xref: /linux-6.15/include/linux/blkdev.h (revision 7828b7bb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 
29 struct module;
30 struct request_queue;
31 struct elevator_queue;
32 struct blk_trace;
33 struct request;
34 struct sg_io_hdr;
35 struct blkcg_gq;
36 struct blk_flush_queue;
37 struct kiocb;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43 
44 extern const struct device_type disk_type;
45 extern const struct device_type part_type;
46 extern const struct class block_class;
47 
48 /*
49  * Maximum number of blkcg policies allowed to be registered concurrently.
50  * Defined here to simplify include dependency.
51  */
52 #define BLKCG_MAX_POLS		6
53 
54 #define DISK_MAX_PARTS			256
55 #define DISK_NAME_LEN			32
56 
57 #define PARTITION_META_INFO_VOLNAMELTH	64
58 /*
59  * Enough for the string representation of any kind of UUID plus NULL.
60  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
61  */
62 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
63 
64 struct partition_meta_info {
65 	char uuid[PARTITION_META_INFO_UUIDLTH];
66 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
67 };
68 
69 /**
70  * DOC: genhd capability flags
71  *
72  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
73  * removable media.  When set, the device remains present even when media is not
74  * inserted.  Shall not be set for devices which are removed entirely when the
75  * media is removed.
76  *
77  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
78  * doesn't appear in sysfs, and can't be opened from userspace or using
79  * blkdev_get*. Used for the underlying components of multipath devices.
80  *
81  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
82  * scan for partitions from add_disk, and users can't add partitions manually.
83  *
84  */
85 enum {
86 	GENHD_FL_REMOVABLE			= 1 << 0,
87 	GENHD_FL_HIDDEN				= 1 << 1,
88 	GENHD_FL_NO_PART			= 1 << 2,
89 };
90 
91 enum {
92 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
93 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
94 };
95 
96 enum {
97 	/* Poll even if events_poll_msecs is unset */
98 	DISK_EVENT_FLAG_POLL			= 1 << 0,
99 	/* Forward events to udev */
100 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
101 	/* Block event polling when open for exclusive write */
102 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
103 };
104 
105 struct disk_events;
106 struct badblocks;
107 
108 struct blk_integrity {
109 	const struct blk_integrity_profile	*profile;
110 	unsigned char				flags;
111 	unsigned char				tuple_size;
112 	unsigned char				pi_offset;
113 	unsigned char				interval_exp;
114 	unsigned char				tag_size;
115 };
116 
117 typedef unsigned int __bitwise blk_mode_t;
118 
119 /* open for reading */
120 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
121 /* open for writing */
122 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
123 /* open exclusively (vs other exclusive openers */
124 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
125 /* opened with O_NDELAY */
126 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
127 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
128 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
129 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
130 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
131 /* return partition scanning errors */
132 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
133 
134 struct gendisk {
135 	/*
136 	 * major/first_minor/minors should not be set by any new driver, the
137 	 * block core will take care of allocating them automatically.
138 	 */
139 	int major;
140 	int first_minor;
141 	int minors;
142 
143 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
144 
145 	unsigned short events;		/* supported events */
146 	unsigned short event_flags;	/* flags related to event processing */
147 
148 	struct xarray part_tbl;
149 	struct block_device *part0;
150 
151 	const struct block_device_operations *fops;
152 	struct request_queue *queue;
153 	void *private_data;
154 
155 	struct bio_set bio_split;
156 
157 	int flags;
158 	unsigned long state;
159 #define GD_NEED_PART_SCAN		0
160 #define GD_READ_ONLY			1
161 #define GD_DEAD				2
162 #define GD_NATIVE_CAPACITY		3
163 #define GD_ADDED			4
164 #define GD_SUPPRESS_PART_SCAN		5
165 #define GD_OWNS_QUEUE			6
166 
167 	struct mutex open_mutex;	/* open/close mutex */
168 	unsigned open_partitions;	/* number of open partitions */
169 
170 	struct backing_dev_info	*bdi;
171 	struct kobject queue_kobj;	/* the queue/ directory */
172 	struct kobject *slave_dir;
173 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
174 	struct list_head slave_bdevs;
175 #endif
176 	struct timer_rand_state *random;
177 	atomic_t sync_io;		/* RAID */
178 	struct disk_events *ev;
179 
180 #ifdef CONFIG_BLK_DEV_ZONED
181 	/*
182 	 * Zoned block device information. Reads of this information must be
183 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
184 	 * information is only allowed while no requests are being processed.
185 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
186 	 */
187 	unsigned int		nr_zones;
188 	unsigned int		zone_capacity;
189 	unsigned long		*conv_zones_bitmap;
190 	unsigned int            zone_wplugs_hash_bits;
191 	spinlock_t              zone_wplugs_lock;
192 	struct mempool_s	*zone_wplugs_pool;
193 	struct hlist_head       *zone_wplugs_hash;
194 	struct list_head        zone_wplugs_err_list;
195 	struct work_struct	zone_wplugs_work;
196 	struct workqueue_struct *zone_wplugs_wq;
197 #endif /* CONFIG_BLK_DEV_ZONED */
198 
199 #if IS_ENABLED(CONFIG_CDROM)
200 	struct cdrom_device_info *cdi;
201 #endif
202 	int node_id;
203 	struct badblocks *bb;
204 	struct lockdep_map lockdep_map;
205 	u64 diskseq;
206 	blk_mode_t open_mode;
207 
208 	/*
209 	 * Independent sector access ranges. This is always NULL for
210 	 * devices that do not have multiple independent access ranges.
211 	 */
212 	struct blk_independent_access_ranges *ia_ranges;
213 };
214 
215 /**
216  * disk_openers - returns how many openers are there for a disk
217  * @disk: disk to check
218  *
219  * This returns the number of openers for a disk.  Note that this value is only
220  * stable if disk->open_mutex is held.
221  *
222  * Note: Due to a quirk in the block layer open code, each open partition is
223  * only counted once even if there are multiple openers.
224  */
225 static inline unsigned int disk_openers(struct gendisk *disk)
226 {
227 	return atomic_read(&disk->part0->bd_openers);
228 }
229 
230 /**
231  * disk_has_partscan - return %true if partition scanning is enabled on a disk
232  * @disk: disk to check
233  *
234  * Returns %true if partitions scanning is enabled for @disk, or %false if
235  * partition scanning is disabled either permanently or temporarily.
236  */
237 static inline bool disk_has_partscan(struct gendisk *disk)
238 {
239 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
240 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
241 }
242 
243 /*
244  * The gendisk is refcounted by the part0 block_device, and the bd_device
245  * therein is also used for device model presentation in sysfs.
246  */
247 #define dev_to_disk(device) \
248 	(dev_to_bdev(device)->bd_disk)
249 #define disk_to_dev(disk) \
250 	(&((disk)->part0->bd_device))
251 
252 #if IS_REACHABLE(CONFIG_CDROM)
253 #define disk_to_cdi(disk)	((disk)->cdi)
254 #else
255 #define disk_to_cdi(disk)	NULL
256 #endif
257 
258 static inline dev_t disk_devt(struct gendisk *disk)
259 {
260 	return MKDEV(disk->major, disk->first_minor);
261 }
262 
263 static inline int blk_validate_block_size(unsigned long bsize)
264 {
265 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
266 		return -EINVAL;
267 
268 	return 0;
269 }
270 
271 static inline bool blk_op_is_passthrough(blk_opf_t op)
272 {
273 	op &= REQ_OP_MASK;
274 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
275 }
276 
277 /*
278  * BLK_BOUNCE_NONE:	never bounce (default)
279  * BLK_BOUNCE_HIGH:	bounce all highmem pages
280  */
281 enum blk_bounce {
282 	BLK_BOUNCE_NONE,
283 	BLK_BOUNCE_HIGH,
284 };
285 
286 struct queue_limits {
287 	enum blk_bounce		bounce;
288 	unsigned long		seg_boundary_mask;
289 	unsigned long		virt_boundary_mask;
290 
291 	unsigned int		max_hw_sectors;
292 	unsigned int		max_dev_sectors;
293 	unsigned int		chunk_sectors;
294 	unsigned int		max_sectors;
295 	unsigned int		max_user_sectors;
296 	unsigned int		max_segment_size;
297 	unsigned int		physical_block_size;
298 	unsigned int		logical_block_size;
299 	unsigned int		alignment_offset;
300 	unsigned int		io_min;
301 	unsigned int		io_opt;
302 	unsigned int		max_discard_sectors;
303 	unsigned int		max_hw_discard_sectors;
304 	unsigned int		max_user_discard_sectors;
305 	unsigned int		max_secure_erase_sectors;
306 	unsigned int		max_write_zeroes_sectors;
307 	unsigned int		max_zone_append_sectors;
308 	unsigned int		discard_granularity;
309 	unsigned int		discard_alignment;
310 	unsigned int		zone_write_granularity;
311 
312 	unsigned short		max_segments;
313 	unsigned short		max_integrity_segments;
314 	unsigned short		max_discard_segments;
315 
316 	unsigned char		misaligned;
317 	unsigned char		discard_misaligned;
318 	unsigned char		raid_partial_stripes_expensive;
319 	bool			zoned;
320 	unsigned int		max_open_zones;
321 	unsigned int		max_active_zones;
322 
323 	/*
324 	 * Drivers that set dma_alignment to less than 511 must be prepared to
325 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
326 	 * due to possible offsets.
327 	 */
328 	unsigned int		dma_alignment;
329 };
330 
331 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
332 			       void *data);
333 
334 void disk_set_zoned(struct gendisk *disk);
335 
336 #define BLK_ALL_ZONES  ((unsigned int)-1)
337 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
338 		unsigned int nr_zones, report_zones_cb cb, void *data);
339 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
340 		sector_t sectors, sector_t nr_sectors);
341 int blk_revalidate_disk_zones(struct gendisk *disk);
342 
343 /*
344  * Independent access ranges: struct blk_independent_access_range describes
345  * a range of contiguous sectors that can be accessed using device command
346  * execution resources that are independent from the resources used for
347  * other access ranges. This is typically found with single-LUN multi-actuator
348  * HDDs where each access range is served by a different set of heads.
349  * The set of independent ranges supported by the device is defined using
350  * struct blk_independent_access_ranges. The independent ranges must not overlap
351  * and must include all sectors within the disk capacity (no sector holes
352  * allowed).
353  * For a device with multiple ranges, requests targeting sectors in different
354  * ranges can be executed in parallel. A request can straddle an access range
355  * boundary.
356  */
357 struct blk_independent_access_range {
358 	struct kobject		kobj;
359 	sector_t		sector;
360 	sector_t		nr_sectors;
361 };
362 
363 struct blk_independent_access_ranges {
364 	struct kobject				kobj;
365 	bool					sysfs_registered;
366 	unsigned int				nr_ia_ranges;
367 	struct blk_independent_access_range	ia_range[];
368 };
369 
370 struct request_queue {
371 	/*
372 	 * The queue owner gets to use this for whatever they like.
373 	 * ll_rw_blk doesn't touch it.
374 	 */
375 	void			*queuedata;
376 
377 	struct elevator_queue	*elevator;
378 
379 	const struct blk_mq_ops	*mq_ops;
380 
381 	/* sw queues */
382 	struct blk_mq_ctx __percpu	*queue_ctx;
383 
384 	/*
385 	 * various queue flags, see QUEUE_* below
386 	 */
387 	unsigned long		queue_flags;
388 
389 	unsigned int		rq_timeout;
390 
391 	unsigned int		queue_depth;
392 
393 	refcount_t		refs;
394 
395 	/* hw dispatch queues */
396 	unsigned int		nr_hw_queues;
397 	struct xarray		hctx_table;
398 
399 	struct percpu_ref	q_usage_counter;
400 
401 	struct request		*last_merge;
402 
403 	spinlock_t		queue_lock;
404 
405 	int			quiesce_depth;
406 
407 	struct gendisk		*disk;
408 
409 	/*
410 	 * mq queue kobject
411 	 */
412 	struct kobject *mq_kobj;
413 
414 	struct queue_limits	limits;
415 
416 #ifdef  CONFIG_BLK_DEV_INTEGRITY
417 	struct blk_integrity integrity;
418 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
419 
420 #ifdef CONFIG_PM
421 	struct device		*dev;
422 	enum rpm_status		rpm_status;
423 #endif
424 
425 	/*
426 	 * Number of contexts that have called blk_set_pm_only(). If this
427 	 * counter is above zero then only RQF_PM requests are processed.
428 	 */
429 	atomic_t		pm_only;
430 
431 	struct blk_queue_stats	*stats;
432 	struct rq_qos		*rq_qos;
433 	struct mutex		rq_qos_mutex;
434 
435 	/*
436 	 * ida allocated id for this queue.  Used to index queues from
437 	 * ioctx.
438 	 */
439 	int			id;
440 
441 	unsigned int		dma_pad_mask;
442 
443 	/*
444 	 * queue settings
445 	 */
446 	unsigned long		nr_requests;	/* Max # of requests */
447 
448 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
449 	struct blk_crypto_profile *crypto_profile;
450 	struct kobject *crypto_kobject;
451 #endif
452 
453 	struct timer_list	timeout;
454 	struct work_struct	timeout_work;
455 
456 	atomic_t		nr_active_requests_shared_tags;
457 
458 	struct blk_mq_tags	*sched_shared_tags;
459 
460 	struct list_head	icq_list;
461 #ifdef CONFIG_BLK_CGROUP
462 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
463 	struct blkcg_gq		*root_blkg;
464 	struct list_head	blkg_list;
465 	struct mutex		blkcg_mutex;
466 #endif
467 
468 	int			node;
469 
470 	spinlock_t		requeue_lock;
471 	struct list_head	requeue_list;
472 	struct delayed_work	requeue_work;
473 
474 #ifdef CONFIG_BLK_DEV_IO_TRACE
475 	struct blk_trace __rcu	*blk_trace;
476 #endif
477 	/*
478 	 * for flush operations
479 	 */
480 	struct blk_flush_queue	*fq;
481 	struct list_head	flush_list;
482 
483 	struct mutex		sysfs_lock;
484 	struct mutex		sysfs_dir_lock;
485 	struct mutex		limits_lock;
486 
487 	/*
488 	 * for reusing dead hctx instance in case of updating
489 	 * nr_hw_queues
490 	 */
491 	struct list_head	unused_hctx_list;
492 	spinlock_t		unused_hctx_lock;
493 
494 	int			mq_freeze_depth;
495 
496 #ifdef CONFIG_BLK_DEV_THROTTLING
497 	/* Throttle data */
498 	struct throtl_data *td;
499 #endif
500 	struct rcu_head		rcu_head;
501 	wait_queue_head_t	mq_freeze_wq;
502 	/*
503 	 * Protect concurrent access to q_usage_counter by
504 	 * percpu_ref_kill() and percpu_ref_reinit().
505 	 */
506 	struct mutex		mq_freeze_lock;
507 
508 	struct blk_mq_tag_set	*tag_set;
509 	struct list_head	tag_set_list;
510 
511 	struct dentry		*debugfs_dir;
512 	struct dentry		*sched_debugfs_dir;
513 	struct dentry		*rqos_debugfs_dir;
514 	/*
515 	 * Serializes all debugfs metadata operations using the above dentries.
516 	 */
517 	struct mutex		debugfs_mutex;
518 
519 	bool			mq_sysfs_init_done;
520 };
521 
522 /* Keep blk_queue_flag_name[] in sync with the definitions below */
523 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
524 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
525 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
526 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
527 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
528 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
529 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
530 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
531 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
532 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
533 #define QUEUE_FLAG_SYNCHRONOUS	11	/* always completes in submit context */
534 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
535 #define QUEUE_FLAG_HW_WC	13	/* Write back caching supported */
536 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
537 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
538 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
539 #define QUEUE_FLAG_WC		17	/* Write back caching */
540 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
541 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
542 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
543 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
544 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
545 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
546 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
547 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
548 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
549 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
550 #define QUEUE_FLAG_SQ_SCHED     30	/* single queue style io dispatch */
551 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE	31 /* quiesce_tagset skip the queue*/
552 
553 #define QUEUE_FLAG_MQ_DEFAULT	((1UL << QUEUE_FLAG_IO_STAT) |		\
554 				 (1UL << QUEUE_FLAG_SAME_COMP) |	\
555 				 (1UL << QUEUE_FLAG_NOWAIT))
556 
557 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
558 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
559 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
560 
561 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
562 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
563 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
564 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
565 #define blk_queue_noxmerges(q)	\
566 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
567 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
568 #define blk_queue_stable_writes(q) \
569 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
570 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
571 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
572 #define blk_queue_zone_resetall(q)	\
573 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
574 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
575 #define blk_queue_pci_p2pdma(q)	\
576 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
577 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
578 #define blk_queue_rq_alloc_time(q)	\
579 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
580 #else
581 #define blk_queue_rq_alloc_time(q)	false
582 #endif
583 
584 #define blk_noretry_request(rq) \
585 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
586 			     REQ_FAILFAST_DRIVER))
587 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
588 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
589 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
590 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
591 #define blk_queue_skip_tagset_quiesce(q) \
592 	test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags)
593 
594 extern void blk_set_pm_only(struct request_queue *q);
595 extern void blk_clear_pm_only(struct request_queue *q);
596 
597 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
598 
599 #define dma_map_bvec(dev, bv, dir, attrs) \
600 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
601 	(dir), (attrs))
602 
603 static inline bool queue_is_mq(struct request_queue *q)
604 {
605 	return q->mq_ops;
606 }
607 
608 #ifdef CONFIG_PM
609 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
610 {
611 	return q->rpm_status;
612 }
613 #else
614 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
615 {
616 	return RPM_ACTIVE;
617 }
618 #endif
619 
620 static inline bool blk_queue_is_zoned(struct request_queue *q)
621 {
622 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && q->limits.zoned;
623 }
624 
625 #ifdef CONFIG_BLK_DEV_ZONED
626 unsigned int bdev_nr_zones(struct block_device *bdev);
627 
628 static inline unsigned int disk_nr_zones(struct gendisk *disk)
629 {
630 	return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
631 }
632 
633 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
634 {
635 	if (!blk_queue_is_zoned(disk->queue))
636 		return 0;
637 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
638 }
639 
640 static inline void disk_set_max_open_zones(struct gendisk *disk,
641 		unsigned int max_open_zones)
642 {
643 	disk->queue->limits.max_open_zones = max_open_zones;
644 }
645 
646 static inline void disk_set_max_active_zones(struct gendisk *disk,
647 		unsigned int max_active_zones)
648 {
649 	disk->queue->limits.max_active_zones = max_active_zones;
650 }
651 
652 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
653 {
654 	return bdev->bd_disk->queue->limits.max_open_zones;
655 }
656 
657 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
658 {
659 	return bdev->bd_disk->queue->limits.max_active_zones;
660 }
661 
662 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
663 #else /* CONFIG_BLK_DEV_ZONED */
664 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
665 {
666 	return 0;
667 }
668 
669 static inline unsigned int disk_nr_zones(struct gendisk *disk)
670 {
671 	return 0;
672 }
673 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
674 {
675 	return 0;
676 }
677 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
678 {
679 	return 0;
680 }
681 
682 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
683 {
684 	return 0;
685 }
686 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
687 {
688 	return false;
689 }
690 #endif /* CONFIG_BLK_DEV_ZONED */
691 
692 static inline unsigned int blk_queue_depth(struct request_queue *q)
693 {
694 	if (q->queue_depth)
695 		return q->queue_depth;
696 
697 	return q->nr_requests;
698 }
699 
700 /*
701  * default timeout for SG_IO if none specified
702  */
703 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
704 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
705 
706 /* This should not be used directly - use rq_for_each_segment */
707 #define for_each_bio(_bio)		\
708 	for (; _bio; _bio = _bio->bi_next)
709 
710 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
711 				 const struct attribute_group **groups);
712 static inline int __must_check add_disk(struct gendisk *disk)
713 {
714 	return device_add_disk(NULL, disk, NULL);
715 }
716 void del_gendisk(struct gendisk *gp);
717 void invalidate_disk(struct gendisk *disk);
718 void set_disk_ro(struct gendisk *disk, bool read_only);
719 void disk_uevent(struct gendisk *disk, enum kobject_action action);
720 
721 static inline u8 bdev_partno(const struct block_device *bdev)
722 {
723 	return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
724 }
725 
726 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
727 {
728 	return atomic_read(&bdev->__bd_flags) & flag;
729 }
730 
731 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
732 {
733 	atomic_or(flag, &bdev->__bd_flags);
734 }
735 
736 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
737 {
738 	atomic_andnot(flag, &bdev->__bd_flags);
739 }
740 
741 static inline int get_disk_ro(struct gendisk *disk)
742 {
743 	return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
744 		test_bit(GD_READ_ONLY, &disk->state);
745 }
746 
747 static inline int bdev_read_only(struct block_device *bdev)
748 {
749 	return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
750 }
751 
752 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
753 void disk_force_media_change(struct gendisk *disk);
754 void bdev_mark_dead(struct block_device *bdev, bool surprise);
755 
756 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
757 void rand_initialize_disk(struct gendisk *disk);
758 
759 static inline sector_t get_start_sect(struct block_device *bdev)
760 {
761 	return bdev->bd_start_sect;
762 }
763 
764 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
765 {
766 	return bdev->bd_nr_sectors;
767 }
768 
769 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
770 {
771 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
772 }
773 
774 static inline sector_t get_capacity(struct gendisk *disk)
775 {
776 	return bdev_nr_sectors(disk->part0);
777 }
778 
779 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
780 {
781 	return bdev_nr_sectors(sb->s_bdev) >>
782 		(sb->s_blocksize_bits - SECTOR_SHIFT);
783 }
784 
785 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
786 
787 void put_disk(struct gendisk *disk);
788 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
789 		struct lock_class_key *lkclass);
790 
791 /**
792  * blk_alloc_disk - allocate a gendisk structure
793  * @lim: queue limits to be used for this disk.
794  * @node_id: numa node to allocate on
795  *
796  * Allocate and pre-initialize a gendisk structure for use with BIO based
797  * drivers.
798  *
799  * Returns an ERR_PTR on error, else the allocated disk.
800  *
801  * Context: can sleep
802  */
803 #define blk_alloc_disk(lim, node_id)					\
804 ({									\
805 	static struct lock_class_key __key;				\
806 									\
807 	__blk_alloc_disk(lim, node_id, &__key);				\
808 })
809 
810 int __register_blkdev(unsigned int major, const char *name,
811 		void (*probe)(dev_t devt));
812 #define register_blkdev(major, name) \
813 	__register_blkdev(major, name, NULL)
814 void unregister_blkdev(unsigned int major, const char *name);
815 
816 bool disk_check_media_change(struct gendisk *disk);
817 void set_capacity(struct gendisk *disk, sector_t size);
818 
819 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
820 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
821 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
822 #else
823 static inline int bd_link_disk_holder(struct block_device *bdev,
824 				      struct gendisk *disk)
825 {
826 	return 0;
827 }
828 static inline void bd_unlink_disk_holder(struct block_device *bdev,
829 					 struct gendisk *disk)
830 {
831 }
832 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
833 
834 dev_t part_devt(struct gendisk *disk, u8 partno);
835 void inc_diskseq(struct gendisk *disk);
836 void blk_request_module(dev_t devt);
837 
838 extern int blk_register_queue(struct gendisk *disk);
839 extern void blk_unregister_queue(struct gendisk *disk);
840 void submit_bio_noacct(struct bio *bio);
841 struct bio *bio_split_to_limits(struct bio *bio);
842 
843 extern int blk_lld_busy(struct request_queue *q);
844 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
845 extern void blk_queue_exit(struct request_queue *q);
846 extern void blk_sync_queue(struct request_queue *q);
847 
848 /* Helper to convert REQ_OP_XXX to its string format XXX */
849 extern const char *blk_op_str(enum req_op op);
850 
851 int blk_status_to_errno(blk_status_t status);
852 blk_status_t errno_to_blk_status(int errno);
853 const char *blk_status_to_str(blk_status_t status);
854 
855 /* only poll the hardware once, don't continue until a completion was found */
856 #define BLK_POLL_ONESHOT		(1 << 0)
857 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
858 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
859 			unsigned int flags);
860 
861 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
862 {
863 	return bdev->bd_queue;	/* this is never NULL */
864 }
865 
866 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
867 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
868 
869 static inline unsigned int bio_zone_no(struct bio *bio)
870 {
871 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
872 }
873 
874 static inline bool bio_straddles_zones(struct bio *bio)
875 {
876 	return bio_sectors(bio) &&
877 		bio_zone_no(bio) !=
878 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
879 }
880 
881 /*
882  * Return how much of the chunk is left to be used for I/O at a given offset.
883  */
884 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
885 		unsigned int chunk_sectors)
886 {
887 	if (unlikely(!is_power_of_2(chunk_sectors)))
888 		return chunk_sectors - sector_div(offset, chunk_sectors);
889 	return chunk_sectors - (offset & (chunk_sectors - 1));
890 }
891 
892 /**
893  * queue_limits_start_update - start an atomic update of queue limits
894  * @q:		queue to update
895  *
896  * This functions starts an atomic update of the queue limits.  It takes a lock
897  * to prevent other updates and returns a snapshot of the current limits that
898  * the caller can modify.  The caller must call queue_limits_commit_update()
899  * to finish the update.
900  *
901  * Context: process context.  The caller must have frozen the queue or ensured
902  * that there is outstanding I/O by other means.
903  */
904 static inline struct queue_limits
905 queue_limits_start_update(struct request_queue *q)
906 	__acquires(q->limits_lock)
907 {
908 	mutex_lock(&q->limits_lock);
909 	return q->limits;
910 }
911 int queue_limits_commit_update(struct request_queue *q,
912 		struct queue_limits *lim);
913 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
914 
915 /**
916  * queue_limits_cancel_update - cancel an atomic update of queue limits
917  * @q:		queue to update
918  *
919  * This functions cancels an atomic update of the queue limits started by
920  * queue_limits_start_update() and should be used when an error occurs after
921  * starting update.
922  */
923 static inline void queue_limits_cancel_update(struct request_queue *q)
924 {
925 	mutex_unlock(&q->limits_lock);
926 }
927 
928 /*
929  * Access functions for manipulating queue properties
930  */
931 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
932 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
933 		unsigned int max_sectors);
934 extern void blk_queue_max_discard_sectors(struct request_queue *q,
935 		unsigned int max_discard_sectors);
936 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
937 		unsigned int max_write_same_sectors);
938 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
939 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
940 		unsigned int max_zone_append_sectors);
941 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
942 void blk_queue_zone_write_granularity(struct request_queue *q,
943 				      unsigned int size);
944 extern void blk_queue_alignment_offset(struct request_queue *q,
945 				       unsigned int alignment);
946 void disk_update_readahead(struct gendisk *disk);
947 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
948 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
949 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
950 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
951 extern void blk_set_stacking_limits(struct queue_limits *lim);
952 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
953 			    sector_t offset);
954 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
955 		sector_t offset, const char *pfx);
956 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
957 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
958 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
959 
960 struct blk_independent_access_ranges *
961 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
962 void disk_set_independent_access_ranges(struct gendisk *disk,
963 				struct blk_independent_access_ranges *iars);
964 
965 bool __must_check blk_get_queue(struct request_queue *);
966 extern void blk_put_queue(struct request_queue *);
967 
968 void blk_mark_disk_dead(struct gendisk *disk);
969 
970 #ifdef CONFIG_BLOCK
971 /*
972  * blk_plug permits building a queue of related requests by holding the I/O
973  * fragments for a short period. This allows merging of sequential requests
974  * into single larger request. As the requests are moved from a per-task list to
975  * the device's request_queue in a batch, this results in improved scalability
976  * as the lock contention for request_queue lock is reduced.
977  *
978  * It is ok not to disable preemption when adding the request to the plug list
979  * or when attempting a merge. For details, please see schedule() where
980  * blk_flush_plug() is called.
981  */
982 struct blk_plug {
983 	struct request *mq_list; /* blk-mq requests */
984 
985 	/* if ios_left is > 1, we can batch tag/rq allocations */
986 	struct request *cached_rq;
987 	u64 cur_ktime;
988 	unsigned short nr_ios;
989 
990 	unsigned short rq_count;
991 
992 	bool multiple_queues;
993 	bool has_elevator;
994 
995 	struct list_head cb_list; /* md requires an unplug callback */
996 };
997 
998 struct blk_plug_cb;
999 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1000 struct blk_plug_cb {
1001 	struct list_head list;
1002 	blk_plug_cb_fn callback;
1003 	void *data;
1004 };
1005 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1006 					     void *data, int size);
1007 extern void blk_start_plug(struct blk_plug *);
1008 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1009 extern void blk_finish_plug(struct blk_plug *);
1010 
1011 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
1012 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1013 {
1014 	if (plug)
1015 		__blk_flush_plug(plug, async);
1016 }
1017 
1018 /*
1019  * tsk == current here
1020  */
1021 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1022 {
1023 	struct blk_plug *plug = tsk->plug;
1024 
1025 	if (plug)
1026 		plug->cur_ktime = 0;
1027 	current->flags &= ~PF_BLOCK_TS;
1028 }
1029 
1030 int blkdev_issue_flush(struct block_device *bdev);
1031 long nr_blockdev_pages(void);
1032 #else /* CONFIG_BLOCK */
1033 struct blk_plug {
1034 };
1035 
1036 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1037 					 unsigned short nr_ios)
1038 {
1039 }
1040 
1041 static inline void blk_start_plug(struct blk_plug *plug)
1042 {
1043 }
1044 
1045 static inline void blk_finish_plug(struct blk_plug *plug)
1046 {
1047 }
1048 
1049 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1050 {
1051 }
1052 
1053 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1054 {
1055 }
1056 
1057 static inline int blkdev_issue_flush(struct block_device *bdev)
1058 {
1059 	return 0;
1060 }
1061 
1062 static inline long nr_blockdev_pages(void)
1063 {
1064 	return 0;
1065 }
1066 #endif /* CONFIG_BLOCK */
1067 
1068 extern void blk_io_schedule(void);
1069 
1070 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1071 		sector_t nr_sects, gfp_t gfp_mask);
1072 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1073 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1074 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1075 		sector_t nr_sects, gfp_t gfp);
1076 
1077 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1078 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1079 
1080 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1081 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1082 		unsigned flags);
1083 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1084 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1085 
1086 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1087 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1088 {
1089 	return blkdev_issue_discard(sb->s_bdev,
1090 				    block << (sb->s_blocksize_bits -
1091 					      SECTOR_SHIFT),
1092 				    nr_blocks << (sb->s_blocksize_bits -
1093 						  SECTOR_SHIFT),
1094 				    gfp_mask);
1095 }
1096 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1097 		sector_t nr_blocks, gfp_t gfp_mask)
1098 {
1099 	return blkdev_issue_zeroout(sb->s_bdev,
1100 				    block << (sb->s_blocksize_bits -
1101 					      SECTOR_SHIFT),
1102 				    nr_blocks << (sb->s_blocksize_bits -
1103 						  SECTOR_SHIFT),
1104 				    gfp_mask, 0);
1105 }
1106 
1107 static inline bool bdev_is_partition(struct block_device *bdev)
1108 {
1109 	return bdev_partno(bdev) != 0;
1110 }
1111 
1112 enum blk_default_limits {
1113 	BLK_MAX_SEGMENTS	= 128,
1114 	BLK_SAFE_MAX_SECTORS	= 255,
1115 	BLK_MAX_SEGMENT_SIZE	= 65536,
1116 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1117 };
1118 
1119 /*
1120  * Default upper limit for the software max_sectors limit used for
1121  * regular file system I/O.  This can be increased through sysfs.
1122  *
1123  * Not to be confused with the max_hw_sector limit that is entirely
1124  * controlled by the driver, usually based on hardware limits.
1125  */
1126 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1127 
1128 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1129 {
1130 	return q->limits.seg_boundary_mask;
1131 }
1132 
1133 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1134 {
1135 	return q->limits.virt_boundary_mask;
1136 }
1137 
1138 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1139 {
1140 	return q->limits.max_sectors;
1141 }
1142 
1143 static inline unsigned int queue_max_bytes(struct request_queue *q)
1144 {
1145 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1146 }
1147 
1148 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1149 {
1150 	return q->limits.max_hw_sectors;
1151 }
1152 
1153 static inline unsigned short queue_max_segments(const struct request_queue *q)
1154 {
1155 	return q->limits.max_segments;
1156 }
1157 
1158 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1159 {
1160 	return q->limits.max_discard_segments;
1161 }
1162 
1163 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1164 {
1165 	return q->limits.max_segment_size;
1166 }
1167 
1168 static inline unsigned int queue_limits_max_zone_append_sectors(struct queue_limits *l)
1169 {
1170 	unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors);
1171 
1172 	return min_not_zero(l->max_zone_append_sectors, max_sectors);
1173 }
1174 
1175 static inline unsigned int queue_max_zone_append_sectors(struct request_queue *q)
1176 {
1177 	if (!blk_queue_is_zoned(q))
1178 		return 0;
1179 
1180 	return queue_limits_max_zone_append_sectors(&q->limits);
1181 }
1182 
1183 static inline bool queue_emulates_zone_append(struct request_queue *q)
1184 {
1185 	return blk_queue_is_zoned(q) && !q->limits.max_zone_append_sectors;
1186 }
1187 
1188 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1189 {
1190 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1191 }
1192 
1193 static inline unsigned int
1194 bdev_max_zone_append_sectors(struct block_device *bdev)
1195 {
1196 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1197 }
1198 
1199 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1200 {
1201 	return queue_max_segments(bdev_get_queue(bdev));
1202 }
1203 
1204 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1205 {
1206 	int retval = 512;
1207 
1208 	if (q && q->limits.logical_block_size)
1209 		retval = q->limits.logical_block_size;
1210 
1211 	return retval;
1212 }
1213 
1214 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1215 {
1216 	return queue_logical_block_size(bdev_get_queue(bdev));
1217 }
1218 
1219 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1220 {
1221 	return q->limits.physical_block_size;
1222 }
1223 
1224 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1225 {
1226 	return queue_physical_block_size(bdev_get_queue(bdev));
1227 }
1228 
1229 static inline unsigned int queue_io_min(const struct request_queue *q)
1230 {
1231 	return q->limits.io_min;
1232 }
1233 
1234 static inline int bdev_io_min(struct block_device *bdev)
1235 {
1236 	return queue_io_min(bdev_get_queue(bdev));
1237 }
1238 
1239 static inline unsigned int queue_io_opt(const struct request_queue *q)
1240 {
1241 	return q->limits.io_opt;
1242 }
1243 
1244 static inline int bdev_io_opt(struct block_device *bdev)
1245 {
1246 	return queue_io_opt(bdev_get_queue(bdev));
1247 }
1248 
1249 static inline unsigned int
1250 queue_zone_write_granularity(const struct request_queue *q)
1251 {
1252 	return q->limits.zone_write_granularity;
1253 }
1254 
1255 static inline unsigned int
1256 bdev_zone_write_granularity(struct block_device *bdev)
1257 {
1258 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1259 }
1260 
1261 int bdev_alignment_offset(struct block_device *bdev);
1262 unsigned int bdev_discard_alignment(struct block_device *bdev);
1263 
1264 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1265 {
1266 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1267 }
1268 
1269 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1270 {
1271 	return bdev_get_queue(bdev)->limits.discard_granularity;
1272 }
1273 
1274 static inline unsigned int
1275 bdev_max_secure_erase_sectors(struct block_device *bdev)
1276 {
1277 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1278 }
1279 
1280 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1281 {
1282 	struct request_queue *q = bdev_get_queue(bdev);
1283 
1284 	if (q)
1285 		return q->limits.max_write_zeroes_sectors;
1286 
1287 	return 0;
1288 }
1289 
1290 static inline bool bdev_nonrot(struct block_device *bdev)
1291 {
1292 	return blk_queue_nonrot(bdev_get_queue(bdev));
1293 }
1294 
1295 static inline bool bdev_synchronous(struct block_device *bdev)
1296 {
1297 	return test_bit(QUEUE_FLAG_SYNCHRONOUS,
1298 			&bdev_get_queue(bdev)->queue_flags);
1299 }
1300 
1301 static inline bool bdev_stable_writes(struct block_device *bdev)
1302 {
1303 	return test_bit(QUEUE_FLAG_STABLE_WRITES,
1304 			&bdev_get_queue(bdev)->queue_flags);
1305 }
1306 
1307 static inline bool bdev_write_cache(struct block_device *bdev)
1308 {
1309 	return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1310 }
1311 
1312 static inline bool bdev_fua(struct block_device *bdev)
1313 {
1314 	return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1315 }
1316 
1317 static inline bool bdev_nowait(struct block_device *bdev)
1318 {
1319 	return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
1320 }
1321 
1322 static inline bool bdev_is_zoned(struct block_device *bdev)
1323 {
1324 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1325 }
1326 
1327 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1328 {
1329 	return disk_zone_no(bdev->bd_disk, sec);
1330 }
1331 
1332 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1333 {
1334 	struct request_queue *q = bdev_get_queue(bdev);
1335 
1336 	if (!blk_queue_is_zoned(q))
1337 		return 0;
1338 	return q->limits.chunk_sectors;
1339 }
1340 
1341 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1342 						   sector_t sector)
1343 {
1344 	return sector & (bdev_zone_sectors(bdev) - 1);
1345 }
1346 
1347 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1348 {
1349 	return bdev_offset_from_zone_start(bio->bi_bdev,
1350 					   bio->bi_iter.bi_sector);
1351 }
1352 
1353 static inline bool bdev_is_zone_start(struct block_device *bdev,
1354 				      sector_t sector)
1355 {
1356 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1357 }
1358 
1359 static inline int queue_dma_alignment(const struct request_queue *q)
1360 {
1361 	return q ? q->limits.dma_alignment : 511;
1362 }
1363 
1364 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1365 {
1366 	return queue_dma_alignment(bdev_get_queue(bdev));
1367 }
1368 
1369 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1370 					struct iov_iter *iter)
1371 {
1372 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1373 				   bdev_logical_block_size(bdev) - 1);
1374 }
1375 
1376 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1377 				 unsigned int len)
1378 {
1379 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1380 	return !(addr & alignment) && !(len & alignment);
1381 }
1382 
1383 /* assumes size > 256 */
1384 static inline unsigned int blksize_bits(unsigned int size)
1385 {
1386 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1387 }
1388 
1389 int kblockd_schedule_work(struct work_struct *work);
1390 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1391 
1392 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1393 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1394 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1395 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1396 
1397 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1398 
1399 bool blk_crypto_register(struct blk_crypto_profile *profile,
1400 			 struct request_queue *q);
1401 
1402 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1403 
1404 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1405 				       struct request_queue *q)
1406 {
1407 	return true;
1408 }
1409 
1410 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1411 
1412 enum blk_unique_id {
1413 	/* these match the Designator Types specified in SPC */
1414 	BLK_UID_T10	= 1,
1415 	BLK_UID_EUI64	= 2,
1416 	BLK_UID_NAA	= 3,
1417 };
1418 
1419 struct block_device_operations {
1420 	void (*submit_bio)(struct bio *bio);
1421 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1422 			unsigned int flags);
1423 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1424 	void (*release)(struct gendisk *disk);
1425 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1426 			unsigned cmd, unsigned long arg);
1427 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1428 			unsigned cmd, unsigned long arg);
1429 	unsigned int (*check_events) (struct gendisk *disk,
1430 				      unsigned int clearing);
1431 	void (*unlock_native_capacity) (struct gendisk *);
1432 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1433 	int (*set_read_only)(struct block_device *bdev, bool ro);
1434 	void (*free_disk)(struct gendisk *disk);
1435 	/* this callback is with swap_lock and sometimes page table lock held */
1436 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1437 	int (*report_zones)(struct gendisk *, sector_t sector,
1438 			unsigned int nr_zones, report_zones_cb cb, void *data);
1439 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1440 	/* returns the length of the identifier or a negative errno: */
1441 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1442 			enum blk_unique_id id_type);
1443 	struct module *owner;
1444 	const struct pr_ops *pr_ops;
1445 
1446 	/*
1447 	 * Special callback for probing GPT entry at a given sector.
1448 	 * Needed by Android devices, used by GPT scanner and MMC blk
1449 	 * driver.
1450 	 */
1451 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1452 };
1453 
1454 #ifdef CONFIG_COMPAT
1455 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1456 				      unsigned int, unsigned long);
1457 #else
1458 #define blkdev_compat_ptr_ioctl NULL
1459 #endif
1460 
1461 static inline void blk_wake_io_task(struct task_struct *waiter)
1462 {
1463 	/*
1464 	 * If we're polling, the task itself is doing the completions. For
1465 	 * that case, we don't need to signal a wakeup, it's enough to just
1466 	 * mark us as RUNNING.
1467 	 */
1468 	if (waiter == current)
1469 		__set_current_state(TASK_RUNNING);
1470 	else
1471 		wake_up_process(waiter);
1472 }
1473 
1474 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1475 				 unsigned long start_time);
1476 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1477 		      unsigned int sectors, unsigned long start_time);
1478 
1479 unsigned long bio_start_io_acct(struct bio *bio);
1480 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1481 		struct block_device *orig_bdev);
1482 
1483 /**
1484  * bio_end_io_acct - end I/O accounting for bio based drivers
1485  * @bio:	bio to end account for
1486  * @start_time:	start time returned by bio_start_io_acct()
1487  */
1488 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1489 {
1490 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1491 }
1492 
1493 int bdev_read_only(struct block_device *bdev);
1494 int set_blocksize(struct file *file, int size);
1495 
1496 int lookup_bdev(const char *pathname, dev_t *dev);
1497 
1498 void blkdev_show(struct seq_file *seqf, off_t offset);
1499 
1500 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1501 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1502 #ifdef CONFIG_BLOCK
1503 #define BLKDEV_MAJOR_MAX	512
1504 #else
1505 #define BLKDEV_MAJOR_MAX	0
1506 #endif
1507 
1508 struct blk_holder_ops {
1509 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1510 
1511 	/*
1512 	 * Sync the file system mounted on the block device.
1513 	 */
1514 	void (*sync)(struct block_device *bdev);
1515 
1516 	/*
1517 	 * Freeze the file system mounted on the block device.
1518 	 */
1519 	int (*freeze)(struct block_device *bdev);
1520 
1521 	/*
1522 	 * Thaw the file system mounted on the block device.
1523 	 */
1524 	int (*thaw)(struct block_device *bdev);
1525 };
1526 
1527 /*
1528  * For filesystems using @fs_holder_ops, the @holder argument passed to
1529  * helpers used to open and claim block devices via
1530  * bd_prepare_to_claim() must point to a superblock.
1531  */
1532 extern const struct blk_holder_ops fs_holder_ops;
1533 
1534 /*
1535  * Return the correct open flags for blkdev_get_by_* for super block flags
1536  * as stored in sb->s_flags.
1537  */
1538 #define sb_open_mode(flags) \
1539 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1540 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1541 
1542 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1543 		const struct blk_holder_ops *hops);
1544 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1545 		void *holder, const struct blk_holder_ops *hops);
1546 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1547 		const struct blk_holder_ops *hops);
1548 void bd_abort_claiming(struct block_device *bdev, void *holder);
1549 
1550 /* just for blk-cgroup, don't use elsewhere */
1551 struct block_device *blkdev_get_no_open(dev_t dev);
1552 void blkdev_put_no_open(struct block_device *bdev);
1553 
1554 struct block_device *I_BDEV(struct inode *inode);
1555 struct block_device *file_bdev(struct file *bdev_file);
1556 bool disk_live(struct gendisk *disk);
1557 unsigned int block_size(struct block_device *bdev);
1558 
1559 #ifdef CONFIG_BLOCK
1560 void invalidate_bdev(struct block_device *bdev);
1561 int sync_blockdev(struct block_device *bdev);
1562 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1563 int sync_blockdev_nowait(struct block_device *bdev);
1564 void sync_bdevs(bool wait);
1565 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1566 void printk_all_partitions(void);
1567 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1568 #else
1569 static inline void invalidate_bdev(struct block_device *bdev)
1570 {
1571 }
1572 static inline int sync_blockdev(struct block_device *bdev)
1573 {
1574 	return 0;
1575 }
1576 static inline int sync_blockdev_nowait(struct block_device *bdev)
1577 {
1578 	return 0;
1579 }
1580 static inline void sync_bdevs(bool wait)
1581 {
1582 }
1583 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1584 {
1585 }
1586 static inline void printk_all_partitions(void)
1587 {
1588 }
1589 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1590 {
1591 	return -EINVAL;
1592 }
1593 #endif /* CONFIG_BLOCK */
1594 
1595 int bdev_freeze(struct block_device *bdev);
1596 int bdev_thaw(struct block_device *bdev);
1597 void bdev_fput(struct file *bdev_file);
1598 
1599 struct io_comp_batch {
1600 	struct request *req_list;
1601 	bool need_ts;
1602 	void (*complete)(struct io_comp_batch *);
1603 };
1604 
1605 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1606 
1607 #endif /* _LINUX_BLKDEV_H */
1608