segments; 1460 } 1461 1462 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1463 { 1464 return q->limits.max_discard_segments; 1465 } 1466 1467 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1468 { 1469 return q->limits.max_segment_size; 1470 } 1471 1472 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1473 { 1474 int retval = 512; 1475 1476 if (q && q->limits.logical_block_size) 1477 retval = q->limits.logical_block_size; 1478 1479 return retval; 1480 } 1481 1482 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1483 { 1484 return queue_logical_block_size(bdev_get_queue(bdev)); 1485 } 1486 1487 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1488 { 1489 return q->limits.physical_block_size; 1490 } 1491 1492 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1493 { 1494 return queue_physical_block_size(bdev_get_queue(bdev)); 1495 } 1496 1497 static inline unsigned int queue_io_min(struct request_queue *q) 1498 { 1499 return q->limits.io_min; 1500 } 1501 1502 static inline int bdev_io_min(struct block_device *bdev) 1503 { 1504 return queue_io_min(bdev_get_queue(bdev)); 1505 } 1506 1507 static inline unsigned int queue_io_opt(struct request_queue *q) 1508 { 1509 return q->limits.io_opt; 1510 } 1511 1512 static inline int bdev_io_opt(struct block_device *bdev) 1513 { 1514 return queue_io_opt(bdev_get_queue(bdev)); 1515 } 1516 1517 static inline int queue_alignment_offset(struct request_queue *q) 1518 { 1519 if (q->limits.misaligned) 1520 return -1; 1521 1522 return q->limits.alignment_offset; 1523 } 1524 1525 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1526 { 1527 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1528 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1529 << SECTOR_SHIFT; 1530 1531 return (granularity + lim->alignment_offset - alignment) % granularity; 1532 } 1533 1534 static inline int bdev_alignment_offset(struct block_device *bdev) 1535 { 1536 struct request_queue *q = bdev_get_queue(bdev); 1537 1538 if (q->limits.misaligned) 1539 return -1; 1540 1541 if (bdev != bdev->bd_contains) 1542 return bdev->bd_part->alignment_offset; 1543 1544 return q->limits.alignment_offset; 1545 } 1546 1547 static inline int queue_discard_alignment(struct request_queue *q) 1548 { 1549 if (q->limits.discard_misaligned) 1550 return -1; 1551 1552 return q->limits.discard_alignment; 1553 } 1554 1555 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1556 { 1557 unsigned int alignment, granularity, offset; 1558 1559 if (!lim->max_discard_sectors) 1560 return 0; 1561 1562 /* Why are these in bytes, not sectors? */ 1563 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1564 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1565 if (!granularity) 1566 return 0; 1567 1568 /* Offset of the partition start in 'granularity' sectors */ 1569 offset = sector_div(sector, granularity); 1570 1571 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1572 offset = (granularity + alignment - offset) % granularity; 1573 1574 /* Turn it back into bytes, gaah */ 1575 return offset << SECTOR_SHIFT; 1576 } 1577 1578 static inline int bdev_discard_alignment(struct block_device *bdev) 1579 { 1580 struct request_queue *q = bdev_get_queue(bdev); 1581 1582 if (bdev != bdev->bd_contains) 1583 return bdev->bd_part->discard_alignment; 1584 1585 return q->limits.discard_alignment; 1586 } 1587 1588 static inline unsigned int bdev_write_same(struct block_device *bdev) 1589 { 1590 struct request_queue *q = bdev_get_queue(bdev); 1591 1592 if (q) 1593 return q->limits.max_write_same_sectors; 1594 1595 return 0; 1596 } 1597 1598 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1599 { 1600 struct request_queue *q = bdev_get_queue(bdev); 1601 1602 if (q) 1603 return q->limits.max_write_zeroes_sectors; 1604 1605 return 0; 1606 } 1607 1608 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1609 { 1610 struct request_queue *q = bdev_get_queue(bdev); 1611 1612 if (q) 1613 return blk_queue_zoned_model(q); 1614 1615 return BLK_ZONED_NONE; 1616 } 1617 1618 static inline bool bdev_is_zoned(struct block_device *bdev) 1619 { 1620 struct request_queue *q = bdev_get_queue(bdev); 1621 1622 if (q) 1623 return blk_queue_is_zoned(q); 1624 1625 return false; 1626 } 1627 1628 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1629 { 1630 struct request_queue *q = bdev_get_queue(bdev); 1631 1632 if (q) 1633 return blk_queue_zone_sectors(q); 1634 return 0; 1635 } 1636 1637 static inline int queue_dma_alignment(struct request_queue *q) 1638 { 1639 return q ? q->dma_alignment : 511; 1640 } 1641 1642 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1643 unsigned int len) 1644 { 1645 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1646 return !(addr & alignment) && !(len & alignment); 1647 } 1648 1649 /* assumes size > 256 */ 1650 static inline unsigned int blksize_bits(unsigned int size) 1651 { 1652 unsigned int bits = 8; 1653 do { 1654 bits++; 1655 size >>= 1; 1656 } while (size > 256); 1657 return bits; 1658 } 1659 1660 static inline unsigned int block_size(struct block_device *bdev) 1661 { 1662 return bdev->bd_block_size; 1663 } 1664 1665 static inline bool queue_flush_queueable(struct request_queue *q) 1666 { 1667 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1668 } 1669 1670 typedef struct {struct page *v;} Sector; 1671 1672 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1673 1674 static inline void put_dev_sector(Sector p) 1675 { 1676 put_page(p.v); 1677 } 1678 1679 static inline bool __bvec_gap_to_prev(struct request_queue *q, 1680 struct bio_vec *bprv, unsigned int offset) 1681 { 1682 return offset || 1683 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1684 } 1685 1686 /* 1687 * Check if adding a bio_vec after bprv with offset would create a gap in 1688 * the SG list. Most drivers don't care about this, but some do. 1689 */ 1690 static inline bool bvec_gap_to_prev(struct request_queue *q, 1691 struct bio_vec *bprv, unsigned int offset) 1692 { 1693 if (!queue_virt_boundary(q)) 1694 return false; 1695 return __bvec_gap_to_prev(q, bprv, offset); 1696 } 1697 1698 /* 1699 * Check if the two bvecs from two bios can be merged to one segment. 1700 * If yes, no need to check gap between the two bios since the 1st bio 1701 * and the 1st bvec in the 2nd bio can be handled in one segment. 1702 */ 1703 static inline bool bios_segs_mergeable(struct request_queue *q, 1704 struct bio *prev, struct bio_vec *prev_last_bv, 1705 struct bio_vec *next_first_bv) 1706 { 1707 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1708 return false; 1709 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1710 return false; 1711 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1712 queue_max_segment_size(q)) 1713 return false; 1714 return true; 1715 } 1716 1717 static inline bool bio_will_gap(struct request_queue *q, 1718 struct request *prev_rq, 1719 struct bio *prev, 1720 struct bio *next) 1721 { 1722 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1723 struct bio_vec pb, nb; 1724 1725 /* 1726 * don't merge if the 1st bio starts with non-zero 1727 * offset, otherwise it is quite difficult to respect 1728 * sg gap limit. We work hard to merge a huge number of small 1729 * single bios in case of mkfs. 1730 */ 1731 if (prev_rq) 1732 bio_get_first_bvec(prev_rq->bio, &pb); 1733 else 1734 bio_get_first_bvec(prev, &pb); 1735 if (pb.bv_offset) 1736 return true; 1737 1738 /* 1739 * We don't need to worry about the situation that the 1740 * merged segment ends in unaligned virt boundary: 1741 * 1742 * - if 'pb' ends aligned, the merged segment ends aligned 1743 * - if 'pb' ends unaligned, the next bio must include 1744 * one single bvec of 'nb', otherwise the 'nb' can't 1745 * merge with 'pb' 1746 */ 1747 bio_get_last_bvec(prev, &pb); 1748 bio_get_first_bvec(next, &nb); 1749 1750 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1751 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1752 } 1753 1754 return false; 1755 } 1756 1757 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1758 { 1759 return bio_will_gap(req->q, req, req->biotail, bio); 1760 } 1761 1762 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1763 { 1764 return bio_will_gap(req->q, NULL, bio, req->bio); 1765 } 1766 1767 int kblockd_schedule_work(struct work_struct *work); 1768 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1769 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1770 1771 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1772 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1773 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1774 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1775 1776 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1777 1778 enum blk_integrity_flags { 1779 BLK_INTEGRITY_VERIFY = 1 << 0, 1780 BLK_INTEGRITY_GENERATE = 1 << 1, 1781 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1782 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1783 }; 1784 1785 struct blk_integrity_iter { 1786 void *prot_buf; 1787 void *data_buf; 1788 sector_t seed; 1789 unsigned int data_size; 1790 unsigned short interval; 1791 const char *disk_name; 1792 }; 1793 1794 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1795 1796 struct blk_integrity_profile { 1797 integrity_processing_fn *generate_fn; 1798 integrity_processing_fn *verify_fn; 1799 const char *name; 1800 }; 1801 1802 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1803 extern void blk_integrity_unregister(struct gendisk *); 1804 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1805 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1806 struct scatterlist *); 1807 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1808 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1809 struct request *); 1810 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1811 struct bio *); 1812 1813 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1814 { 1815 struct blk_integrity *bi = &disk->queue->integrity; 1816 1817 if (!bi->profile) 1818 return NULL; 1819 1820 return bi; 1821 } 1822 1823 static inline 1824 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1825 { 1826 return blk_get_integrity(bdev->bd_disk); 1827 } 1828 1829 static inline bool blk_integrity_rq(struct request *rq) 1830 { 1831 return rq->cmd_flags & REQ_INTEGRITY; 1832 } 1833 1834 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1835 unsigned int segs) 1836 { 1837 q->limits.max_integrity_segments = segs; 1838 } 1839 1840 static inline unsigned short 1841 queue_max_integrity_segments(struct request_queue *q) 1842 { 1843 return q->limits.max_integrity_segments; 1844 } 1845 1846 static inline bool integrity_req_gap_back_merge(struct request *req, 1847 struct bio *next) 1848 { 1849 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1850 struct bio_integrity_payload *bip_next = bio_integrity(next); 1851 1852 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1853 bip_next->bip_vec[0].bv_offset); 1854 } 1855 1856 static inline bool integrity_req_gap_front_merge(struct request *req, 1857 struct bio *bio) 1858 { 1859 struct bio_integrity_payload *bip = bio_integrity(bio); 1860 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1861 1862 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1863 bip_next->bip_vec[0].bv_offset); 1864 } 1865 1866 /** 1867 * bio_integrity_intervals - Return number of integrity intervals for a bio 1868 * @bi: blk_integrity profile for device 1869 * @sectors: Size of the bio in 512-byte sectors 1870 * 1871 * Description: The block layer calculates everything in 512 byte 1872 * sectors but integrity metadata is done in terms of the data integrity 1873 * interval size of the storage device. Convert the block layer sectors 1874 * to the appropriate number of integrity intervals. 1875 */ 1876 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1877 unsigned int sectors) 1878 { 1879 return sectors >> (bi->interval_exp - 9); 1880 } 1881 1882 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1883 unsigned int sectors) 1884 { 1885 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1886 } 1887 1888 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1889 1890 struct bio; 1891 struct block_device; 1892 struct gendisk; 1893 struct blk_integrity; 1894 1895 static inline int blk_integrity_rq(struct request *rq) 1896 { 1897 return 0; 1898 } 1899 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1900 struct bio *b) 1901 { 1902 return 0; 1903 } 1904 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1905 struct bio *b, 1906 struct scatterlist *s) 1907 { 1908 return 0; 1909 } 1910 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1911 { 1912 return NULL; 1913 } 1914 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1915 { 1916 return NULL; 1917 } 1918 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1919 { 1920 return 0; 1921 } 1922 static inline void blk_integrity_register(struct gendisk *d, 1923 struct blk_integrity *b) 1924 { 1925 } 1926 static inline void blk_integrity_unregister(struct gendisk *d) 1927 { 1928 } 1929 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1930 unsigned int segs) 1931 { 1932 } 1933 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1934 { 1935 return 0; 1936 } 1937 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1938 struct request *r1, 1939 struct request *r2) 1940 { 1941 return true; 1942 } 1943 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1944 struct request *r, 1945 struct bio *b) 1946 { 1947 return true; 1948 } 1949 1950 static inline bool integrity_req_gap_back_merge(struct request *req, 1951 struct bio *next) 1952 { 1953 return false; 1954 } 1955 static inline bool integrity_req_gap_front_merge(struct request *req, 1956 struct bio *bio) 1957 { 1958 return false; 1959 } 1960 1961 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1962 unsigned int sectors) 1963 { 1964 return 0; 1965 } 1966 1967 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1968 unsigned int sectors) 1969 { 1970 return 0; 1971 } 1972 1973 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1974 1975 struct block_device_operations { 1976 int (*open) (struct block_device *, fmode_t); 1977 void (*release) (struct gendisk *, fmode_t); 1978 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1979 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1980 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1981 unsigned int (*check_events) (struct gendisk *disk, 1982 unsigned int clearing); 1983 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1984 int (*media_changed) (struct gendisk *); 1985 void (*unlock_native_capacity) (struct gendisk *); 1986 int (*revalidate_disk) (struct gendisk *); 1987 int (*getgeo)(struct block_device *, struct hd_geometry *); 1988 /* this callback is with swap_lock and sometimes page table lock held */ 1989 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1990 struct module *owner; 1991 const struct pr_ops *pr_ops; 1992 }; 1993 1994 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1995 unsigned long); 1996 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1997 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1998 struct writeback_control *); 1999 2000 #ifdef CONFIG_BLK_DEV_ZONED 2001 bool blk_req_needs_zone_write_lock(struct request *rq); 2002 void __blk_req_zone_write_lock(struct request *rq); 2003 void __blk_req_zone_write_unlock(struct request *rq); 2004 2005 static inline void blk_req_zone_write_lock(struct request *rq) 2006 { 2007 if (blk_req_needs_zone_write_lock(rq)) 2008 __blk_req_zone_write_lock(rq); 2009 } 2010 2011 static inline void blk_req_zone_write_unlock(struct request *rq) 2012 { 2013 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 2014 __blk_req_zone_write_unlock(rq); 2015 } 2016 2017 static inline bool blk_req_zone_is_write_locked(struct request *rq) 2018 { 2019 return rq->q->seq_zones_wlock && 2020 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 2021 } 2022 2023 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 2024 { 2025 if (!blk_req_needs_zone_write_lock(rq)) 2026 return true; 2027 return !blk_req_zone_is_write_locked(rq); 2028 } 2029 #else 2030 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 2031 { 2032 return false; 2033 } 2034 2035 static inline void blk_req_zone_write_lock(struct request *rq) 2036 { 2037 } 2038 2039 static inline void blk_req_zone_write_unlock(struct request *rq) 2040 { 2041 } 2042 static inline bool blk_req_zone_is_write_locked(struct request *rq) 2043 { 2044 return false; 2045 } 2046 2047 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 2048 { 2049 return true; 2050 } 2051 #endif /* CONFIG_BLK_DEV_ZONED */ 2052 2053 #else /* CONFIG_BLOCK */ 2054 2055 struct block_device; 2056 2057 /* 2058 * stubs for when the block layer is configured out 2059 */ 2060 #define buffer_heads_over_limit 0 2061 2062 static inline long nr_blockdev_pages(void) 2063 { 2064 return 0; 2065 } 2066 2067 struct blk_plug { 2068 }; 2069 2070 static inline void blk_start_plug(struct blk_plug *plug) 2071 { 2072 } 2073 2074 static inline void blk_finish_plug(struct blk_plug *plug) 2075 { 2076 } 2077 2078 static inline void blk_flush_plug(struct task_struct *task) 2079 { 2080 } 2081 2082 static inline void blk_schedule_flush_plug(struct task_struct *task) 2083 { 2084 } 2085 2086 2087 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 2088 { 2089 return false; 2090 } 2091 2092 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 2093 sector_t *error_sector) 2094 { 2095 return 0; 2096 } 2097 2098 #endif /* CONFIG_BLOCK */ 2099 2100 #endif 2101