1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/uuid.h> 26 #include <linux/xarray.h> 27 #include <linux/file.h> 28 29 struct module; 30 struct request_queue; 31 struct elevator_queue; 32 struct blk_trace; 33 struct request; 34 struct sg_io_hdr; 35 struct blkcg_gq; 36 struct blk_flush_queue; 37 struct kiocb; 38 struct pr_ops; 39 struct rq_qos; 40 struct blk_queue_stats; 41 struct blk_stat_callback; 42 struct blk_crypto_profile; 43 44 extern const struct device_type disk_type; 45 extern const struct device_type part_type; 46 extern const struct class block_class; 47 48 /* 49 * Maximum number of blkcg policies allowed to be registered concurrently. 50 * Defined here to simplify include dependency. 51 */ 52 #define BLKCG_MAX_POLS 6 53 54 #define DISK_MAX_PARTS 256 55 #define DISK_NAME_LEN 32 56 57 #define PARTITION_META_INFO_VOLNAMELTH 64 58 /* 59 * Enough for the string representation of any kind of UUID plus NULL. 60 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 61 */ 62 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 63 64 struct partition_meta_info { 65 char uuid[PARTITION_META_INFO_UUIDLTH]; 66 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 67 }; 68 69 /** 70 * DOC: genhd capability flags 71 * 72 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 73 * removable media. When set, the device remains present even when media is not 74 * inserted. Shall not be set for devices which are removed entirely when the 75 * media is removed. 76 * 77 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 78 * doesn't appear in sysfs, and can't be opened from userspace or using 79 * blkdev_get*. Used for the underlying components of multipath devices. 80 * 81 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 82 * scan for partitions from add_disk, and users can't add partitions manually. 83 * 84 */ 85 enum { 86 GENHD_FL_REMOVABLE = 1 << 0, 87 GENHD_FL_HIDDEN = 1 << 1, 88 GENHD_FL_NO_PART = 1 << 2, 89 }; 90 91 enum { 92 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 93 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 94 }; 95 96 enum { 97 /* Poll even if events_poll_msecs is unset */ 98 DISK_EVENT_FLAG_POLL = 1 << 0, 99 /* Forward events to udev */ 100 DISK_EVENT_FLAG_UEVENT = 1 << 1, 101 /* Block event polling when open for exclusive write */ 102 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 103 }; 104 105 struct disk_events; 106 struct badblocks; 107 108 struct blk_integrity { 109 const struct blk_integrity_profile *profile; 110 unsigned char flags; 111 unsigned char tuple_size; 112 unsigned char pi_offset; 113 unsigned char interval_exp; 114 unsigned char tag_size; 115 }; 116 117 typedef unsigned int __bitwise blk_mode_t; 118 119 /* open for reading */ 120 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0)) 121 /* open for writing */ 122 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1)) 123 /* open exclusively (vs other exclusive openers */ 124 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2)) 125 /* opened with O_NDELAY */ 126 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3)) 127 /* open for "writes" only for ioctls (specialy hack for floppy.c) */ 128 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4)) 129 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */ 130 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5)) 131 /* return partition scanning errors */ 132 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6)) 133 134 struct gendisk { 135 /* 136 * major/first_minor/minors should not be set by any new driver, the 137 * block core will take care of allocating them automatically. 138 */ 139 int major; 140 int first_minor; 141 int minors; 142 143 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 144 145 unsigned short events; /* supported events */ 146 unsigned short event_flags; /* flags related to event processing */ 147 148 struct xarray part_tbl; 149 struct block_device *part0; 150 151 const struct block_device_operations *fops; 152 struct request_queue *queue; 153 void *private_data; 154 155 struct bio_set bio_split; 156 157 int flags; 158 unsigned long state; 159 #define GD_NEED_PART_SCAN 0 160 #define GD_READ_ONLY 1 161 #define GD_DEAD 2 162 #define GD_NATIVE_CAPACITY 3 163 #define GD_ADDED 4 164 #define GD_SUPPRESS_PART_SCAN 5 165 #define GD_OWNS_QUEUE 6 166 167 struct mutex open_mutex; /* open/close mutex */ 168 unsigned open_partitions; /* number of open partitions */ 169 170 struct backing_dev_info *bdi; 171 struct kobject queue_kobj; /* the queue/ directory */ 172 struct kobject *slave_dir; 173 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 174 struct list_head slave_bdevs; 175 #endif 176 struct timer_rand_state *random; 177 atomic_t sync_io; /* RAID */ 178 struct disk_events *ev; 179 180 #ifdef CONFIG_BLK_DEV_ZONED 181 /* 182 * Zoned block device information for request dispatch control. 183 * nr_zones is the total number of zones of the device. This is always 184 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 185 * bits which indicates if a zone is conventional (bit set) or 186 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 187 * bits which indicates if a zone is write locked, that is, if a write 188 * request targeting the zone was dispatched. 189 * 190 * Reads of this information must be protected with blk_queue_enter() / 191 * blk_queue_exit(). Modifying this information is only allowed while 192 * no requests are being processed. See also blk_mq_freeze_queue() and 193 * blk_mq_unfreeze_queue(). 194 */ 195 unsigned int nr_zones; 196 unsigned long *conv_zones_bitmap; 197 unsigned long *seq_zones_wlock; 198 #endif /* CONFIG_BLK_DEV_ZONED */ 199 200 #if IS_ENABLED(CONFIG_CDROM) 201 struct cdrom_device_info *cdi; 202 #endif 203 int node_id; 204 struct badblocks *bb; 205 struct lockdep_map lockdep_map; 206 u64 diskseq; 207 blk_mode_t open_mode; 208 209 /* 210 * Independent sector access ranges. This is always NULL for 211 * devices that do not have multiple independent access ranges. 212 */ 213 struct blk_independent_access_ranges *ia_ranges; 214 }; 215 216 static inline bool disk_live(struct gendisk *disk) 217 { 218 return !inode_unhashed(disk->part0->bd_inode); 219 } 220 221 /** 222 * disk_openers - returns how many openers are there for a disk 223 * @disk: disk to check 224 * 225 * This returns the number of openers for a disk. Note that this value is only 226 * stable if disk->open_mutex is held. 227 * 228 * Note: Due to a quirk in the block layer open code, each open partition is 229 * only counted once even if there are multiple openers. 230 */ 231 static inline unsigned int disk_openers(struct gendisk *disk) 232 { 233 return atomic_read(&disk->part0->bd_openers); 234 } 235 236 /* 237 * The gendisk is refcounted by the part0 block_device, and the bd_device 238 * therein is also used for device model presentation in sysfs. 239 */ 240 #define dev_to_disk(device) \ 241 (dev_to_bdev(device)->bd_disk) 242 #define disk_to_dev(disk) \ 243 (&((disk)->part0->bd_device)) 244 245 #if IS_REACHABLE(CONFIG_CDROM) 246 #define disk_to_cdi(disk) ((disk)->cdi) 247 #else 248 #define disk_to_cdi(disk) NULL 249 #endif 250 251 static inline dev_t disk_devt(struct gendisk *disk) 252 { 253 return MKDEV(disk->major, disk->first_minor); 254 } 255 256 static inline int blk_validate_block_size(unsigned long bsize) 257 { 258 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 259 return -EINVAL; 260 261 return 0; 262 } 263 264 static inline bool blk_op_is_passthrough(blk_opf_t op) 265 { 266 op &= REQ_OP_MASK; 267 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 268 } 269 270 /* 271 * BLK_BOUNCE_NONE: never bounce (default) 272 * BLK_BOUNCE_HIGH: bounce all highmem pages 273 */ 274 enum blk_bounce { 275 BLK_BOUNCE_NONE, 276 BLK_BOUNCE_HIGH, 277 }; 278 279 struct queue_limits { 280 enum blk_bounce bounce; 281 unsigned long seg_boundary_mask; 282 unsigned long virt_boundary_mask; 283 284 unsigned int max_hw_sectors; 285 unsigned int max_dev_sectors; 286 unsigned int chunk_sectors; 287 unsigned int max_sectors; 288 unsigned int max_user_sectors; 289 unsigned int max_segment_size; 290 unsigned int physical_block_size; 291 unsigned int logical_block_size; 292 unsigned int alignment_offset; 293 unsigned int io_min; 294 unsigned int io_opt; 295 unsigned int max_discard_sectors; 296 unsigned int max_hw_discard_sectors; 297 unsigned int max_user_discard_sectors; 298 unsigned int max_secure_erase_sectors; 299 unsigned int max_write_zeroes_sectors; 300 unsigned int max_zone_append_sectors; 301 unsigned int discard_granularity; 302 unsigned int discard_alignment; 303 unsigned int zone_write_granularity; 304 305 unsigned short max_segments; 306 unsigned short max_integrity_segments; 307 unsigned short max_discard_segments; 308 309 unsigned char misaligned; 310 unsigned char discard_misaligned; 311 unsigned char raid_partial_stripes_expensive; 312 bool zoned; 313 unsigned int max_open_zones; 314 unsigned int max_active_zones; 315 316 /* 317 * Drivers that set dma_alignment to less than 511 must be prepared to 318 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 319 * due to possible offsets. 320 */ 321 unsigned int dma_alignment; 322 }; 323 324 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 325 void *data); 326 327 void disk_set_zoned(struct gendisk *disk); 328 329 #define BLK_ALL_ZONES ((unsigned int)-1) 330 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 331 unsigned int nr_zones, report_zones_cb cb, void *data); 332 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 333 sector_t sectors, sector_t nr_sectors); 334 int blk_revalidate_disk_zones(struct gendisk *disk, 335 void (*update_driver_data)(struct gendisk *disk)); 336 337 /* 338 * Independent access ranges: struct blk_independent_access_range describes 339 * a range of contiguous sectors that can be accessed using device command 340 * execution resources that are independent from the resources used for 341 * other access ranges. This is typically found with single-LUN multi-actuator 342 * HDDs where each access range is served by a different set of heads. 343 * The set of independent ranges supported by the device is defined using 344 * struct blk_independent_access_ranges. The independent ranges must not overlap 345 * and must include all sectors within the disk capacity (no sector holes 346 * allowed). 347 * For a device with multiple ranges, requests targeting sectors in different 348 * ranges can be executed in parallel. A request can straddle an access range 349 * boundary. 350 */ 351 struct blk_independent_access_range { 352 struct kobject kobj; 353 sector_t sector; 354 sector_t nr_sectors; 355 }; 356 357 struct blk_independent_access_ranges { 358 struct kobject kobj; 359 bool sysfs_registered; 360 unsigned int nr_ia_ranges; 361 struct blk_independent_access_range ia_range[]; 362 }; 363 364 struct request_queue { 365 /* 366 * The queue owner gets to use this for whatever they like. 367 * ll_rw_blk doesn't touch it. 368 */ 369 void *queuedata; 370 371 struct elevator_queue *elevator; 372 373 const struct blk_mq_ops *mq_ops; 374 375 /* sw queues */ 376 struct blk_mq_ctx __percpu *queue_ctx; 377 378 /* 379 * various queue flags, see QUEUE_* below 380 */ 381 unsigned long queue_flags; 382 383 unsigned int rq_timeout; 384 385 unsigned int queue_depth; 386 387 refcount_t refs; 388 389 /* hw dispatch queues */ 390 unsigned int nr_hw_queues; 391 struct xarray hctx_table; 392 393 struct percpu_ref q_usage_counter; 394 395 struct request *last_merge; 396 397 spinlock_t queue_lock; 398 399 int quiesce_depth; 400 401 struct gendisk *disk; 402 403 /* 404 * mq queue kobject 405 */ 406 struct kobject *mq_kobj; 407 408 struct queue_limits limits; 409 410 #ifdef CONFIG_BLK_DEV_INTEGRITY 411 struct blk_integrity integrity; 412 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 413 414 #ifdef CONFIG_PM 415 struct device *dev; 416 enum rpm_status rpm_status; 417 #endif 418 419 /* 420 * Number of contexts that have called blk_set_pm_only(). If this 421 * counter is above zero then only RQF_PM requests are processed. 422 */ 423 atomic_t pm_only; 424 425 struct blk_queue_stats *stats; 426 struct rq_qos *rq_qos; 427 struct mutex rq_qos_mutex; 428 429 /* 430 * ida allocated id for this queue. Used to index queues from 431 * ioctx. 432 */ 433 int id; 434 435 unsigned int dma_pad_mask; 436 437 /* 438 * queue settings 439 */ 440 unsigned long nr_requests; /* Max # of requests */ 441 442 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 443 struct blk_crypto_profile *crypto_profile; 444 struct kobject *crypto_kobject; 445 #endif 446 447 struct timer_list timeout; 448 struct work_struct timeout_work; 449 450 atomic_t nr_active_requests_shared_tags; 451 452 unsigned int required_elevator_features; 453 454 struct blk_mq_tags *sched_shared_tags; 455 456 struct list_head icq_list; 457 #ifdef CONFIG_BLK_CGROUP 458 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 459 struct blkcg_gq *root_blkg; 460 struct list_head blkg_list; 461 struct mutex blkcg_mutex; 462 #endif 463 464 int node; 465 466 spinlock_t requeue_lock; 467 struct list_head requeue_list; 468 struct delayed_work requeue_work; 469 470 #ifdef CONFIG_BLK_DEV_IO_TRACE 471 struct blk_trace __rcu *blk_trace; 472 #endif 473 /* 474 * for flush operations 475 */ 476 struct blk_flush_queue *fq; 477 struct list_head flush_list; 478 479 struct mutex sysfs_lock; 480 struct mutex sysfs_dir_lock; 481 struct mutex limits_lock; 482 483 /* 484 * for reusing dead hctx instance in case of updating 485 * nr_hw_queues 486 */ 487 struct list_head unused_hctx_list; 488 spinlock_t unused_hctx_lock; 489 490 int mq_freeze_depth; 491 492 #ifdef CONFIG_BLK_DEV_THROTTLING 493 /* Throttle data */ 494 struct throtl_data *td; 495 #endif 496 struct rcu_head rcu_head; 497 wait_queue_head_t mq_freeze_wq; 498 /* 499 * Protect concurrent access to q_usage_counter by 500 * percpu_ref_kill() and percpu_ref_reinit(). 501 */ 502 struct mutex mq_freeze_lock; 503 504 struct blk_mq_tag_set *tag_set; 505 struct list_head tag_set_list; 506 507 struct dentry *debugfs_dir; 508 struct dentry *sched_debugfs_dir; 509 struct dentry *rqos_debugfs_dir; 510 /* 511 * Serializes all debugfs metadata operations using the above dentries. 512 */ 513 struct mutex debugfs_mutex; 514 515 bool mq_sysfs_init_done; 516 }; 517 518 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 519 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 520 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 521 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 522 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 523 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 524 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 525 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 526 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 527 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 528 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 529 #define QUEUE_FLAG_SYNCHRONOUS 11 /* always completes in submit context */ 530 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 531 #define QUEUE_FLAG_HW_WC 13 /* Write back caching supported */ 532 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 533 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 534 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 535 #define QUEUE_FLAG_WC 17 /* Write back caching */ 536 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 537 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 538 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 539 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 540 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 541 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 542 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 543 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 544 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 545 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 546 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 547 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE 31 /* quiesce_tagset skip the queue*/ 548 549 #define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \ 550 (1UL << QUEUE_FLAG_SAME_COMP) | \ 551 (1UL << QUEUE_FLAG_NOWAIT)) 552 553 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 554 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 555 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 556 557 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 558 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 559 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 560 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 561 #define blk_queue_noxmerges(q) \ 562 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 563 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 564 #define blk_queue_stable_writes(q) \ 565 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 566 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 567 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 568 #define blk_queue_zone_resetall(q) \ 569 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 570 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 571 #define blk_queue_pci_p2pdma(q) \ 572 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 573 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 574 #define blk_queue_rq_alloc_time(q) \ 575 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 576 #else 577 #define blk_queue_rq_alloc_time(q) false 578 #endif 579 580 #define blk_noretry_request(rq) \ 581 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 582 REQ_FAILFAST_DRIVER)) 583 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 584 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 585 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 586 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 587 #define blk_queue_skip_tagset_quiesce(q) \ 588 test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags) 589 590 extern void blk_set_pm_only(struct request_queue *q); 591 extern void blk_clear_pm_only(struct request_queue *q); 592 593 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 594 595 #define dma_map_bvec(dev, bv, dir, attrs) \ 596 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 597 (dir), (attrs)) 598 599 static inline bool queue_is_mq(struct request_queue *q) 600 { 601 return q->mq_ops; 602 } 603 604 #ifdef CONFIG_PM 605 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 606 { 607 return q->rpm_status; 608 } 609 #else 610 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 611 { 612 return RPM_ACTIVE; 613 } 614 #endif 615 616 static inline bool blk_queue_is_zoned(struct request_queue *q) 617 { 618 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && q->limits.zoned; 619 } 620 621 #ifdef CONFIG_BLK_DEV_ZONED 622 unsigned int bdev_nr_zones(struct block_device *bdev); 623 624 static inline unsigned int disk_nr_zones(struct gendisk *disk) 625 { 626 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0; 627 } 628 629 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 630 { 631 if (!blk_queue_is_zoned(disk->queue)) 632 return 0; 633 return sector >> ilog2(disk->queue->limits.chunk_sectors); 634 } 635 636 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 637 { 638 if (!blk_queue_is_zoned(disk->queue)) 639 return false; 640 if (!disk->conv_zones_bitmap) 641 return true; 642 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 643 } 644 645 static inline void disk_set_max_open_zones(struct gendisk *disk, 646 unsigned int max_open_zones) 647 { 648 disk->queue->limits.max_open_zones = max_open_zones; 649 } 650 651 static inline void disk_set_max_active_zones(struct gendisk *disk, 652 unsigned int max_active_zones) 653 { 654 disk->queue->limits.max_active_zones = max_active_zones; 655 } 656 657 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 658 { 659 return bdev->bd_disk->queue->limits.max_open_zones; 660 } 661 662 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 663 { 664 return bdev->bd_disk->queue->limits.max_active_zones; 665 } 666 667 #else /* CONFIG_BLK_DEV_ZONED */ 668 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 669 { 670 return 0; 671 } 672 673 static inline unsigned int disk_nr_zones(struct gendisk *disk) 674 { 675 return 0; 676 } 677 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 678 { 679 return false; 680 } 681 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 682 { 683 return 0; 684 } 685 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 686 { 687 return 0; 688 } 689 690 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 691 { 692 return 0; 693 } 694 #endif /* CONFIG_BLK_DEV_ZONED */ 695 696 static inline unsigned int blk_queue_depth(struct request_queue *q) 697 { 698 if (q->queue_depth) 699 return q->queue_depth; 700 701 return q->nr_requests; 702 } 703 704 /* 705 * default timeout for SG_IO if none specified 706 */ 707 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 708 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 709 710 /* This should not be used directly - use rq_for_each_segment */ 711 #define for_each_bio(_bio) \ 712 for (; _bio; _bio = _bio->bi_next) 713 714 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 715 const struct attribute_group **groups); 716 static inline int __must_check add_disk(struct gendisk *disk) 717 { 718 return device_add_disk(NULL, disk, NULL); 719 } 720 void del_gendisk(struct gendisk *gp); 721 void invalidate_disk(struct gendisk *disk); 722 void set_disk_ro(struct gendisk *disk, bool read_only); 723 void disk_uevent(struct gendisk *disk, enum kobject_action action); 724 725 static inline int get_disk_ro(struct gendisk *disk) 726 { 727 return disk->part0->bd_read_only || 728 test_bit(GD_READ_ONLY, &disk->state); 729 } 730 731 static inline int bdev_read_only(struct block_device *bdev) 732 { 733 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 734 } 735 736 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 737 void disk_force_media_change(struct gendisk *disk); 738 void bdev_mark_dead(struct block_device *bdev, bool surprise); 739 740 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 741 void rand_initialize_disk(struct gendisk *disk); 742 743 static inline sector_t get_start_sect(struct block_device *bdev) 744 { 745 return bdev->bd_start_sect; 746 } 747 748 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 749 { 750 return bdev->bd_nr_sectors; 751 } 752 753 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 754 { 755 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 756 } 757 758 static inline sector_t get_capacity(struct gendisk *disk) 759 { 760 return bdev_nr_sectors(disk->part0); 761 } 762 763 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 764 { 765 return bdev_nr_sectors(sb->s_bdev) >> 766 (sb->s_blocksize_bits - SECTOR_SHIFT); 767 } 768 769 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 770 771 void put_disk(struct gendisk *disk); 772 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node, 773 struct lock_class_key *lkclass); 774 775 /** 776 * blk_alloc_disk - allocate a gendisk structure 777 * @lim: queue limits to be used for this disk. 778 * @node_id: numa node to allocate on 779 * 780 * Allocate and pre-initialize a gendisk structure for use with BIO based 781 * drivers. 782 * 783 * Returns an ERR_PTR on error, else the allocated disk. 784 * 785 * Context: can sleep 786 */ 787 #define blk_alloc_disk(lim, node_id) \ 788 ({ \ 789 static struct lock_class_key __key; \ 790 \ 791 __blk_alloc_disk(lim, node_id, &__key); \ 792 }) 793 794 int __register_blkdev(unsigned int major, const char *name, 795 void (*probe)(dev_t devt)); 796 #define register_blkdev(major, name) \ 797 __register_blkdev(major, name, NULL) 798 void unregister_blkdev(unsigned int major, const char *name); 799 800 bool disk_check_media_change(struct gendisk *disk); 801 void set_capacity(struct gendisk *disk, sector_t size); 802 803 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 804 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 805 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 806 #else 807 static inline int bd_link_disk_holder(struct block_device *bdev, 808 struct gendisk *disk) 809 { 810 return 0; 811 } 812 static inline void bd_unlink_disk_holder(struct block_device *bdev, 813 struct gendisk *disk) 814 { 815 } 816 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 817 818 dev_t part_devt(struct gendisk *disk, u8 partno); 819 void inc_diskseq(struct gendisk *disk); 820 void blk_request_module(dev_t devt); 821 822 extern int blk_register_queue(struct gendisk *disk); 823 extern void blk_unregister_queue(struct gendisk *disk); 824 void submit_bio_noacct(struct bio *bio); 825 struct bio *bio_split_to_limits(struct bio *bio); 826 827 extern int blk_lld_busy(struct request_queue *q); 828 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 829 extern void blk_queue_exit(struct request_queue *q); 830 extern void blk_sync_queue(struct request_queue *q); 831 832 /* Helper to convert REQ_OP_XXX to its string format XXX */ 833 extern const char *blk_op_str(enum req_op op); 834 835 int blk_status_to_errno(blk_status_t status); 836 blk_status_t errno_to_blk_status(int errno); 837 const char *blk_status_to_str(blk_status_t status); 838 839 /* only poll the hardware once, don't continue until a completion was found */ 840 #define BLK_POLL_ONESHOT (1 << 0) 841 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 842 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 843 unsigned int flags); 844 845 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 846 { 847 return bdev->bd_queue; /* this is never NULL */ 848 } 849 850 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 851 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 852 853 static inline unsigned int bio_zone_no(struct bio *bio) 854 { 855 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 856 } 857 858 static inline unsigned int bio_zone_is_seq(struct bio *bio) 859 { 860 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 861 } 862 863 /* 864 * Return how much of the chunk is left to be used for I/O at a given offset. 865 */ 866 static inline unsigned int blk_chunk_sectors_left(sector_t offset, 867 unsigned int chunk_sectors) 868 { 869 if (unlikely(!is_power_of_2(chunk_sectors))) 870 return chunk_sectors - sector_div(offset, chunk_sectors); 871 return chunk_sectors - (offset & (chunk_sectors - 1)); 872 } 873 874 /** 875 * queue_limits_start_update - start an atomic update of queue limits 876 * @q: queue to update 877 * 878 * This functions starts an atomic update of the queue limits. It takes a lock 879 * to prevent other updates and returns a snapshot of the current limits that 880 * the caller can modify. The caller must call queue_limits_commit_update() 881 * to finish the update. 882 * 883 * Context: process context. The caller must have frozen the queue or ensured 884 * that there is outstanding I/O by other means. 885 */ 886 static inline struct queue_limits 887 queue_limits_start_update(struct request_queue *q) 888 __acquires(q->limits_lock) 889 { 890 mutex_lock(&q->limits_lock); 891 return q->limits; 892 } 893 int queue_limits_commit_update(struct request_queue *q, 894 struct queue_limits *lim); 895 int queue_limits_set(struct request_queue *q, struct queue_limits *lim); 896 897 /* 898 * Access functions for manipulating queue properties 899 */ 900 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 901 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 902 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 903 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 904 extern void blk_queue_max_discard_segments(struct request_queue *, 905 unsigned short); 906 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 907 unsigned int max_sectors); 908 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 909 extern void blk_queue_max_discard_sectors(struct request_queue *q, 910 unsigned int max_discard_sectors); 911 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 912 unsigned int max_write_same_sectors); 913 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 914 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 915 unsigned int max_zone_append_sectors); 916 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 917 void blk_queue_zone_write_granularity(struct request_queue *q, 918 unsigned int size); 919 extern void blk_queue_alignment_offset(struct request_queue *q, 920 unsigned int alignment); 921 void disk_update_readahead(struct gendisk *disk); 922 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 923 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 924 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 925 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 926 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 927 extern void blk_set_stacking_limits(struct queue_limits *lim); 928 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 929 sector_t offset); 930 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 931 sector_t offset, const char *pfx); 932 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 933 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 934 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 935 extern void blk_queue_dma_alignment(struct request_queue *, int); 936 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 937 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 938 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 939 940 struct blk_independent_access_ranges * 941 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 942 void disk_set_independent_access_ranges(struct gendisk *disk, 943 struct blk_independent_access_ranges *iars); 944 945 /* 946 * Elevator features for blk_queue_required_elevator_features: 947 */ 948 /* Supports zoned block devices sequential write constraint */ 949 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 950 951 extern void blk_queue_required_elevator_features(struct request_queue *q, 952 unsigned int features); 953 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 954 struct device *dev); 955 956 bool __must_check blk_get_queue(struct request_queue *); 957 extern void blk_put_queue(struct request_queue *); 958 959 void blk_mark_disk_dead(struct gendisk *disk); 960 961 #ifdef CONFIG_BLOCK 962 /* 963 * blk_plug permits building a queue of related requests by holding the I/O 964 * fragments for a short period. This allows merging of sequential requests 965 * into single larger request. As the requests are moved from a per-task list to 966 * the device's request_queue in a batch, this results in improved scalability 967 * as the lock contention for request_queue lock is reduced. 968 * 969 * It is ok not to disable preemption when adding the request to the plug list 970 * or when attempting a merge. For details, please see schedule() where 971 * blk_flush_plug() is called. 972 */ 973 struct blk_plug { 974 struct request *mq_list; /* blk-mq requests */ 975 976 /* if ios_left is > 1, we can batch tag/rq allocations */ 977 struct request *cached_rq; 978 u64 cur_ktime; 979 unsigned short nr_ios; 980 981 unsigned short rq_count; 982 983 bool multiple_queues; 984 bool has_elevator; 985 986 struct list_head cb_list; /* md requires an unplug callback */ 987 }; 988 989 struct blk_plug_cb; 990 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 991 struct blk_plug_cb { 992 struct list_head list; 993 blk_plug_cb_fn callback; 994 void *data; 995 }; 996 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 997 void *data, int size); 998 extern void blk_start_plug(struct blk_plug *); 999 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1000 extern void blk_finish_plug(struct blk_plug *); 1001 1002 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1003 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1004 { 1005 if (plug) 1006 __blk_flush_plug(plug, async); 1007 } 1008 1009 /* 1010 * tsk == current here 1011 */ 1012 static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1013 { 1014 struct blk_plug *plug = tsk->plug; 1015 1016 if (plug) 1017 plug->cur_ktime = 0; 1018 current->flags &= ~PF_BLOCK_TS; 1019 } 1020 1021 int blkdev_issue_flush(struct block_device *bdev); 1022 long nr_blockdev_pages(void); 1023 #else /* CONFIG_BLOCK */ 1024 struct blk_plug { 1025 }; 1026 1027 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1028 unsigned short nr_ios) 1029 { 1030 } 1031 1032 static inline void blk_start_plug(struct blk_plug *plug) 1033 { 1034 } 1035 1036 static inline void blk_finish_plug(struct blk_plug *plug) 1037 { 1038 } 1039 1040 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1041 { 1042 } 1043 1044 static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1045 { 1046 } 1047 1048 static inline int blkdev_issue_flush(struct block_device *bdev) 1049 { 1050 return 0; 1051 } 1052 1053 static inline long nr_blockdev_pages(void) 1054 { 1055 return 0; 1056 } 1057 #endif /* CONFIG_BLOCK */ 1058 1059 extern void blk_io_schedule(void); 1060 1061 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1062 sector_t nr_sects, gfp_t gfp_mask); 1063 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1064 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1065 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1066 sector_t nr_sects, gfp_t gfp); 1067 1068 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1069 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1070 1071 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1072 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1073 unsigned flags); 1074 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1075 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1076 1077 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1078 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1079 { 1080 return blkdev_issue_discard(sb->s_bdev, 1081 block << (sb->s_blocksize_bits - 1082 SECTOR_SHIFT), 1083 nr_blocks << (sb->s_blocksize_bits - 1084 SECTOR_SHIFT), 1085 gfp_mask); 1086 } 1087 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1088 sector_t nr_blocks, gfp_t gfp_mask) 1089 { 1090 return blkdev_issue_zeroout(sb->s_bdev, 1091 block << (sb->s_blocksize_bits - 1092 SECTOR_SHIFT), 1093 nr_blocks << (sb->s_blocksize_bits - 1094 SECTOR_SHIFT), 1095 gfp_mask, 0); 1096 } 1097 1098 static inline bool bdev_is_partition(struct block_device *bdev) 1099 { 1100 return bdev->bd_partno; 1101 } 1102 1103 enum blk_default_limits { 1104 BLK_MAX_SEGMENTS = 128, 1105 BLK_SAFE_MAX_SECTORS = 255, 1106 BLK_MAX_SEGMENT_SIZE = 65536, 1107 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1108 }; 1109 1110 /* 1111 * Default upper limit for the software max_sectors limit used for 1112 * regular file system I/O. This can be increased through sysfs. 1113 * 1114 * Not to be confused with the max_hw_sector limit that is entirely 1115 * controlled by the driver, usually based on hardware limits. 1116 */ 1117 #define BLK_DEF_MAX_SECTORS_CAP 2560u 1118 1119 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1120 { 1121 return q->limits.seg_boundary_mask; 1122 } 1123 1124 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1125 { 1126 return q->limits.virt_boundary_mask; 1127 } 1128 1129 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1130 { 1131 return q->limits.max_sectors; 1132 } 1133 1134 static inline unsigned int queue_max_bytes(struct request_queue *q) 1135 { 1136 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1137 } 1138 1139 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1140 { 1141 return q->limits.max_hw_sectors; 1142 } 1143 1144 static inline unsigned short queue_max_segments(const struct request_queue *q) 1145 { 1146 return q->limits.max_segments; 1147 } 1148 1149 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1150 { 1151 return q->limits.max_discard_segments; 1152 } 1153 1154 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1155 { 1156 return q->limits.max_segment_size; 1157 } 1158 1159 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1160 { 1161 1162 const struct queue_limits *l = &q->limits; 1163 1164 return min(l->max_zone_append_sectors, l->max_sectors); 1165 } 1166 1167 static inline unsigned int 1168 bdev_max_zone_append_sectors(struct block_device *bdev) 1169 { 1170 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1171 } 1172 1173 static inline unsigned int bdev_max_segments(struct block_device *bdev) 1174 { 1175 return queue_max_segments(bdev_get_queue(bdev)); 1176 } 1177 1178 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1179 { 1180 int retval = 512; 1181 1182 if (q && q->limits.logical_block_size) 1183 retval = q->limits.logical_block_size; 1184 1185 return retval; 1186 } 1187 1188 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1189 { 1190 return queue_logical_block_size(bdev_get_queue(bdev)); 1191 } 1192 1193 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1194 { 1195 return q->limits.physical_block_size; 1196 } 1197 1198 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1199 { 1200 return queue_physical_block_size(bdev_get_queue(bdev)); 1201 } 1202 1203 static inline unsigned int queue_io_min(const struct request_queue *q) 1204 { 1205 return q->limits.io_min; 1206 } 1207 1208 static inline int bdev_io_min(struct block_device *bdev) 1209 { 1210 return queue_io_min(bdev_get_queue(bdev)); 1211 } 1212 1213 static inline unsigned int queue_io_opt(const struct request_queue *q) 1214 { 1215 return q->limits.io_opt; 1216 } 1217 1218 static inline int bdev_io_opt(struct block_device *bdev) 1219 { 1220 return queue_io_opt(bdev_get_queue(bdev)); 1221 } 1222 1223 static inline unsigned int 1224 queue_zone_write_granularity(const struct request_queue *q) 1225 { 1226 return q->limits.zone_write_granularity; 1227 } 1228 1229 static inline unsigned int 1230 bdev_zone_write_granularity(struct block_device *bdev) 1231 { 1232 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1233 } 1234 1235 int bdev_alignment_offset(struct block_device *bdev); 1236 unsigned int bdev_discard_alignment(struct block_device *bdev); 1237 1238 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1239 { 1240 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1241 } 1242 1243 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1244 { 1245 return bdev_get_queue(bdev)->limits.discard_granularity; 1246 } 1247 1248 static inline unsigned int 1249 bdev_max_secure_erase_sectors(struct block_device *bdev) 1250 { 1251 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1252 } 1253 1254 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1255 { 1256 struct request_queue *q = bdev_get_queue(bdev); 1257 1258 if (q) 1259 return q->limits.max_write_zeroes_sectors; 1260 1261 return 0; 1262 } 1263 1264 static inline bool bdev_nonrot(struct block_device *bdev) 1265 { 1266 return blk_queue_nonrot(bdev_get_queue(bdev)); 1267 } 1268 1269 static inline bool bdev_synchronous(struct block_device *bdev) 1270 { 1271 return test_bit(QUEUE_FLAG_SYNCHRONOUS, 1272 &bdev_get_queue(bdev)->queue_flags); 1273 } 1274 1275 static inline bool bdev_stable_writes(struct block_device *bdev) 1276 { 1277 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1278 &bdev_get_queue(bdev)->queue_flags); 1279 } 1280 1281 static inline bool bdev_write_cache(struct block_device *bdev) 1282 { 1283 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1284 } 1285 1286 static inline bool bdev_fua(struct block_device *bdev) 1287 { 1288 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1289 } 1290 1291 static inline bool bdev_nowait(struct block_device *bdev) 1292 { 1293 return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags); 1294 } 1295 1296 static inline bool bdev_is_zoned(struct block_device *bdev) 1297 { 1298 return blk_queue_is_zoned(bdev_get_queue(bdev)); 1299 } 1300 1301 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) 1302 { 1303 return disk_zone_no(bdev->bd_disk, sec); 1304 } 1305 1306 /* Whether write serialization is required for @op on zoned devices. */ 1307 static inline bool op_needs_zoned_write_locking(enum req_op op) 1308 { 1309 return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES; 1310 } 1311 1312 static inline bool bdev_op_is_zoned_write(struct block_device *bdev, 1313 enum req_op op) 1314 { 1315 return bdev_is_zoned(bdev) && op_needs_zoned_write_locking(op); 1316 } 1317 1318 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1319 { 1320 struct request_queue *q = bdev_get_queue(bdev); 1321 1322 if (!blk_queue_is_zoned(q)) 1323 return 0; 1324 return q->limits.chunk_sectors; 1325 } 1326 1327 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, 1328 sector_t sector) 1329 { 1330 return sector & (bdev_zone_sectors(bdev) - 1); 1331 } 1332 1333 static inline bool bdev_is_zone_start(struct block_device *bdev, 1334 sector_t sector) 1335 { 1336 return bdev_offset_from_zone_start(bdev, sector) == 0; 1337 } 1338 1339 static inline int queue_dma_alignment(const struct request_queue *q) 1340 { 1341 return q ? q->limits.dma_alignment : 511; 1342 } 1343 1344 static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1345 { 1346 return queue_dma_alignment(bdev_get_queue(bdev)); 1347 } 1348 1349 static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1350 struct iov_iter *iter) 1351 { 1352 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1353 bdev_logical_block_size(bdev) - 1); 1354 } 1355 1356 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1357 unsigned int len) 1358 { 1359 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1360 return !(addr & alignment) && !(len & alignment); 1361 } 1362 1363 /* assumes size > 256 */ 1364 static inline unsigned int blksize_bits(unsigned int size) 1365 { 1366 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1367 } 1368 1369 static inline unsigned int block_size(struct block_device *bdev) 1370 { 1371 return 1 << bdev->bd_inode->i_blkbits; 1372 } 1373 1374 int kblockd_schedule_work(struct work_struct *work); 1375 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1376 1377 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1378 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1379 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1380 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1381 1382 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1383 1384 bool blk_crypto_register(struct blk_crypto_profile *profile, 1385 struct request_queue *q); 1386 1387 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1388 1389 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1390 struct request_queue *q) 1391 { 1392 return true; 1393 } 1394 1395 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1396 1397 enum blk_unique_id { 1398 /* these match the Designator Types specified in SPC */ 1399 BLK_UID_T10 = 1, 1400 BLK_UID_EUI64 = 2, 1401 BLK_UID_NAA = 3, 1402 }; 1403 1404 struct block_device_operations { 1405 void (*submit_bio)(struct bio *bio); 1406 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1407 unsigned int flags); 1408 int (*open)(struct gendisk *disk, blk_mode_t mode); 1409 void (*release)(struct gendisk *disk); 1410 int (*ioctl)(struct block_device *bdev, blk_mode_t mode, 1411 unsigned cmd, unsigned long arg); 1412 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode, 1413 unsigned cmd, unsigned long arg); 1414 unsigned int (*check_events) (struct gendisk *disk, 1415 unsigned int clearing); 1416 void (*unlock_native_capacity) (struct gendisk *); 1417 int (*getgeo)(struct block_device *, struct hd_geometry *); 1418 int (*set_read_only)(struct block_device *bdev, bool ro); 1419 void (*free_disk)(struct gendisk *disk); 1420 /* this callback is with swap_lock and sometimes page table lock held */ 1421 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1422 int (*report_zones)(struct gendisk *, sector_t sector, 1423 unsigned int nr_zones, report_zones_cb cb, void *data); 1424 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1425 /* returns the length of the identifier or a negative errno: */ 1426 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1427 enum blk_unique_id id_type); 1428 struct module *owner; 1429 const struct pr_ops *pr_ops; 1430 1431 /* 1432 * Special callback for probing GPT entry at a given sector. 1433 * Needed by Android devices, used by GPT scanner and MMC blk 1434 * driver. 1435 */ 1436 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1437 }; 1438 1439 #ifdef CONFIG_COMPAT 1440 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t, 1441 unsigned int, unsigned long); 1442 #else 1443 #define blkdev_compat_ptr_ioctl NULL 1444 #endif 1445 1446 static inline void blk_wake_io_task(struct task_struct *waiter) 1447 { 1448 /* 1449 * If we're polling, the task itself is doing the completions. For 1450 * that case, we don't need to signal a wakeup, it's enough to just 1451 * mark us as RUNNING. 1452 */ 1453 if (waiter == current) 1454 __set_current_state(TASK_RUNNING); 1455 else 1456 wake_up_process(waiter); 1457 } 1458 1459 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 1460 unsigned long start_time); 1461 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1462 unsigned int sectors, unsigned long start_time); 1463 1464 unsigned long bio_start_io_acct(struct bio *bio); 1465 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1466 struct block_device *orig_bdev); 1467 1468 /** 1469 * bio_end_io_acct - end I/O accounting for bio based drivers 1470 * @bio: bio to end account for 1471 * @start_time: start time returned by bio_start_io_acct() 1472 */ 1473 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1474 { 1475 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1476 } 1477 1478 int bdev_read_only(struct block_device *bdev); 1479 int set_blocksize(struct block_device *bdev, int size); 1480 1481 int lookup_bdev(const char *pathname, dev_t *dev); 1482 1483 void blkdev_show(struct seq_file *seqf, off_t offset); 1484 1485 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1486 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1487 #ifdef CONFIG_BLOCK 1488 #define BLKDEV_MAJOR_MAX 512 1489 #else 1490 #define BLKDEV_MAJOR_MAX 0 1491 #endif 1492 1493 struct blk_holder_ops { 1494 void (*mark_dead)(struct block_device *bdev, bool surprise); 1495 1496 /* 1497 * Sync the file system mounted on the block device. 1498 */ 1499 void (*sync)(struct block_device *bdev); 1500 1501 /* 1502 * Freeze the file system mounted on the block device. 1503 */ 1504 int (*freeze)(struct block_device *bdev); 1505 1506 /* 1507 * Thaw the file system mounted on the block device. 1508 */ 1509 int (*thaw)(struct block_device *bdev); 1510 }; 1511 1512 /* 1513 * For filesystems using @fs_holder_ops, the @holder argument passed to 1514 * helpers used to open and claim block devices via 1515 * bd_prepare_to_claim() must point to a superblock. 1516 */ 1517 extern const struct blk_holder_ops fs_holder_ops; 1518 1519 /* 1520 * Return the correct open flags for blkdev_get_by_* for super block flags 1521 * as stored in sb->s_flags. 1522 */ 1523 #define sb_open_mode(flags) \ 1524 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \ 1525 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE)) 1526 1527 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder, 1528 const struct blk_holder_ops *hops); 1529 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode, 1530 void *holder, const struct blk_holder_ops *hops); 1531 int bd_prepare_to_claim(struct block_device *bdev, void *holder, 1532 const struct blk_holder_ops *hops); 1533 void bd_abort_claiming(struct block_device *bdev, void *holder); 1534 1535 /* just for blk-cgroup, don't use elsewhere */ 1536 struct block_device *blkdev_get_no_open(dev_t dev); 1537 void blkdev_put_no_open(struct block_device *bdev); 1538 1539 struct block_device *I_BDEV(struct inode *inode); 1540 struct block_device *file_bdev(struct file *bdev_file); 1541 1542 #ifdef CONFIG_BLOCK 1543 void invalidate_bdev(struct block_device *bdev); 1544 int sync_blockdev(struct block_device *bdev); 1545 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1546 int sync_blockdev_nowait(struct block_device *bdev); 1547 void sync_bdevs(bool wait); 1548 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat); 1549 void printk_all_partitions(void); 1550 int __init early_lookup_bdev(const char *pathname, dev_t *dev); 1551 #else 1552 static inline void invalidate_bdev(struct block_device *bdev) 1553 { 1554 } 1555 static inline int sync_blockdev(struct block_device *bdev) 1556 { 1557 return 0; 1558 } 1559 static inline int sync_blockdev_nowait(struct block_device *bdev) 1560 { 1561 return 0; 1562 } 1563 static inline void sync_bdevs(bool wait) 1564 { 1565 } 1566 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat) 1567 { 1568 } 1569 static inline void printk_all_partitions(void) 1570 { 1571 } 1572 static inline int early_lookup_bdev(const char *pathname, dev_t *dev) 1573 { 1574 return -EINVAL; 1575 } 1576 #endif /* CONFIG_BLOCK */ 1577 1578 int bdev_freeze(struct block_device *bdev); 1579 int bdev_thaw(struct block_device *bdev); 1580 void bdev_fput(struct file *bdev_file); 1581 1582 struct io_comp_batch { 1583 struct request *req_list; 1584 bool need_ts; 1585 void (*complete)(struct io_comp_batch *); 1586 }; 1587 1588 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1589 1590 #endif /* _LINUX_BLKDEV_H */ 1591