1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/timer.h> 12 #include <linux/workqueue.h> 13 #include <linux/pagemap.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/bsg.h> 22 #include <linux/smp.h> 23 #include <linux/rcupdate.h> 24 #include <linux/percpu-refcount.h> 25 #include <linux/scatterlist.h> 26 #include <linux/blkzoned.h> 27 #include <linux/pm.h> 28 29 struct module; 30 struct scsi_ioctl_command; 31 32 struct request_queue; 33 struct elevator_queue; 34 struct blk_trace; 35 struct request; 36 struct sg_io_hdr; 37 struct bsg_job; 38 struct blkcg_gq; 39 struct blk_flush_queue; 40 struct pr_ops; 41 struct rq_qos; 42 struct blk_queue_stats; 43 struct blk_stat_callback; 44 struct blk_keyslot_manager; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consistent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* Doing classic polling */ 53 #define BLK_MQ_POLL_CLASSIC -1 54 55 /* 56 * Maximum number of blkcg policies allowed to be registered concurrently. 57 * Defined here to simplify include dependency. 58 */ 59 #define BLKCG_MAX_POLS 5 60 61 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 62 63 /* 64 * request flags */ 65 typedef __u32 __bitwise req_flags_t; 66 67 /* elevator knows about this request */ 68 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 69 /* drive already may have started this one */ 70 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 71 /* may not be passed by ioscheduler */ 72 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 73 /* request for flush sequence */ 74 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 75 /* merge of different types, fail separately */ 76 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 77 /* track inflight for MQ */ 78 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 79 /* don't call prep for this one */ 80 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 81 /* set for "ide_preempt" requests and also for requests for which the SCSI 82 "quiesce" state must be ignored. */ 83 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 84 /* vaguely specified driver internal error. Ignored by the block layer */ 85 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 86 /* don't warn about errors */ 87 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 88 /* elevator private data attached */ 89 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 90 /* account into disk and partition IO statistics */ 91 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 92 /* request came from our alloc pool */ 93 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 94 /* runtime pm request */ 95 #define RQF_PM ((__force req_flags_t)(1 << 15)) 96 /* on IO scheduler merge hash */ 97 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 98 /* track IO completion time */ 99 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 100 /* Look at ->special_vec for the actual data payload instead of the 101 bio chain. */ 102 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 103 /* The per-zone write lock is held for this request */ 104 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 105 /* already slept for hybrid poll */ 106 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 107 /* ->timeout has been called, don't expire again */ 108 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 109 110 /* flags that prevent us from merging requests: */ 111 #define RQF_NOMERGE_FLAGS \ 112 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 113 114 /* 115 * Request state for blk-mq. 116 */ 117 enum mq_rq_state { 118 MQ_RQ_IDLE = 0, 119 MQ_RQ_IN_FLIGHT = 1, 120 MQ_RQ_COMPLETE = 2, 121 }; 122 123 /* 124 * Try to put the fields that are referenced together in the same cacheline. 125 * 126 * If you modify this structure, make sure to update blk_rq_init() and 127 * especially blk_mq_rq_ctx_init() to take care of the added fields. 128 */ 129 struct request { 130 struct request_queue *q; 131 struct blk_mq_ctx *mq_ctx; 132 struct blk_mq_hw_ctx *mq_hctx; 133 134 unsigned int cmd_flags; /* op and common flags */ 135 req_flags_t rq_flags; 136 137 int tag; 138 int internal_tag; 139 140 /* the following two fields are internal, NEVER access directly */ 141 unsigned int __data_len; /* total data len */ 142 sector_t __sector; /* sector cursor */ 143 144 struct bio *bio; 145 struct bio *biotail; 146 147 struct list_head queuelist; 148 149 /* 150 * The hash is used inside the scheduler, and killed once the 151 * request reaches the dispatch list. The ipi_list is only used 152 * to queue the request for softirq completion, which is long 153 * after the request has been unhashed (and even removed from 154 * the dispatch list). 155 */ 156 union { 157 struct hlist_node hash; /* merge hash */ 158 struct list_head ipi_list; 159 }; 160 161 /* 162 * The rb_node is only used inside the io scheduler, requests 163 * are pruned when moved to the dispatch queue. So let the 164 * completion_data share space with the rb_node. 165 */ 166 union { 167 struct rb_node rb_node; /* sort/lookup */ 168 struct bio_vec special_vec; 169 void *completion_data; 170 int error_count; /* for legacy drivers, don't use */ 171 }; 172 173 /* 174 * Three pointers are available for the IO schedulers, if they need 175 * more they have to dynamically allocate it. Flush requests are 176 * never put on the IO scheduler. So let the flush fields share 177 * space with the elevator data. 178 */ 179 union { 180 struct { 181 struct io_cq *icq; 182 void *priv[2]; 183 } elv; 184 185 struct { 186 unsigned int seq; 187 struct list_head list; 188 rq_end_io_fn *saved_end_io; 189 } flush; 190 }; 191 192 struct gendisk *rq_disk; 193 struct hd_struct *part; 194 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 195 /* Time that the first bio started allocating this request. */ 196 u64 alloc_time_ns; 197 #endif 198 /* Time that this request was allocated for this IO. */ 199 u64 start_time_ns; 200 /* Time that I/O was submitted to the device. */ 201 u64 io_start_time_ns; 202 203 #ifdef CONFIG_BLK_WBT 204 unsigned short wbt_flags; 205 #endif 206 /* 207 * rq sectors used for blk stats. It has the same value 208 * with blk_rq_sectors(rq), except that it never be zeroed 209 * by completion. 210 */ 211 unsigned short stats_sectors; 212 213 /* 214 * Number of scatter-gather DMA addr+len pairs after 215 * physical address coalescing is performed. 216 */ 217 unsigned short nr_phys_segments; 218 219 #if defined(CONFIG_BLK_DEV_INTEGRITY) 220 unsigned short nr_integrity_segments; 221 #endif 222 223 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 224 struct bio_crypt_ctx *crypt_ctx; 225 struct blk_ksm_keyslot *crypt_keyslot; 226 #endif 227 228 unsigned short write_hint; 229 unsigned short ioprio; 230 231 enum mq_rq_state state; 232 refcount_t ref; 233 234 unsigned int timeout; 235 unsigned long deadline; 236 237 union { 238 struct __call_single_data csd; 239 u64 fifo_time; 240 }; 241 242 /* 243 * completion callback. 244 */ 245 rq_end_io_fn *end_io; 246 void *end_io_data; 247 }; 248 249 static inline bool blk_op_is_scsi(unsigned int op) 250 { 251 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 252 } 253 254 static inline bool blk_op_is_private(unsigned int op) 255 { 256 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 257 } 258 259 static inline bool blk_rq_is_scsi(struct request *rq) 260 { 261 return blk_op_is_scsi(req_op(rq)); 262 } 263 264 static inline bool blk_rq_is_private(struct request *rq) 265 { 266 return blk_op_is_private(req_op(rq)); 267 } 268 269 static inline bool blk_rq_is_passthrough(struct request *rq) 270 { 271 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 272 } 273 274 static inline bool bio_is_passthrough(struct bio *bio) 275 { 276 unsigned op = bio_op(bio); 277 278 return blk_op_is_scsi(op) || blk_op_is_private(op); 279 } 280 281 static inline unsigned short req_get_ioprio(struct request *req) 282 { 283 return req->ioprio; 284 } 285 286 #include <linux/elevator.h> 287 288 struct blk_queue_ctx; 289 290 struct bio_vec; 291 292 enum blk_eh_timer_return { 293 BLK_EH_DONE, /* drivers has completed the command */ 294 BLK_EH_RESET_TIMER, /* reset timer and try again */ 295 }; 296 297 enum blk_queue_state { 298 Queue_down, 299 Queue_up, 300 }; 301 302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 304 305 #define BLK_SCSI_MAX_CMDS (256) 306 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 307 308 /* 309 * Zoned block device models (zoned limit). 310 * 311 * Note: This needs to be ordered from the least to the most severe 312 * restrictions for the inheritance in blk_stack_limits() to work. 313 */ 314 enum blk_zoned_model { 315 BLK_ZONED_NONE = 0, /* Regular block device */ 316 BLK_ZONED_HA, /* Host-aware zoned block device */ 317 BLK_ZONED_HM, /* Host-managed zoned block device */ 318 }; 319 320 struct queue_limits { 321 unsigned long bounce_pfn; 322 unsigned long seg_boundary_mask; 323 unsigned long virt_boundary_mask; 324 325 unsigned int max_hw_sectors; 326 unsigned int max_dev_sectors; 327 unsigned int chunk_sectors; 328 unsigned int max_sectors; 329 unsigned int max_segment_size; 330 unsigned int physical_block_size; 331 unsigned int logical_block_size; 332 unsigned int alignment_offset; 333 unsigned int io_min; 334 unsigned int io_opt; 335 unsigned int max_discard_sectors; 336 unsigned int max_hw_discard_sectors; 337 unsigned int max_write_same_sectors; 338 unsigned int max_write_zeroes_sectors; 339 unsigned int max_zone_append_sectors; 340 unsigned int discard_granularity; 341 unsigned int discard_alignment; 342 343 unsigned short max_segments; 344 unsigned short max_integrity_segments; 345 unsigned short max_discard_segments; 346 347 unsigned char misaligned; 348 unsigned char discard_misaligned; 349 unsigned char raid_partial_stripes_expensive; 350 enum blk_zoned_model zoned; 351 }; 352 353 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 354 void *data); 355 356 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 357 358 #ifdef CONFIG_BLK_DEV_ZONED 359 360 #define BLK_ALL_ZONES ((unsigned int)-1) 361 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 362 unsigned int nr_zones, report_zones_cb cb, void *data); 363 unsigned int blkdev_nr_zones(struct gendisk *disk); 364 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 365 sector_t sectors, sector_t nr_sectors, 366 gfp_t gfp_mask); 367 int blk_revalidate_disk_zones(struct gendisk *disk, 368 void (*update_driver_data)(struct gendisk *disk)); 369 370 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 371 unsigned int cmd, unsigned long arg); 372 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 373 unsigned int cmd, unsigned long arg); 374 375 #else /* CONFIG_BLK_DEV_ZONED */ 376 377 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 378 { 379 return 0; 380 } 381 382 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 383 fmode_t mode, unsigned int cmd, 384 unsigned long arg) 385 { 386 return -ENOTTY; 387 } 388 389 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 390 fmode_t mode, unsigned int cmd, 391 unsigned long arg) 392 { 393 return -ENOTTY; 394 } 395 396 #endif /* CONFIG_BLK_DEV_ZONED */ 397 398 struct request_queue { 399 struct request *last_merge; 400 struct elevator_queue *elevator; 401 402 struct percpu_ref q_usage_counter; 403 404 struct blk_queue_stats *stats; 405 struct rq_qos *rq_qos; 406 407 const struct blk_mq_ops *mq_ops; 408 409 /* sw queues */ 410 struct blk_mq_ctx __percpu *queue_ctx; 411 412 unsigned int queue_depth; 413 414 /* hw dispatch queues */ 415 struct blk_mq_hw_ctx **queue_hw_ctx; 416 unsigned int nr_hw_queues; 417 418 struct backing_dev_info *backing_dev_info; 419 420 /* 421 * The queue owner gets to use this for whatever they like. 422 * ll_rw_blk doesn't touch it. 423 */ 424 void *queuedata; 425 426 /* 427 * various queue flags, see QUEUE_* below 428 */ 429 unsigned long queue_flags; 430 /* 431 * Number of contexts that have called blk_set_pm_only(). If this 432 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 433 * processed. 434 */ 435 atomic_t pm_only; 436 437 /* 438 * ida allocated id for this queue. Used to index queues from 439 * ioctx. 440 */ 441 int id; 442 443 /* 444 * queue needs bounce pages for pages above this limit 445 */ 446 gfp_t bounce_gfp; 447 448 spinlock_t queue_lock; 449 450 /* 451 * queue kobject 452 */ 453 struct kobject kobj; 454 455 /* 456 * mq queue kobject 457 */ 458 struct kobject *mq_kobj; 459 460 #ifdef CONFIG_BLK_DEV_INTEGRITY 461 struct blk_integrity integrity; 462 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 463 464 #ifdef CONFIG_PM 465 struct device *dev; 466 enum rpm_status rpm_status; 467 unsigned int nr_pending; 468 #endif 469 470 /* 471 * queue settings 472 */ 473 unsigned long nr_requests; /* Max # of requests */ 474 475 unsigned int dma_pad_mask; 476 unsigned int dma_alignment; 477 478 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 479 /* Inline crypto capabilities */ 480 struct blk_keyslot_manager *ksm; 481 #endif 482 483 unsigned int rq_timeout; 484 int poll_nsec; 485 486 struct blk_stat_callback *poll_cb; 487 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 488 489 struct timer_list timeout; 490 struct work_struct timeout_work; 491 492 atomic_t nr_active_requests_shared_sbitmap; 493 494 struct list_head icq_list; 495 #ifdef CONFIG_BLK_CGROUP 496 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 497 struct blkcg_gq *root_blkg; 498 struct list_head blkg_list; 499 #endif 500 501 struct queue_limits limits; 502 503 unsigned int required_elevator_features; 504 505 #ifdef CONFIG_BLK_DEV_ZONED 506 /* 507 * Zoned block device information for request dispatch control. 508 * nr_zones is the total number of zones of the device. This is always 509 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 510 * bits which indicates if a zone is conventional (bit set) or 511 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 512 * bits which indicates if a zone is write locked, that is, if a write 513 * request targeting the zone was dispatched. All three fields are 514 * initialized by the low level device driver (e.g. scsi/sd.c). 515 * Stacking drivers (device mappers) may or may not initialize 516 * these fields. 517 * 518 * Reads of this information must be protected with blk_queue_enter() / 519 * blk_queue_exit(). Modifying this information is only allowed while 520 * no requests are being processed. See also blk_mq_freeze_queue() and 521 * blk_mq_unfreeze_queue(). 522 */ 523 unsigned int nr_zones; 524 unsigned long *conv_zones_bitmap; 525 unsigned long *seq_zones_wlock; 526 unsigned int max_open_zones; 527 unsigned int max_active_zones; 528 #endif /* CONFIG_BLK_DEV_ZONED */ 529 530 /* 531 * sg stuff 532 */ 533 unsigned int sg_timeout; 534 unsigned int sg_reserved_size; 535 int node; 536 struct mutex debugfs_mutex; 537 #ifdef CONFIG_BLK_DEV_IO_TRACE 538 struct blk_trace __rcu *blk_trace; 539 #endif 540 /* 541 * for flush operations 542 */ 543 struct blk_flush_queue *fq; 544 545 struct list_head requeue_list; 546 spinlock_t requeue_lock; 547 struct delayed_work requeue_work; 548 549 struct mutex sysfs_lock; 550 struct mutex sysfs_dir_lock; 551 552 /* 553 * for reusing dead hctx instance in case of updating 554 * nr_hw_queues 555 */ 556 struct list_head unused_hctx_list; 557 spinlock_t unused_hctx_lock; 558 559 int mq_freeze_depth; 560 561 #if defined(CONFIG_BLK_DEV_BSG) 562 struct bsg_class_device bsg_dev; 563 #endif 564 565 #ifdef CONFIG_BLK_DEV_THROTTLING 566 /* Throttle data */ 567 struct throtl_data *td; 568 #endif 569 struct rcu_head rcu_head; 570 wait_queue_head_t mq_freeze_wq; 571 /* 572 * Protect concurrent access to q_usage_counter by 573 * percpu_ref_kill() and percpu_ref_reinit(). 574 */ 575 struct mutex mq_freeze_lock; 576 577 struct blk_mq_tag_set *tag_set; 578 struct list_head tag_set_list; 579 struct bio_set bio_split; 580 581 struct dentry *debugfs_dir; 582 583 #ifdef CONFIG_BLK_DEBUG_FS 584 struct dentry *sched_debugfs_dir; 585 struct dentry *rqos_debugfs_dir; 586 #endif 587 588 bool mq_sysfs_init_done; 589 590 size_t cmd_size; 591 592 #define BLK_MAX_WRITE_HINTS 5 593 u64 write_hints[BLK_MAX_WRITE_HINTS]; 594 }; 595 596 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 597 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 598 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 599 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 600 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 601 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 602 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 603 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 604 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 605 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 606 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 607 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 608 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 609 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 610 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 611 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 612 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 613 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 614 #define QUEUE_FLAG_WC 17 /* Write back caching */ 615 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 616 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 617 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 618 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 619 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 620 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 621 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 622 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 623 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 624 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 625 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 626 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 627 628 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 629 (1 << QUEUE_FLAG_SAME_COMP) | \ 630 (1 << QUEUE_FLAG_NOWAIT)) 631 632 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 633 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 634 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 635 636 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 637 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 638 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 639 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 640 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 641 #define blk_queue_noxmerges(q) \ 642 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 643 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 644 #define blk_queue_stable_writes(q) \ 645 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 646 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 647 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 648 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 649 #define blk_queue_zone_resetall(q) \ 650 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 651 #define blk_queue_secure_erase(q) \ 652 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 653 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 654 #define blk_queue_scsi_passthrough(q) \ 655 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 656 #define blk_queue_pci_p2pdma(q) \ 657 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 658 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 659 #define blk_queue_rq_alloc_time(q) \ 660 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 661 #else 662 #define blk_queue_rq_alloc_time(q) false 663 #endif 664 665 #define blk_noretry_request(rq) \ 666 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 667 REQ_FAILFAST_DRIVER)) 668 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 669 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 670 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 671 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 672 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 673 674 extern void blk_set_pm_only(struct request_queue *q); 675 extern void blk_clear_pm_only(struct request_queue *q); 676 677 static inline bool blk_account_rq(struct request *rq) 678 { 679 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 680 } 681 682 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 683 684 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 685 686 #define rq_dma_dir(rq) \ 687 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 688 689 #define dma_map_bvec(dev, bv, dir, attrs) \ 690 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 691 (dir), (attrs)) 692 693 static inline bool queue_is_mq(struct request_queue *q) 694 { 695 return q->mq_ops; 696 } 697 698 static inline enum blk_zoned_model 699 blk_queue_zoned_model(struct request_queue *q) 700 { 701 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 702 return q->limits.zoned; 703 return BLK_ZONED_NONE; 704 } 705 706 static inline bool blk_queue_is_zoned(struct request_queue *q) 707 { 708 switch (blk_queue_zoned_model(q)) { 709 case BLK_ZONED_HA: 710 case BLK_ZONED_HM: 711 return true; 712 default: 713 return false; 714 } 715 } 716 717 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 718 { 719 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 720 } 721 722 #ifdef CONFIG_BLK_DEV_ZONED 723 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 724 { 725 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 726 } 727 728 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 729 sector_t sector) 730 { 731 if (!blk_queue_is_zoned(q)) 732 return 0; 733 return sector >> ilog2(q->limits.chunk_sectors); 734 } 735 736 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 737 sector_t sector) 738 { 739 if (!blk_queue_is_zoned(q)) 740 return false; 741 if (!q->conv_zones_bitmap) 742 return true; 743 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 744 } 745 746 static inline void blk_queue_max_open_zones(struct request_queue *q, 747 unsigned int max_open_zones) 748 { 749 q->max_open_zones = max_open_zones; 750 } 751 752 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 753 { 754 return q->max_open_zones; 755 } 756 757 static inline void blk_queue_max_active_zones(struct request_queue *q, 758 unsigned int max_active_zones) 759 { 760 q->max_active_zones = max_active_zones; 761 } 762 763 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 764 { 765 return q->max_active_zones; 766 } 767 #else /* CONFIG_BLK_DEV_ZONED */ 768 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 769 { 770 return 0; 771 } 772 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 773 sector_t sector) 774 { 775 return false; 776 } 777 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 778 sector_t sector) 779 { 780 return 0; 781 } 782 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 783 { 784 return 0; 785 } 786 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 787 { 788 return 0; 789 } 790 #endif /* CONFIG_BLK_DEV_ZONED */ 791 792 static inline bool rq_is_sync(struct request *rq) 793 { 794 return op_is_sync(rq->cmd_flags); 795 } 796 797 static inline bool rq_mergeable(struct request *rq) 798 { 799 if (blk_rq_is_passthrough(rq)) 800 return false; 801 802 if (req_op(rq) == REQ_OP_FLUSH) 803 return false; 804 805 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 806 return false; 807 808 if (req_op(rq) == REQ_OP_ZONE_APPEND) 809 return false; 810 811 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 812 return false; 813 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 814 return false; 815 816 return true; 817 } 818 819 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 820 { 821 if (bio_page(a) == bio_page(b) && 822 bio_offset(a) == bio_offset(b)) 823 return true; 824 825 return false; 826 } 827 828 static inline unsigned int blk_queue_depth(struct request_queue *q) 829 { 830 if (q->queue_depth) 831 return q->queue_depth; 832 833 return q->nr_requests; 834 } 835 836 extern unsigned long blk_max_low_pfn, blk_max_pfn; 837 838 /* 839 * standard bounce addresses: 840 * 841 * BLK_BOUNCE_HIGH : bounce all highmem pages 842 * BLK_BOUNCE_ANY : don't bounce anything 843 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 844 */ 845 846 #if BITS_PER_LONG == 32 847 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 848 #else 849 #define BLK_BOUNCE_HIGH -1ULL 850 #endif 851 #define BLK_BOUNCE_ANY (-1ULL) 852 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 853 854 /* 855 * default timeout for SG_IO if none specified 856 */ 857 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 858 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 859 860 struct rq_map_data { 861 struct page **pages; 862 int page_order; 863 int nr_entries; 864 unsigned long offset; 865 int null_mapped; 866 int from_user; 867 }; 868 869 struct req_iterator { 870 struct bvec_iter iter; 871 struct bio *bio; 872 }; 873 874 /* This should not be used directly - use rq_for_each_segment */ 875 #define for_each_bio(_bio) \ 876 for (; _bio; _bio = _bio->bi_next) 877 #define __rq_for_each_bio(_bio, rq) \ 878 if ((rq->bio)) \ 879 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 880 881 #define rq_for_each_segment(bvl, _rq, _iter) \ 882 __rq_for_each_bio(_iter.bio, _rq) \ 883 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 884 885 #define rq_for_each_bvec(bvl, _rq, _iter) \ 886 __rq_for_each_bio(_iter.bio, _rq) \ 887 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 888 889 #define rq_iter_last(bvec, _iter) \ 890 (_iter.bio->bi_next == NULL && \ 891 bio_iter_last(bvec, _iter.iter)) 892 893 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 894 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 895 #endif 896 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 897 extern void rq_flush_dcache_pages(struct request *rq); 898 #else 899 static inline void rq_flush_dcache_pages(struct request *rq) 900 { 901 } 902 #endif 903 904 extern int blk_register_queue(struct gendisk *disk); 905 extern void blk_unregister_queue(struct gendisk *disk); 906 blk_qc_t submit_bio_noacct(struct bio *bio); 907 extern void blk_rq_init(struct request_queue *q, struct request *rq); 908 extern void blk_put_request(struct request *); 909 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 910 blk_mq_req_flags_t flags); 911 extern int blk_lld_busy(struct request_queue *q); 912 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 913 struct bio_set *bs, gfp_t gfp_mask, 914 int (*bio_ctr)(struct bio *, struct bio *, void *), 915 void *data); 916 extern void blk_rq_unprep_clone(struct request *rq); 917 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 918 struct request *rq); 919 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 920 extern void blk_queue_split(struct bio **); 921 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 922 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 923 unsigned int, void __user *); 924 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 925 unsigned int, void __user *); 926 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 927 struct scsi_ioctl_command __user *); 928 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 929 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 930 931 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 932 extern void blk_queue_exit(struct request_queue *q); 933 extern void blk_sync_queue(struct request_queue *q); 934 extern int blk_rq_map_user(struct request_queue *, struct request *, 935 struct rq_map_data *, void __user *, unsigned long, 936 gfp_t); 937 extern int blk_rq_unmap_user(struct bio *); 938 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 939 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 940 struct rq_map_data *, const struct iov_iter *, 941 gfp_t); 942 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 943 struct request *, int); 944 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 945 struct request *, int, rq_end_io_fn *); 946 947 /* Helper to convert REQ_OP_XXX to its string format XXX */ 948 extern const char *blk_op_str(unsigned int op); 949 950 int blk_status_to_errno(blk_status_t status); 951 blk_status_t errno_to_blk_status(int errno); 952 953 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 954 955 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 956 { 957 return bdev->bd_disk->queue; /* this is never NULL */ 958 } 959 960 /* 961 * The basic unit of block I/O is a sector. It is used in a number of contexts 962 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 963 * bytes. Variables of type sector_t represent an offset or size that is a 964 * multiple of 512 bytes. Hence these two constants. 965 */ 966 #ifndef SECTOR_SHIFT 967 #define SECTOR_SHIFT 9 968 #endif 969 #ifndef SECTOR_SIZE 970 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 971 #endif 972 973 /* 974 * blk_rq_pos() : the current sector 975 * blk_rq_bytes() : bytes left in the entire request 976 * blk_rq_cur_bytes() : bytes left in the current segment 977 * blk_rq_err_bytes() : bytes left till the next error boundary 978 * blk_rq_sectors() : sectors left in the entire request 979 * blk_rq_cur_sectors() : sectors left in the current segment 980 * blk_rq_stats_sectors() : sectors of the entire request used for stats 981 */ 982 static inline sector_t blk_rq_pos(const struct request *rq) 983 { 984 return rq->__sector; 985 } 986 987 static inline unsigned int blk_rq_bytes(const struct request *rq) 988 { 989 return rq->__data_len; 990 } 991 992 static inline int blk_rq_cur_bytes(const struct request *rq) 993 { 994 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 995 } 996 997 extern unsigned int blk_rq_err_bytes(const struct request *rq); 998 999 static inline unsigned int blk_rq_sectors(const struct request *rq) 1000 { 1001 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1002 } 1003 1004 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1005 { 1006 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1007 } 1008 1009 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1010 { 1011 return rq->stats_sectors; 1012 } 1013 1014 #ifdef CONFIG_BLK_DEV_ZONED 1015 1016 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1017 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1018 1019 static inline unsigned int blk_rq_zone_no(struct request *rq) 1020 { 1021 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1022 } 1023 1024 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1025 { 1026 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1027 } 1028 #endif /* CONFIG_BLK_DEV_ZONED */ 1029 1030 /* 1031 * Some commands like WRITE SAME have a payload or data transfer size which 1032 * is different from the size of the request. Any driver that supports such 1033 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1034 * calculate the data transfer size. 1035 */ 1036 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1037 { 1038 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1039 return rq->special_vec.bv_len; 1040 return blk_rq_bytes(rq); 1041 } 1042 1043 /* 1044 * Return the first full biovec in the request. The caller needs to check that 1045 * there are any bvecs before calling this helper. 1046 */ 1047 static inline struct bio_vec req_bvec(struct request *rq) 1048 { 1049 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1050 return rq->special_vec; 1051 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1052 } 1053 1054 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1055 int op) 1056 { 1057 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1058 return min(q->limits.max_discard_sectors, 1059 UINT_MAX >> SECTOR_SHIFT); 1060 1061 if (unlikely(op == REQ_OP_WRITE_SAME)) 1062 return q->limits.max_write_same_sectors; 1063 1064 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1065 return q->limits.max_write_zeroes_sectors; 1066 1067 return q->limits.max_sectors; 1068 } 1069 1070 /* 1071 * Return maximum size of a request at given offset. Only valid for 1072 * file system requests. 1073 */ 1074 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1075 sector_t offset) 1076 { 1077 unsigned int chunk_sectors = q->limits.chunk_sectors; 1078 1079 if (!chunk_sectors) 1080 return q->limits.max_sectors; 1081 1082 if (likely(is_power_of_2(chunk_sectors))) 1083 chunk_sectors -= offset & (chunk_sectors - 1); 1084 else 1085 chunk_sectors -= sector_div(offset, chunk_sectors); 1086 1087 return min(q->limits.max_sectors, chunk_sectors); 1088 } 1089 1090 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1091 sector_t offset) 1092 { 1093 struct request_queue *q = rq->q; 1094 1095 if (blk_rq_is_passthrough(rq)) 1096 return q->limits.max_hw_sectors; 1097 1098 if (!q->limits.chunk_sectors || 1099 req_op(rq) == REQ_OP_DISCARD || 1100 req_op(rq) == REQ_OP_SECURE_ERASE) 1101 return blk_queue_get_max_sectors(q, req_op(rq)); 1102 1103 return min(blk_max_size_offset(q, offset), 1104 blk_queue_get_max_sectors(q, req_op(rq))); 1105 } 1106 1107 static inline unsigned int blk_rq_count_bios(struct request *rq) 1108 { 1109 unsigned int nr_bios = 0; 1110 struct bio *bio; 1111 1112 __rq_for_each_bio(bio, rq) 1113 nr_bios++; 1114 1115 return nr_bios; 1116 } 1117 1118 void blk_steal_bios(struct bio_list *list, struct request *rq); 1119 1120 /* 1121 * Request completion related functions. 1122 * 1123 * blk_update_request() completes given number of bytes and updates 1124 * the request without completing it. 1125 */ 1126 extern bool blk_update_request(struct request *rq, blk_status_t error, 1127 unsigned int nr_bytes); 1128 1129 extern void blk_abort_request(struct request *); 1130 1131 /* 1132 * Access functions for manipulating queue properties 1133 */ 1134 extern void blk_cleanup_queue(struct request_queue *); 1135 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1136 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1137 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1138 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1139 extern void blk_queue_max_discard_segments(struct request_queue *, 1140 unsigned short); 1141 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1142 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1143 unsigned int max_discard_sectors); 1144 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1145 unsigned int max_write_same_sectors); 1146 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1147 unsigned int max_write_same_sectors); 1148 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1149 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1150 unsigned int max_zone_append_sectors); 1151 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1152 extern void blk_queue_alignment_offset(struct request_queue *q, 1153 unsigned int alignment); 1154 void blk_queue_update_readahead(struct request_queue *q); 1155 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1156 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1157 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1158 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1159 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1160 extern void blk_set_default_limits(struct queue_limits *lim); 1161 extern void blk_set_stacking_limits(struct queue_limits *lim); 1162 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1163 sector_t offset); 1164 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1165 sector_t offset); 1166 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1167 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1168 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1169 extern void blk_queue_dma_alignment(struct request_queue *, int); 1170 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1171 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1172 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1173 extern void blk_queue_required_elevator_features(struct request_queue *q, 1174 unsigned int features); 1175 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1176 struct device *dev); 1177 1178 /* 1179 * Number of physical segments as sent to the device. 1180 * 1181 * Normally this is the number of discontiguous data segments sent by the 1182 * submitter. But for data-less command like discard we might have no 1183 * actual data segments submitted, but the driver might have to add it's 1184 * own special payload. In that case we still return 1 here so that this 1185 * special payload will be mapped. 1186 */ 1187 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1188 { 1189 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1190 return 1; 1191 return rq->nr_phys_segments; 1192 } 1193 1194 /* 1195 * Number of discard segments (or ranges) the driver needs to fill in. 1196 * Each discard bio merged into a request is counted as one segment. 1197 */ 1198 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1199 { 1200 return max_t(unsigned short, rq->nr_phys_segments, 1); 1201 } 1202 1203 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1204 struct scatterlist *sglist, struct scatterlist **last_sg); 1205 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1206 struct scatterlist *sglist) 1207 { 1208 struct scatterlist *last_sg = NULL; 1209 1210 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1211 } 1212 extern void blk_dump_rq_flags(struct request *, char *); 1213 1214 bool __must_check blk_get_queue(struct request_queue *); 1215 struct request_queue *blk_alloc_queue(int node_id); 1216 extern void blk_put_queue(struct request_queue *); 1217 extern void blk_set_queue_dying(struct request_queue *); 1218 1219 #ifdef CONFIG_BLOCK 1220 /* 1221 * blk_plug permits building a queue of related requests by holding the I/O 1222 * fragments for a short period. This allows merging of sequential requests 1223 * into single larger request. As the requests are moved from a per-task list to 1224 * the device's request_queue in a batch, this results in improved scalability 1225 * as the lock contention for request_queue lock is reduced. 1226 * 1227 * It is ok not to disable preemption when adding the request to the plug list 1228 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1229 * the plug list when the task sleeps by itself. For details, please see 1230 * schedule() where blk_schedule_flush_plug() is called. 1231 */ 1232 struct blk_plug { 1233 struct list_head mq_list; /* blk-mq requests */ 1234 struct list_head cb_list; /* md requires an unplug callback */ 1235 unsigned short rq_count; 1236 bool multiple_queues; 1237 bool nowait; 1238 }; 1239 #define BLK_MAX_REQUEST_COUNT 16 1240 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1241 1242 struct blk_plug_cb; 1243 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1244 struct blk_plug_cb { 1245 struct list_head list; 1246 blk_plug_cb_fn callback; 1247 void *data; 1248 }; 1249 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1250 void *data, int size); 1251 extern void blk_start_plug(struct blk_plug *); 1252 extern void blk_finish_plug(struct blk_plug *); 1253 extern void blk_flush_plug_list(struct blk_plug *, bool); 1254 1255 static inline void blk_flush_plug(struct task_struct *tsk) 1256 { 1257 struct blk_plug *plug = tsk->plug; 1258 1259 if (plug) 1260 blk_flush_plug_list(plug, false); 1261 } 1262 1263 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1264 { 1265 struct blk_plug *plug = tsk->plug; 1266 1267 if (plug) 1268 blk_flush_plug_list(plug, true); 1269 } 1270 1271 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1272 { 1273 struct blk_plug *plug = tsk->plug; 1274 1275 return plug && 1276 (!list_empty(&plug->mq_list) || 1277 !list_empty(&plug->cb_list)); 1278 } 1279 1280 int blkdev_issue_flush(struct block_device *, gfp_t); 1281 long nr_blockdev_pages(void); 1282 #else /* CONFIG_BLOCK */ 1283 struct blk_plug { 1284 }; 1285 1286 static inline void blk_start_plug(struct blk_plug *plug) 1287 { 1288 } 1289 1290 static inline void blk_finish_plug(struct blk_plug *plug) 1291 { 1292 } 1293 1294 static inline void blk_flush_plug(struct task_struct *task) 1295 { 1296 } 1297 1298 static inline void blk_schedule_flush_plug(struct task_struct *task) 1299 { 1300 } 1301 1302 1303 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1304 { 1305 return false; 1306 } 1307 1308 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1309 { 1310 return 0; 1311 } 1312 1313 static inline long nr_blockdev_pages(void) 1314 { 1315 return 0; 1316 } 1317 #endif /* CONFIG_BLOCK */ 1318 1319 extern void blk_io_schedule(void); 1320 1321 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1322 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1323 1324 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1325 1326 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1327 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1328 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1329 sector_t nr_sects, gfp_t gfp_mask, int flags, 1330 struct bio **biop); 1331 1332 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1333 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1334 1335 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1336 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1337 unsigned flags); 1338 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1339 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1340 1341 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1342 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1343 { 1344 return blkdev_issue_discard(sb->s_bdev, 1345 block << (sb->s_blocksize_bits - 1346 SECTOR_SHIFT), 1347 nr_blocks << (sb->s_blocksize_bits - 1348 SECTOR_SHIFT), 1349 gfp_mask, flags); 1350 } 1351 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1352 sector_t nr_blocks, gfp_t gfp_mask) 1353 { 1354 return blkdev_issue_zeroout(sb->s_bdev, 1355 block << (sb->s_blocksize_bits - 1356 SECTOR_SHIFT), 1357 nr_blocks << (sb->s_blocksize_bits - 1358 SECTOR_SHIFT), 1359 gfp_mask, 0); 1360 } 1361 1362 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1363 1364 static inline bool bdev_is_partition(struct block_device *bdev) 1365 { 1366 return bdev->bd_partno; 1367 } 1368 1369 enum blk_default_limits { 1370 BLK_MAX_SEGMENTS = 128, 1371 BLK_SAFE_MAX_SECTORS = 255, 1372 BLK_DEF_MAX_SECTORS = 2560, 1373 BLK_MAX_SEGMENT_SIZE = 65536, 1374 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1375 }; 1376 1377 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1378 { 1379 return q->limits.seg_boundary_mask; 1380 } 1381 1382 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1383 { 1384 return q->limits.virt_boundary_mask; 1385 } 1386 1387 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1388 { 1389 return q->limits.max_sectors; 1390 } 1391 1392 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1393 { 1394 return q->limits.max_hw_sectors; 1395 } 1396 1397 static inline unsigned short queue_max_segments(const struct request_queue *q) 1398 { 1399 return q->limits.max_segments; 1400 } 1401 1402 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1403 { 1404 return q->limits.max_discard_segments; 1405 } 1406 1407 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1408 { 1409 return q->limits.max_segment_size; 1410 } 1411 1412 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1413 { 1414 1415 const struct queue_limits *l = &q->limits; 1416 1417 return min(l->max_zone_append_sectors, l->max_sectors); 1418 } 1419 1420 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1421 { 1422 int retval = 512; 1423 1424 if (q && q->limits.logical_block_size) 1425 retval = q->limits.logical_block_size; 1426 1427 return retval; 1428 } 1429 1430 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1431 { 1432 return queue_logical_block_size(bdev_get_queue(bdev)); 1433 } 1434 1435 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1436 { 1437 return q->limits.physical_block_size; 1438 } 1439 1440 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1441 { 1442 return queue_physical_block_size(bdev_get_queue(bdev)); 1443 } 1444 1445 static inline unsigned int queue_io_min(const struct request_queue *q) 1446 { 1447 return q->limits.io_min; 1448 } 1449 1450 static inline int bdev_io_min(struct block_device *bdev) 1451 { 1452 return queue_io_min(bdev_get_queue(bdev)); 1453 } 1454 1455 static inline unsigned int queue_io_opt(const struct request_queue *q) 1456 { 1457 return q->limits.io_opt; 1458 } 1459 1460 static inline int bdev_io_opt(struct block_device *bdev) 1461 { 1462 return queue_io_opt(bdev_get_queue(bdev)); 1463 } 1464 1465 static inline int queue_alignment_offset(const struct request_queue *q) 1466 { 1467 if (q->limits.misaligned) 1468 return -1; 1469 1470 return q->limits.alignment_offset; 1471 } 1472 1473 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1474 { 1475 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1476 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1477 << SECTOR_SHIFT; 1478 1479 return (granularity + lim->alignment_offset - alignment) % granularity; 1480 } 1481 1482 static inline int bdev_alignment_offset(struct block_device *bdev) 1483 { 1484 struct request_queue *q = bdev_get_queue(bdev); 1485 1486 if (q->limits.misaligned) 1487 return -1; 1488 if (bdev_is_partition(bdev)) 1489 return queue_limit_alignment_offset(&q->limits, 1490 bdev->bd_part->start_sect); 1491 return q->limits.alignment_offset; 1492 } 1493 1494 static inline int queue_discard_alignment(const struct request_queue *q) 1495 { 1496 if (q->limits.discard_misaligned) 1497 return -1; 1498 1499 return q->limits.discard_alignment; 1500 } 1501 1502 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1503 { 1504 unsigned int alignment, granularity, offset; 1505 1506 if (!lim->max_discard_sectors) 1507 return 0; 1508 1509 /* Why are these in bytes, not sectors? */ 1510 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1511 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1512 if (!granularity) 1513 return 0; 1514 1515 /* Offset of the partition start in 'granularity' sectors */ 1516 offset = sector_div(sector, granularity); 1517 1518 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1519 offset = (granularity + alignment - offset) % granularity; 1520 1521 /* Turn it back into bytes, gaah */ 1522 return offset << SECTOR_SHIFT; 1523 } 1524 1525 static inline int bdev_discard_alignment(struct block_device *bdev) 1526 { 1527 struct request_queue *q = bdev_get_queue(bdev); 1528 1529 if (bdev_is_partition(bdev)) 1530 return queue_limit_discard_alignment(&q->limits, 1531 bdev->bd_part->start_sect); 1532 return q->limits.discard_alignment; 1533 } 1534 1535 static inline unsigned int bdev_write_same(struct block_device *bdev) 1536 { 1537 struct request_queue *q = bdev_get_queue(bdev); 1538 1539 if (q) 1540 return q->limits.max_write_same_sectors; 1541 1542 return 0; 1543 } 1544 1545 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1546 { 1547 struct request_queue *q = bdev_get_queue(bdev); 1548 1549 if (q) 1550 return q->limits.max_write_zeroes_sectors; 1551 1552 return 0; 1553 } 1554 1555 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1556 { 1557 struct request_queue *q = bdev_get_queue(bdev); 1558 1559 if (q) 1560 return blk_queue_zoned_model(q); 1561 1562 return BLK_ZONED_NONE; 1563 } 1564 1565 static inline bool bdev_is_zoned(struct block_device *bdev) 1566 { 1567 struct request_queue *q = bdev_get_queue(bdev); 1568 1569 if (q) 1570 return blk_queue_is_zoned(q); 1571 1572 return false; 1573 } 1574 1575 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1576 { 1577 struct request_queue *q = bdev_get_queue(bdev); 1578 1579 if (q) 1580 return blk_queue_zone_sectors(q); 1581 return 0; 1582 } 1583 1584 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1585 { 1586 struct request_queue *q = bdev_get_queue(bdev); 1587 1588 if (q) 1589 return queue_max_open_zones(q); 1590 return 0; 1591 } 1592 1593 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1594 { 1595 struct request_queue *q = bdev_get_queue(bdev); 1596 1597 if (q) 1598 return queue_max_active_zones(q); 1599 return 0; 1600 } 1601 1602 static inline int queue_dma_alignment(const struct request_queue *q) 1603 { 1604 return q ? q->dma_alignment : 511; 1605 } 1606 1607 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1608 unsigned int len) 1609 { 1610 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1611 return !(addr & alignment) && !(len & alignment); 1612 } 1613 1614 /* assumes size > 256 */ 1615 static inline unsigned int blksize_bits(unsigned int size) 1616 { 1617 unsigned int bits = 8; 1618 do { 1619 bits++; 1620 size >>= 1; 1621 } while (size > 256); 1622 return bits; 1623 } 1624 1625 static inline unsigned int block_size(struct block_device *bdev) 1626 { 1627 return 1 << bdev->bd_inode->i_blkbits; 1628 } 1629 1630 int kblockd_schedule_work(struct work_struct *work); 1631 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1632 1633 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1634 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1635 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1636 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1637 1638 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1639 1640 enum blk_integrity_flags { 1641 BLK_INTEGRITY_VERIFY = 1 << 0, 1642 BLK_INTEGRITY_GENERATE = 1 << 1, 1643 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1644 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1645 }; 1646 1647 struct blk_integrity_iter { 1648 void *prot_buf; 1649 void *data_buf; 1650 sector_t seed; 1651 unsigned int data_size; 1652 unsigned short interval; 1653 const char *disk_name; 1654 }; 1655 1656 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1657 typedef void (integrity_prepare_fn) (struct request *); 1658 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1659 1660 struct blk_integrity_profile { 1661 integrity_processing_fn *generate_fn; 1662 integrity_processing_fn *verify_fn; 1663 integrity_prepare_fn *prepare_fn; 1664 integrity_complete_fn *complete_fn; 1665 const char *name; 1666 }; 1667 1668 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1669 extern void blk_integrity_unregister(struct gendisk *); 1670 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1671 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1672 struct scatterlist *); 1673 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1674 1675 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1676 { 1677 struct blk_integrity *bi = &disk->queue->integrity; 1678 1679 if (!bi->profile) 1680 return NULL; 1681 1682 return bi; 1683 } 1684 1685 static inline 1686 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1687 { 1688 return blk_get_integrity(bdev->bd_disk); 1689 } 1690 1691 static inline bool 1692 blk_integrity_queue_supports_integrity(struct request_queue *q) 1693 { 1694 return q->integrity.profile; 1695 } 1696 1697 static inline bool blk_integrity_rq(struct request *rq) 1698 { 1699 return rq->cmd_flags & REQ_INTEGRITY; 1700 } 1701 1702 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1703 unsigned int segs) 1704 { 1705 q->limits.max_integrity_segments = segs; 1706 } 1707 1708 static inline unsigned short 1709 queue_max_integrity_segments(const struct request_queue *q) 1710 { 1711 return q->limits.max_integrity_segments; 1712 } 1713 1714 /** 1715 * bio_integrity_intervals - Return number of integrity intervals for a bio 1716 * @bi: blk_integrity profile for device 1717 * @sectors: Size of the bio in 512-byte sectors 1718 * 1719 * Description: The block layer calculates everything in 512 byte 1720 * sectors but integrity metadata is done in terms of the data integrity 1721 * interval size of the storage device. Convert the block layer sectors 1722 * to the appropriate number of integrity intervals. 1723 */ 1724 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1725 unsigned int sectors) 1726 { 1727 return sectors >> (bi->interval_exp - 9); 1728 } 1729 1730 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1731 unsigned int sectors) 1732 { 1733 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1734 } 1735 1736 /* 1737 * Return the first bvec that contains integrity data. Only drivers that are 1738 * limited to a single integrity segment should use this helper. 1739 */ 1740 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1741 { 1742 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1743 return NULL; 1744 return rq->bio->bi_integrity->bip_vec; 1745 } 1746 1747 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1748 1749 struct bio; 1750 struct block_device; 1751 struct gendisk; 1752 struct blk_integrity; 1753 1754 static inline int blk_integrity_rq(struct request *rq) 1755 { 1756 return 0; 1757 } 1758 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1759 struct bio *b) 1760 { 1761 return 0; 1762 } 1763 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1764 struct bio *b, 1765 struct scatterlist *s) 1766 { 1767 return 0; 1768 } 1769 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1770 { 1771 return NULL; 1772 } 1773 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1774 { 1775 return NULL; 1776 } 1777 static inline bool 1778 blk_integrity_queue_supports_integrity(struct request_queue *q) 1779 { 1780 return false; 1781 } 1782 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1783 { 1784 return 0; 1785 } 1786 static inline void blk_integrity_register(struct gendisk *d, 1787 struct blk_integrity *b) 1788 { 1789 } 1790 static inline void blk_integrity_unregister(struct gendisk *d) 1791 { 1792 } 1793 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1794 unsigned int segs) 1795 { 1796 } 1797 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1798 { 1799 return 0; 1800 } 1801 1802 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1803 unsigned int sectors) 1804 { 1805 return 0; 1806 } 1807 1808 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1809 unsigned int sectors) 1810 { 1811 return 0; 1812 } 1813 1814 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1815 { 1816 return NULL; 1817 } 1818 1819 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1820 1821 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1822 1823 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1824 1825 void blk_ksm_unregister(struct request_queue *q); 1826 1827 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1828 1829 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1830 struct request_queue *q) 1831 { 1832 return true; 1833 } 1834 1835 static inline void blk_ksm_unregister(struct request_queue *q) { } 1836 1837 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1838 1839 1840 struct block_device_operations { 1841 blk_qc_t (*submit_bio) (struct bio *bio); 1842 int (*open) (struct block_device *, fmode_t); 1843 void (*release) (struct gendisk *, fmode_t); 1844 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1845 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1846 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1847 unsigned int (*check_events) (struct gendisk *disk, 1848 unsigned int clearing); 1849 void (*unlock_native_capacity) (struct gendisk *); 1850 int (*revalidate_disk) (struct gendisk *); 1851 int (*getgeo)(struct block_device *, struct hd_geometry *); 1852 /* this callback is with swap_lock and sometimes page table lock held */ 1853 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1854 int (*report_zones)(struct gendisk *, sector_t sector, 1855 unsigned int nr_zones, report_zones_cb cb, void *data); 1856 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1857 struct module *owner; 1858 const struct pr_ops *pr_ops; 1859 }; 1860 1861 #ifdef CONFIG_COMPAT 1862 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1863 unsigned int, unsigned long); 1864 #else 1865 #define blkdev_compat_ptr_ioctl NULL 1866 #endif 1867 1868 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1869 unsigned long); 1870 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1871 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1872 struct writeback_control *); 1873 1874 #ifdef CONFIG_BLK_DEV_ZONED 1875 bool blk_req_needs_zone_write_lock(struct request *rq); 1876 bool blk_req_zone_write_trylock(struct request *rq); 1877 void __blk_req_zone_write_lock(struct request *rq); 1878 void __blk_req_zone_write_unlock(struct request *rq); 1879 1880 static inline void blk_req_zone_write_lock(struct request *rq) 1881 { 1882 if (blk_req_needs_zone_write_lock(rq)) 1883 __blk_req_zone_write_lock(rq); 1884 } 1885 1886 static inline void blk_req_zone_write_unlock(struct request *rq) 1887 { 1888 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1889 __blk_req_zone_write_unlock(rq); 1890 } 1891 1892 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1893 { 1894 return rq->q->seq_zones_wlock && 1895 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1896 } 1897 1898 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1899 { 1900 if (!blk_req_needs_zone_write_lock(rq)) 1901 return true; 1902 return !blk_req_zone_is_write_locked(rq); 1903 } 1904 #else 1905 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1906 { 1907 return false; 1908 } 1909 1910 static inline void blk_req_zone_write_lock(struct request *rq) 1911 { 1912 } 1913 1914 static inline void blk_req_zone_write_unlock(struct request *rq) 1915 { 1916 } 1917 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1918 { 1919 return false; 1920 } 1921 1922 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1923 { 1924 return true; 1925 } 1926 #endif /* CONFIG_BLK_DEV_ZONED */ 1927 1928 static inline void blk_wake_io_task(struct task_struct *waiter) 1929 { 1930 /* 1931 * If we're polling, the task itself is doing the completions. For 1932 * that case, we don't need to signal a wakeup, it's enough to just 1933 * mark us as RUNNING. 1934 */ 1935 if (waiter == current) 1936 __set_current_state(TASK_RUNNING); 1937 else 1938 wake_up_process(waiter); 1939 } 1940 1941 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1942 unsigned int op); 1943 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1944 unsigned long start_time); 1945 1946 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, 1947 struct bio *bio); 1948 void part_end_io_acct(struct hd_struct *part, struct bio *bio, 1949 unsigned long start_time); 1950 1951 /** 1952 * bio_start_io_acct - start I/O accounting for bio based drivers 1953 * @bio: bio to start account for 1954 * 1955 * Returns the start time that should be passed back to bio_end_io_acct(). 1956 */ 1957 static inline unsigned long bio_start_io_acct(struct bio *bio) 1958 { 1959 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1960 } 1961 1962 /** 1963 * bio_end_io_acct - end I/O accounting for bio based drivers 1964 * @bio: bio to end account for 1965 * @start: start time returned by bio_start_io_acct() 1966 */ 1967 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1968 { 1969 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1970 } 1971 1972 int bdev_read_only(struct block_device *bdev); 1973 int set_blocksize(struct block_device *bdev, int size); 1974 1975 const char *bdevname(struct block_device *bdev, char *buffer); 1976 struct block_device *lookup_bdev(const char *); 1977 1978 void blkdev_show(struct seq_file *seqf, off_t offset); 1979 1980 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1981 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1982 #ifdef CONFIG_BLOCK 1983 #define BLKDEV_MAJOR_MAX 512 1984 #else 1985 #define BLKDEV_MAJOR_MAX 0 1986 #endif 1987 1988 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1989 void *holder); 1990 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1991 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1992 void *holder); 1993 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1994 void *holder); 1995 void blkdev_put(struct block_device *bdev, fmode_t mode); 1996 1997 struct block_device *I_BDEV(struct inode *inode); 1998 struct block_device *bdget_part(struct hd_struct *part); 1999 struct block_device *bdgrab(struct block_device *bdev); 2000 void bdput(struct block_device *); 2001 2002 #ifdef CONFIG_BLOCK 2003 void invalidate_bdev(struct block_device *bdev); 2004 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2005 loff_t lend); 2006 int sync_blockdev(struct block_device *bdev); 2007 #else 2008 static inline void invalidate_bdev(struct block_device *bdev) 2009 { 2010 } 2011 static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode, 2012 loff_t lstart, loff_t lend) 2013 { 2014 return 0; 2015 } 2016 static inline int sync_blockdev(struct block_device *bdev) 2017 { 2018 return 0; 2019 } 2020 #endif 2021 int fsync_bdev(struct block_device *bdev); 2022 2023 struct super_block *freeze_bdev(struct block_device *bdev); 2024 int thaw_bdev(struct block_device *bdev, struct super_block *sb); 2025 2026 #endif /* _LINUX_BLKDEV_H */ 2027