1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 31 struct module; 32 struct scsi_ioctl_command; 33 34 struct request_queue; 35 struct elevator_queue; 36 struct blk_trace; 37 struct request; 38 struct sg_io_hdr; 39 struct bsg_job; 40 struct blkcg_gq; 41 struct blk_flush_queue; 42 struct pr_ops; 43 struct rq_qos; 44 struct blk_queue_stats; 45 struct blk_stat_callback; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* elevator knows about this request */ 69 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70 /* drive already may have started this one */ 71 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72 /* may not be passed by ioscheduler */ 73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74 /* request for flush sequence */ 75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76 /* merge of different types, fail separately */ 77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78 /* track inflight for MQ */ 79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80 /* don't call prep for this one */ 81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82 /* set for "ide_preempt" requests and also for requests for which the SCSI 83 "quiesce" state must be ignored. */ 84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 85 /* contains copies of user pages */ 86 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 87 /* vaguely specified driver internal error. Ignored by the block layer */ 88 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 89 /* don't warn about errors */ 90 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 91 /* elevator private data attached */ 92 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 93 /* account into disk and partition IO statistics */ 94 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 95 /* request came from our alloc pool */ 96 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 97 /* runtime pm request */ 98 #define RQF_PM ((__force req_flags_t)(1 << 15)) 99 /* on IO scheduler merge hash */ 100 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 101 /* track IO completion time */ 102 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 103 /* Look at ->special_vec for the actual data payload instead of the 104 bio chain. */ 105 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 106 /* The per-zone write lock is held for this request */ 107 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 108 /* already slept for hybrid poll */ 109 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 110 /* ->timeout has been called, don't expire again */ 111 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 112 113 /* flags that prevent us from merging requests: */ 114 #define RQF_NOMERGE_FLAGS \ 115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 116 117 /* 118 * Request state for blk-mq. 119 */ 120 enum mq_rq_state { 121 MQ_RQ_IDLE = 0, 122 MQ_RQ_IN_FLIGHT = 1, 123 MQ_RQ_COMPLETE = 2, 124 }; 125 126 /* 127 * Try to put the fields that are referenced together in the same cacheline. 128 * 129 * If you modify this structure, make sure to update blk_rq_init() and 130 * especially blk_mq_rq_ctx_init() to take care of the added fields. 131 */ 132 struct request { 133 struct request_queue *q; 134 struct blk_mq_ctx *mq_ctx; 135 struct blk_mq_hw_ctx *mq_hctx; 136 137 unsigned int cmd_flags; /* op and common flags */ 138 req_flags_t rq_flags; 139 140 int tag; 141 int internal_tag; 142 143 /* the following two fields are internal, NEVER access directly */ 144 unsigned int __data_len; /* total data len */ 145 sector_t __sector; /* sector cursor */ 146 147 struct bio *bio; 148 struct bio *biotail; 149 150 struct list_head queuelist; 151 152 /* 153 * The hash is used inside the scheduler, and killed once the 154 * request reaches the dispatch list. The ipi_list is only used 155 * to queue the request for softirq completion, which is long 156 * after the request has been unhashed (and even removed from 157 * the dispatch list). 158 */ 159 union { 160 struct hlist_node hash; /* merge hash */ 161 struct list_head ipi_list; 162 }; 163 164 /* 165 * The rb_node is only used inside the io scheduler, requests 166 * are pruned when moved to the dispatch queue. So let the 167 * completion_data share space with the rb_node. 168 */ 169 union { 170 struct rb_node rb_node; /* sort/lookup */ 171 struct bio_vec special_vec; 172 void *completion_data; 173 int error_count; /* for legacy drivers, don't use */ 174 }; 175 176 /* 177 * Three pointers are available for the IO schedulers, if they need 178 * more they have to dynamically allocate it. Flush requests are 179 * never put on the IO scheduler. So let the flush fields share 180 * space with the elevator data. 181 */ 182 union { 183 struct { 184 struct io_cq *icq; 185 void *priv[2]; 186 } elv; 187 188 struct { 189 unsigned int seq; 190 struct list_head list; 191 rq_end_io_fn *saved_end_io; 192 } flush; 193 }; 194 195 struct gendisk *rq_disk; 196 struct hd_struct *part; 197 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 198 /* Time that the first bio started allocating this request. */ 199 u64 alloc_time_ns; 200 #endif 201 /* Time that this request was allocated for this IO. */ 202 u64 start_time_ns; 203 /* Time that I/O was submitted to the device. */ 204 u64 io_start_time_ns; 205 206 #ifdef CONFIG_BLK_WBT 207 unsigned short wbt_flags; 208 #endif 209 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 210 unsigned short throtl_size; 211 #endif 212 213 /* 214 * Number of scatter-gather DMA addr+len pairs after 215 * physical address coalescing is performed. 216 */ 217 unsigned short nr_phys_segments; 218 219 #if defined(CONFIG_BLK_DEV_INTEGRITY) 220 unsigned short nr_integrity_segments; 221 #endif 222 223 unsigned short write_hint; 224 unsigned short ioprio; 225 226 unsigned int extra_len; /* length of alignment and padding */ 227 228 enum mq_rq_state state; 229 refcount_t ref; 230 231 unsigned int timeout; 232 unsigned long deadline; 233 234 union { 235 struct __call_single_data csd; 236 u64 fifo_time; 237 }; 238 239 /* 240 * completion callback. 241 */ 242 rq_end_io_fn *end_io; 243 void *end_io_data; 244 }; 245 246 static inline bool blk_op_is_scsi(unsigned int op) 247 { 248 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 249 } 250 251 static inline bool blk_op_is_private(unsigned int op) 252 { 253 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 254 } 255 256 static inline bool blk_rq_is_scsi(struct request *rq) 257 { 258 return blk_op_is_scsi(req_op(rq)); 259 } 260 261 static inline bool blk_rq_is_private(struct request *rq) 262 { 263 return blk_op_is_private(req_op(rq)); 264 } 265 266 static inline bool blk_rq_is_passthrough(struct request *rq) 267 { 268 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 269 } 270 271 static inline bool bio_is_passthrough(struct bio *bio) 272 { 273 unsigned op = bio_op(bio); 274 275 return blk_op_is_scsi(op) || blk_op_is_private(op); 276 } 277 278 static inline unsigned short req_get_ioprio(struct request *req) 279 { 280 return req->ioprio; 281 } 282 283 #include <linux/elevator.h> 284 285 struct blk_queue_ctx; 286 287 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 288 289 struct bio_vec; 290 typedef int (dma_drain_needed_fn)(struct request *); 291 292 enum blk_eh_timer_return { 293 BLK_EH_DONE, /* drivers has completed the command */ 294 BLK_EH_RESET_TIMER, /* reset timer and try again */ 295 }; 296 297 enum blk_queue_state { 298 Queue_down, 299 Queue_up, 300 }; 301 302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 304 305 #define BLK_SCSI_MAX_CMDS (256) 306 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 307 308 /* 309 * Zoned block device models (zoned limit). 310 */ 311 enum blk_zoned_model { 312 BLK_ZONED_NONE, /* Regular block device */ 313 BLK_ZONED_HA, /* Host-aware zoned block device */ 314 BLK_ZONED_HM, /* Host-managed zoned block device */ 315 }; 316 317 struct queue_limits { 318 unsigned long bounce_pfn; 319 unsigned long seg_boundary_mask; 320 unsigned long virt_boundary_mask; 321 322 unsigned int max_hw_sectors; 323 unsigned int max_dev_sectors; 324 unsigned int chunk_sectors; 325 unsigned int max_sectors; 326 unsigned int max_segment_size; 327 unsigned int physical_block_size; 328 unsigned int alignment_offset; 329 unsigned int io_min; 330 unsigned int io_opt; 331 unsigned int max_discard_sectors; 332 unsigned int max_hw_discard_sectors; 333 unsigned int max_write_same_sectors; 334 unsigned int max_write_zeroes_sectors; 335 unsigned int discard_granularity; 336 unsigned int discard_alignment; 337 338 unsigned short logical_block_size; 339 unsigned short max_segments; 340 unsigned short max_integrity_segments; 341 unsigned short max_discard_segments; 342 343 unsigned char misaligned; 344 unsigned char discard_misaligned; 345 unsigned char raid_partial_stripes_expensive; 346 enum blk_zoned_model zoned; 347 }; 348 349 #ifdef CONFIG_BLK_DEV_ZONED 350 351 /* 352 * Maximum number of zones to report with a single report zones command. 353 */ 354 #define BLK_ZONED_REPORT_MAX_ZONES 8192U 355 356 extern unsigned int blkdev_nr_zones(struct block_device *bdev); 357 extern int blkdev_report_zones(struct block_device *bdev, 358 sector_t sector, struct blk_zone *zones, 359 unsigned int *nr_zones); 360 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 361 sector_t nr_sectors, gfp_t gfp_mask); 362 extern int blk_revalidate_disk_zones(struct gendisk *disk); 363 364 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 365 unsigned int cmd, unsigned long arg); 366 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 367 unsigned int cmd, unsigned long arg); 368 369 #else /* CONFIG_BLK_DEV_ZONED */ 370 371 static inline unsigned int blkdev_nr_zones(struct block_device *bdev) 372 { 373 return 0; 374 } 375 376 static inline int blk_revalidate_disk_zones(struct gendisk *disk) 377 { 378 return 0; 379 } 380 381 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 382 fmode_t mode, unsigned int cmd, 383 unsigned long arg) 384 { 385 return -ENOTTY; 386 } 387 388 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 389 fmode_t mode, unsigned int cmd, 390 unsigned long arg) 391 { 392 return -ENOTTY; 393 } 394 395 #endif /* CONFIG_BLK_DEV_ZONED */ 396 397 struct request_queue { 398 struct request *last_merge; 399 struct elevator_queue *elevator; 400 401 struct blk_queue_stats *stats; 402 struct rq_qos *rq_qos; 403 404 make_request_fn *make_request_fn; 405 dma_drain_needed_fn *dma_drain_needed; 406 407 const struct blk_mq_ops *mq_ops; 408 409 /* sw queues */ 410 struct blk_mq_ctx __percpu *queue_ctx; 411 unsigned int nr_queues; 412 413 unsigned int queue_depth; 414 415 /* hw dispatch queues */ 416 struct blk_mq_hw_ctx **queue_hw_ctx; 417 unsigned int nr_hw_queues; 418 419 struct backing_dev_info *backing_dev_info; 420 421 /* 422 * The queue owner gets to use this for whatever they like. 423 * ll_rw_blk doesn't touch it. 424 */ 425 void *queuedata; 426 427 /* 428 * various queue flags, see QUEUE_* below 429 */ 430 unsigned long queue_flags; 431 /* 432 * Number of contexts that have called blk_set_pm_only(). If this 433 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 434 * processed. 435 */ 436 atomic_t pm_only; 437 438 /* 439 * ida allocated id for this queue. Used to index queues from 440 * ioctx. 441 */ 442 int id; 443 444 /* 445 * queue needs bounce pages for pages above this limit 446 */ 447 gfp_t bounce_gfp; 448 449 spinlock_t queue_lock; 450 451 /* 452 * queue kobject 453 */ 454 struct kobject kobj; 455 456 /* 457 * mq queue kobject 458 */ 459 struct kobject *mq_kobj; 460 461 #ifdef CONFIG_BLK_DEV_INTEGRITY 462 struct blk_integrity integrity; 463 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 464 465 #ifdef CONFIG_PM 466 struct device *dev; 467 int rpm_status; 468 unsigned int nr_pending; 469 #endif 470 471 /* 472 * queue settings 473 */ 474 unsigned long nr_requests; /* Max # of requests */ 475 476 unsigned int dma_drain_size; 477 void *dma_drain_buffer; 478 unsigned int dma_pad_mask; 479 unsigned int dma_alignment; 480 481 unsigned int rq_timeout; 482 int poll_nsec; 483 484 struct blk_stat_callback *poll_cb; 485 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 486 487 struct timer_list timeout; 488 struct work_struct timeout_work; 489 490 struct list_head icq_list; 491 #ifdef CONFIG_BLK_CGROUP 492 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 493 struct blkcg_gq *root_blkg; 494 struct list_head blkg_list; 495 #endif 496 497 struct queue_limits limits; 498 499 #ifdef CONFIG_BLK_DEV_ZONED 500 /* 501 * Zoned block device information for request dispatch control. 502 * nr_zones is the total number of zones of the device. This is always 503 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones 504 * bits which indicates if a zone is conventional (bit clear) or 505 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones 506 * bits which indicates if a zone is write locked, that is, if a write 507 * request targeting the zone was dispatched. All three fields are 508 * initialized by the low level device driver (e.g. scsi/sd.c). 509 * Stacking drivers (device mappers) may or may not initialize 510 * these fields. 511 * 512 * Reads of this information must be protected with blk_queue_enter() / 513 * blk_queue_exit(). Modifying this information is only allowed while 514 * no requests are being processed. See also blk_mq_freeze_queue() and 515 * blk_mq_unfreeze_queue(). 516 */ 517 unsigned int nr_zones; 518 unsigned long *seq_zones_bitmap; 519 unsigned long *seq_zones_wlock; 520 #endif /* CONFIG_BLK_DEV_ZONED */ 521 522 /* 523 * sg stuff 524 */ 525 unsigned int sg_timeout; 526 unsigned int sg_reserved_size; 527 int node; 528 #ifdef CONFIG_BLK_DEV_IO_TRACE 529 struct blk_trace *blk_trace; 530 struct mutex blk_trace_mutex; 531 #endif 532 /* 533 * for flush operations 534 */ 535 struct blk_flush_queue *fq; 536 537 struct list_head requeue_list; 538 spinlock_t requeue_lock; 539 struct delayed_work requeue_work; 540 541 struct mutex sysfs_lock; 542 struct mutex sysfs_dir_lock; 543 544 /* 545 * for reusing dead hctx instance in case of updating 546 * nr_hw_queues 547 */ 548 struct list_head unused_hctx_list; 549 spinlock_t unused_hctx_lock; 550 551 int mq_freeze_depth; 552 553 #if defined(CONFIG_BLK_DEV_BSG) 554 struct bsg_class_device bsg_dev; 555 #endif 556 557 #ifdef CONFIG_BLK_DEV_THROTTLING 558 /* Throttle data */ 559 struct throtl_data *td; 560 #endif 561 struct rcu_head rcu_head; 562 wait_queue_head_t mq_freeze_wq; 563 /* 564 * Protect concurrent access to q_usage_counter by 565 * percpu_ref_kill() and percpu_ref_reinit(). 566 */ 567 struct mutex mq_freeze_lock; 568 struct percpu_ref q_usage_counter; 569 570 struct blk_mq_tag_set *tag_set; 571 struct list_head tag_set_list; 572 struct bio_set bio_split; 573 574 #ifdef CONFIG_BLK_DEBUG_FS 575 struct dentry *debugfs_dir; 576 struct dentry *sched_debugfs_dir; 577 struct dentry *rqos_debugfs_dir; 578 #endif 579 580 bool mq_sysfs_init_done; 581 582 size_t cmd_size; 583 584 struct work_struct release_work; 585 586 #define BLK_MAX_WRITE_HINTS 5 587 u64 write_hints[BLK_MAX_WRITE_HINTS]; 588 }; 589 590 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 591 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 592 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 593 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 594 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 595 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 596 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 597 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 598 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 599 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 600 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 601 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 602 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 603 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 604 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 605 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 606 #define QUEUE_FLAG_WC 17 /* Write back caching */ 607 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 608 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 609 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 610 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 611 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 612 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 613 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 614 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 615 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 616 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 617 618 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 619 (1 << QUEUE_FLAG_SAME_COMP)) 620 621 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 622 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 623 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 624 625 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 626 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 627 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 628 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 629 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 630 #define blk_queue_noxmerges(q) \ 631 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 632 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 633 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 634 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 635 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 636 #define blk_queue_zone_resetall(q) \ 637 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 638 #define blk_queue_secure_erase(q) \ 639 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 640 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 641 #define blk_queue_scsi_passthrough(q) \ 642 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 643 #define blk_queue_pci_p2pdma(q) \ 644 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 645 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 646 #define blk_queue_rq_alloc_time(q) \ 647 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 648 #else 649 #define blk_queue_rq_alloc_time(q) false 650 #endif 651 652 #define blk_noretry_request(rq) \ 653 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 654 REQ_FAILFAST_DRIVER)) 655 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 656 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 657 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 658 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 659 660 extern void blk_set_pm_only(struct request_queue *q); 661 extern void blk_clear_pm_only(struct request_queue *q); 662 663 static inline bool blk_account_rq(struct request *rq) 664 { 665 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 666 } 667 668 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 669 670 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 671 672 #define rq_dma_dir(rq) \ 673 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 674 675 #define dma_map_bvec(dev, bv, dir, attrs) \ 676 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 677 (dir), (attrs)) 678 679 static inline bool queue_is_mq(struct request_queue *q) 680 { 681 return q->mq_ops; 682 } 683 684 static inline enum blk_zoned_model 685 blk_queue_zoned_model(struct request_queue *q) 686 { 687 return q->limits.zoned; 688 } 689 690 static inline bool blk_queue_is_zoned(struct request_queue *q) 691 { 692 switch (blk_queue_zoned_model(q)) { 693 case BLK_ZONED_HA: 694 case BLK_ZONED_HM: 695 return true; 696 default: 697 return false; 698 } 699 } 700 701 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 702 { 703 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 704 } 705 706 #ifdef CONFIG_BLK_DEV_ZONED 707 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 708 { 709 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 710 } 711 712 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 713 sector_t sector) 714 { 715 if (!blk_queue_is_zoned(q)) 716 return 0; 717 return sector >> ilog2(q->limits.chunk_sectors); 718 } 719 720 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 721 sector_t sector) 722 { 723 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) 724 return false; 725 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); 726 } 727 #else /* CONFIG_BLK_DEV_ZONED */ 728 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 729 { 730 return 0; 731 } 732 #endif /* CONFIG_BLK_DEV_ZONED */ 733 734 static inline bool rq_is_sync(struct request *rq) 735 { 736 return op_is_sync(rq->cmd_flags); 737 } 738 739 static inline bool rq_mergeable(struct request *rq) 740 { 741 if (blk_rq_is_passthrough(rq)) 742 return false; 743 744 if (req_op(rq) == REQ_OP_FLUSH) 745 return false; 746 747 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 748 return false; 749 750 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 751 return false; 752 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 753 return false; 754 755 return true; 756 } 757 758 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 759 { 760 if (bio_page(a) == bio_page(b) && 761 bio_offset(a) == bio_offset(b)) 762 return true; 763 764 return false; 765 } 766 767 static inline unsigned int blk_queue_depth(struct request_queue *q) 768 { 769 if (q->queue_depth) 770 return q->queue_depth; 771 772 return q->nr_requests; 773 } 774 775 extern unsigned long blk_max_low_pfn, blk_max_pfn; 776 777 /* 778 * standard bounce addresses: 779 * 780 * BLK_BOUNCE_HIGH : bounce all highmem pages 781 * BLK_BOUNCE_ANY : don't bounce anything 782 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 783 */ 784 785 #if BITS_PER_LONG == 32 786 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 787 #else 788 #define BLK_BOUNCE_HIGH -1ULL 789 #endif 790 #define BLK_BOUNCE_ANY (-1ULL) 791 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 792 793 /* 794 * default timeout for SG_IO if none specified 795 */ 796 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 797 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 798 799 struct rq_map_data { 800 struct page **pages; 801 int page_order; 802 int nr_entries; 803 unsigned long offset; 804 int null_mapped; 805 int from_user; 806 }; 807 808 struct req_iterator { 809 struct bvec_iter iter; 810 struct bio *bio; 811 }; 812 813 /* This should not be used directly - use rq_for_each_segment */ 814 #define for_each_bio(_bio) \ 815 for (; _bio; _bio = _bio->bi_next) 816 #define __rq_for_each_bio(_bio, rq) \ 817 if ((rq->bio)) \ 818 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 819 820 #define rq_for_each_segment(bvl, _rq, _iter) \ 821 __rq_for_each_bio(_iter.bio, _rq) \ 822 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 823 824 #define rq_for_each_bvec(bvl, _rq, _iter) \ 825 __rq_for_each_bio(_iter.bio, _rq) \ 826 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 827 828 #define rq_iter_last(bvec, _iter) \ 829 (_iter.bio->bi_next == NULL && \ 830 bio_iter_last(bvec, _iter.iter)) 831 832 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 833 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 834 #endif 835 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 836 extern void rq_flush_dcache_pages(struct request *rq); 837 #else 838 static inline void rq_flush_dcache_pages(struct request *rq) 839 { 840 } 841 #endif 842 843 extern int blk_register_queue(struct gendisk *disk); 844 extern void blk_unregister_queue(struct gendisk *disk); 845 extern blk_qc_t generic_make_request(struct bio *bio); 846 extern blk_qc_t direct_make_request(struct bio *bio); 847 extern void blk_rq_init(struct request_queue *q, struct request *rq); 848 extern void blk_put_request(struct request *); 849 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 850 blk_mq_req_flags_t flags); 851 extern int blk_lld_busy(struct request_queue *q); 852 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 853 struct bio_set *bs, gfp_t gfp_mask, 854 int (*bio_ctr)(struct bio *, struct bio *, void *), 855 void *data); 856 extern void blk_rq_unprep_clone(struct request *rq); 857 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 858 struct request *rq); 859 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 860 extern void blk_queue_split(struct request_queue *, struct bio **); 861 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 862 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 863 unsigned int, void __user *); 864 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 865 unsigned int, void __user *); 866 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 867 struct scsi_ioctl_command __user *); 868 869 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 870 extern void blk_queue_exit(struct request_queue *q); 871 extern void blk_sync_queue(struct request_queue *q); 872 extern int blk_rq_map_user(struct request_queue *, struct request *, 873 struct rq_map_data *, void __user *, unsigned long, 874 gfp_t); 875 extern int blk_rq_unmap_user(struct bio *); 876 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 877 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 878 struct rq_map_data *, const struct iov_iter *, 879 gfp_t); 880 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 881 struct request *, int); 882 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 883 struct request *, int, rq_end_io_fn *); 884 885 /* Helper to convert REQ_OP_XXX to its string format XXX */ 886 extern const char *blk_op_str(unsigned int op); 887 888 int blk_status_to_errno(blk_status_t status); 889 blk_status_t errno_to_blk_status(int errno); 890 891 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 892 893 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 894 { 895 return bdev->bd_disk->queue; /* this is never NULL */ 896 } 897 898 /* 899 * The basic unit of block I/O is a sector. It is used in a number of contexts 900 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 901 * bytes. Variables of type sector_t represent an offset or size that is a 902 * multiple of 512 bytes. Hence these two constants. 903 */ 904 #ifndef SECTOR_SHIFT 905 #define SECTOR_SHIFT 9 906 #endif 907 #ifndef SECTOR_SIZE 908 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 909 #endif 910 911 /* 912 * blk_rq_pos() : the current sector 913 * blk_rq_bytes() : bytes left in the entire request 914 * blk_rq_cur_bytes() : bytes left in the current segment 915 * blk_rq_err_bytes() : bytes left till the next error boundary 916 * blk_rq_sectors() : sectors left in the entire request 917 * blk_rq_cur_sectors() : sectors left in the current segment 918 */ 919 static inline sector_t blk_rq_pos(const struct request *rq) 920 { 921 return rq->__sector; 922 } 923 924 static inline unsigned int blk_rq_bytes(const struct request *rq) 925 { 926 return rq->__data_len; 927 } 928 929 static inline int blk_rq_cur_bytes(const struct request *rq) 930 { 931 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 932 } 933 934 extern unsigned int blk_rq_err_bytes(const struct request *rq); 935 936 static inline unsigned int blk_rq_sectors(const struct request *rq) 937 { 938 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 939 } 940 941 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 942 { 943 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 944 } 945 946 #ifdef CONFIG_BLK_DEV_ZONED 947 static inline unsigned int blk_rq_zone_no(struct request *rq) 948 { 949 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 950 } 951 952 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 953 { 954 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 955 } 956 #endif /* CONFIG_BLK_DEV_ZONED */ 957 958 /* 959 * Some commands like WRITE SAME have a payload or data transfer size which 960 * is different from the size of the request. Any driver that supports such 961 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 962 * calculate the data transfer size. 963 */ 964 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 965 { 966 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 967 return rq->special_vec.bv_len; 968 return blk_rq_bytes(rq); 969 } 970 971 /* 972 * Return the first full biovec in the request. The caller needs to check that 973 * there are any bvecs before calling this helper. 974 */ 975 static inline struct bio_vec req_bvec(struct request *rq) 976 { 977 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 978 return rq->special_vec; 979 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 980 } 981 982 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 983 int op) 984 { 985 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 986 return min(q->limits.max_discard_sectors, 987 UINT_MAX >> SECTOR_SHIFT); 988 989 if (unlikely(op == REQ_OP_WRITE_SAME)) 990 return q->limits.max_write_same_sectors; 991 992 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 993 return q->limits.max_write_zeroes_sectors; 994 995 return q->limits.max_sectors; 996 } 997 998 /* 999 * Return maximum size of a request at given offset. Only valid for 1000 * file system requests. 1001 */ 1002 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1003 sector_t offset) 1004 { 1005 if (!q->limits.chunk_sectors) 1006 return q->limits.max_sectors; 1007 1008 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1009 (offset & (q->limits.chunk_sectors - 1)))); 1010 } 1011 1012 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1013 sector_t offset) 1014 { 1015 struct request_queue *q = rq->q; 1016 1017 if (blk_rq_is_passthrough(rq)) 1018 return q->limits.max_hw_sectors; 1019 1020 if (!q->limits.chunk_sectors || 1021 req_op(rq) == REQ_OP_DISCARD || 1022 req_op(rq) == REQ_OP_SECURE_ERASE) 1023 return blk_queue_get_max_sectors(q, req_op(rq)); 1024 1025 return min(blk_max_size_offset(q, offset), 1026 blk_queue_get_max_sectors(q, req_op(rq))); 1027 } 1028 1029 static inline unsigned int blk_rq_count_bios(struct request *rq) 1030 { 1031 unsigned int nr_bios = 0; 1032 struct bio *bio; 1033 1034 __rq_for_each_bio(bio, rq) 1035 nr_bios++; 1036 1037 return nr_bios; 1038 } 1039 1040 void blk_steal_bios(struct bio_list *list, struct request *rq); 1041 1042 /* 1043 * Request completion related functions. 1044 * 1045 * blk_update_request() completes given number of bytes and updates 1046 * the request without completing it. 1047 */ 1048 extern bool blk_update_request(struct request *rq, blk_status_t error, 1049 unsigned int nr_bytes); 1050 1051 extern void __blk_complete_request(struct request *); 1052 extern void blk_abort_request(struct request *); 1053 1054 /* 1055 * Access functions for manipulating queue properties 1056 */ 1057 extern void blk_cleanup_queue(struct request_queue *); 1058 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1059 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1060 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1061 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1062 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1063 extern void blk_queue_max_discard_segments(struct request_queue *, 1064 unsigned short); 1065 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1066 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1067 unsigned int max_discard_sectors); 1068 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1069 unsigned int max_write_same_sectors); 1070 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1071 unsigned int max_write_same_sectors); 1072 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1073 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1074 extern void blk_queue_alignment_offset(struct request_queue *q, 1075 unsigned int alignment); 1076 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1077 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1078 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1079 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1080 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1081 extern void blk_set_default_limits(struct queue_limits *lim); 1082 extern void blk_set_stacking_limits(struct queue_limits *lim); 1083 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1084 sector_t offset); 1085 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1086 sector_t offset); 1087 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1088 sector_t offset); 1089 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1090 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1091 extern int blk_queue_dma_drain(struct request_queue *q, 1092 dma_drain_needed_fn *dma_drain_needed, 1093 void *buf, unsigned int size); 1094 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1095 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1096 extern void blk_queue_dma_alignment(struct request_queue *, int); 1097 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1098 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1099 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1100 1101 /* 1102 * Number of physical segments as sent to the device. 1103 * 1104 * Normally this is the number of discontiguous data segments sent by the 1105 * submitter. But for data-less command like discard we might have no 1106 * actual data segments submitted, but the driver might have to add it's 1107 * own special payload. In that case we still return 1 here so that this 1108 * special payload will be mapped. 1109 */ 1110 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1111 { 1112 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1113 return 1; 1114 return rq->nr_phys_segments; 1115 } 1116 1117 /* 1118 * Number of discard segments (or ranges) the driver needs to fill in. 1119 * Each discard bio merged into a request is counted as one segment. 1120 */ 1121 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1122 { 1123 return max_t(unsigned short, rq->nr_phys_segments, 1); 1124 } 1125 1126 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1127 extern void blk_dump_rq_flags(struct request *, char *); 1128 extern long nr_blockdev_pages(void); 1129 1130 bool __must_check blk_get_queue(struct request_queue *); 1131 struct request_queue *blk_alloc_queue(gfp_t); 1132 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id); 1133 extern void blk_put_queue(struct request_queue *); 1134 extern void blk_set_queue_dying(struct request_queue *); 1135 1136 /* 1137 * blk_plug permits building a queue of related requests by holding the I/O 1138 * fragments for a short period. This allows merging of sequential requests 1139 * into single larger request. As the requests are moved from a per-task list to 1140 * the device's request_queue in a batch, this results in improved scalability 1141 * as the lock contention for request_queue lock is reduced. 1142 * 1143 * It is ok not to disable preemption when adding the request to the plug list 1144 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1145 * the plug list when the task sleeps by itself. For details, please see 1146 * schedule() where blk_schedule_flush_plug() is called. 1147 */ 1148 struct blk_plug { 1149 struct list_head mq_list; /* blk-mq requests */ 1150 struct list_head cb_list; /* md requires an unplug callback */ 1151 unsigned short rq_count; 1152 bool multiple_queues; 1153 }; 1154 #define BLK_MAX_REQUEST_COUNT 16 1155 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1156 1157 struct blk_plug_cb; 1158 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1159 struct blk_plug_cb { 1160 struct list_head list; 1161 blk_plug_cb_fn callback; 1162 void *data; 1163 }; 1164 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1165 void *data, int size); 1166 extern void blk_start_plug(struct blk_plug *); 1167 extern void blk_finish_plug(struct blk_plug *); 1168 extern void blk_flush_plug_list(struct blk_plug *, bool); 1169 1170 static inline void blk_flush_plug(struct task_struct *tsk) 1171 { 1172 struct blk_plug *plug = tsk->plug; 1173 1174 if (plug) 1175 blk_flush_plug_list(plug, false); 1176 } 1177 1178 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1179 { 1180 struct blk_plug *plug = tsk->plug; 1181 1182 if (plug) 1183 blk_flush_plug_list(plug, true); 1184 } 1185 1186 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1187 { 1188 struct blk_plug *plug = tsk->plug; 1189 1190 return plug && 1191 (!list_empty(&plug->mq_list) || 1192 !list_empty(&plug->cb_list)); 1193 } 1194 1195 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1196 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1197 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1198 1199 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1200 1201 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1202 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1203 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1204 sector_t nr_sects, gfp_t gfp_mask, int flags, 1205 struct bio **biop); 1206 1207 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1208 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1209 1210 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1211 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1212 unsigned flags); 1213 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1214 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1215 1216 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1217 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1218 { 1219 return blkdev_issue_discard(sb->s_bdev, 1220 block << (sb->s_blocksize_bits - 1221 SECTOR_SHIFT), 1222 nr_blocks << (sb->s_blocksize_bits - 1223 SECTOR_SHIFT), 1224 gfp_mask, flags); 1225 } 1226 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1227 sector_t nr_blocks, gfp_t gfp_mask) 1228 { 1229 return blkdev_issue_zeroout(sb->s_bdev, 1230 block << (sb->s_blocksize_bits - 1231 SECTOR_SHIFT), 1232 nr_blocks << (sb->s_blocksize_bits - 1233 SECTOR_SHIFT), 1234 gfp_mask, 0); 1235 } 1236 1237 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1238 1239 enum blk_default_limits { 1240 BLK_MAX_SEGMENTS = 128, 1241 BLK_SAFE_MAX_SECTORS = 255, 1242 BLK_DEF_MAX_SECTORS = 2560, 1243 BLK_MAX_SEGMENT_SIZE = 65536, 1244 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1245 }; 1246 1247 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1248 { 1249 return q->limits.seg_boundary_mask; 1250 } 1251 1252 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1253 { 1254 return q->limits.virt_boundary_mask; 1255 } 1256 1257 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1258 { 1259 return q->limits.max_sectors; 1260 } 1261 1262 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1263 { 1264 return q->limits.max_hw_sectors; 1265 } 1266 1267 static inline unsigned short queue_max_segments(const struct request_queue *q) 1268 { 1269 return q->limits.max_segments; 1270 } 1271 1272 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1273 { 1274 return q->limits.max_discard_segments; 1275 } 1276 1277 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1278 { 1279 return q->limits.max_segment_size; 1280 } 1281 1282 static inline unsigned short queue_logical_block_size(const struct request_queue *q) 1283 { 1284 int retval = 512; 1285 1286 if (q && q->limits.logical_block_size) 1287 retval = q->limits.logical_block_size; 1288 1289 return retval; 1290 } 1291 1292 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1293 { 1294 return queue_logical_block_size(bdev_get_queue(bdev)); 1295 } 1296 1297 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1298 { 1299 return q->limits.physical_block_size; 1300 } 1301 1302 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1303 { 1304 return queue_physical_block_size(bdev_get_queue(bdev)); 1305 } 1306 1307 static inline unsigned int queue_io_min(const struct request_queue *q) 1308 { 1309 return q->limits.io_min; 1310 } 1311 1312 static inline int bdev_io_min(struct block_device *bdev) 1313 { 1314 return queue_io_min(bdev_get_queue(bdev)); 1315 } 1316 1317 static inline unsigned int queue_io_opt(const struct request_queue *q) 1318 { 1319 return q->limits.io_opt; 1320 } 1321 1322 static inline int bdev_io_opt(struct block_device *bdev) 1323 { 1324 return queue_io_opt(bdev_get_queue(bdev)); 1325 } 1326 1327 static inline int queue_alignment_offset(const struct request_queue *q) 1328 { 1329 if (q->limits.misaligned) 1330 return -1; 1331 1332 return q->limits.alignment_offset; 1333 } 1334 1335 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1336 { 1337 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1338 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1339 << SECTOR_SHIFT; 1340 1341 return (granularity + lim->alignment_offset - alignment) % granularity; 1342 } 1343 1344 static inline int bdev_alignment_offset(struct block_device *bdev) 1345 { 1346 struct request_queue *q = bdev_get_queue(bdev); 1347 1348 if (q->limits.misaligned) 1349 return -1; 1350 1351 if (bdev != bdev->bd_contains) 1352 return bdev->bd_part->alignment_offset; 1353 1354 return q->limits.alignment_offset; 1355 } 1356 1357 static inline int queue_discard_alignment(const struct request_queue *q) 1358 { 1359 if (q->limits.discard_misaligned) 1360 return -1; 1361 1362 return q->limits.discard_alignment; 1363 } 1364 1365 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1366 { 1367 unsigned int alignment, granularity, offset; 1368 1369 if (!lim->max_discard_sectors) 1370 return 0; 1371 1372 /* Why are these in bytes, not sectors? */ 1373 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1374 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1375 if (!granularity) 1376 return 0; 1377 1378 /* Offset of the partition start in 'granularity' sectors */ 1379 offset = sector_div(sector, granularity); 1380 1381 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1382 offset = (granularity + alignment - offset) % granularity; 1383 1384 /* Turn it back into bytes, gaah */ 1385 return offset << SECTOR_SHIFT; 1386 } 1387 1388 static inline int bdev_discard_alignment(struct block_device *bdev) 1389 { 1390 struct request_queue *q = bdev_get_queue(bdev); 1391 1392 if (bdev != bdev->bd_contains) 1393 return bdev->bd_part->discard_alignment; 1394 1395 return q->limits.discard_alignment; 1396 } 1397 1398 static inline unsigned int bdev_write_same(struct block_device *bdev) 1399 { 1400 struct request_queue *q = bdev_get_queue(bdev); 1401 1402 if (q) 1403 return q->limits.max_write_same_sectors; 1404 1405 return 0; 1406 } 1407 1408 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1409 { 1410 struct request_queue *q = bdev_get_queue(bdev); 1411 1412 if (q) 1413 return q->limits.max_write_zeroes_sectors; 1414 1415 return 0; 1416 } 1417 1418 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1419 { 1420 struct request_queue *q = bdev_get_queue(bdev); 1421 1422 if (q) 1423 return blk_queue_zoned_model(q); 1424 1425 return BLK_ZONED_NONE; 1426 } 1427 1428 static inline bool bdev_is_zoned(struct block_device *bdev) 1429 { 1430 struct request_queue *q = bdev_get_queue(bdev); 1431 1432 if (q) 1433 return blk_queue_is_zoned(q); 1434 1435 return false; 1436 } 1437 1438 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1439 { 1440 struct request_queue *q = bdev_get_queue(bdev); 1441 1442 if (q) 1443 return blk_queue_zone_sectors(q); 1444 return 0; 1445 } 1446 1447 static inline int queue_dma_alignment(const struct request_queue *q) 1448 { 1449 return q ? q->dma_alignment : 511; 1450 } 1451 1452 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1453 unsigned int len) 1454 { 1455 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1456 return !(addr & alignment) && !(len & alignment); 1457 } 1458 1459 /* assumes size > 256 */ 1460 static inline unsigned int blksize_bits(unsigned int size) 1461 { 1462 unsigned int bits = 8; 1463 do { 1464 bits++; 1465 size >>= 1; 1466 } while (size > 256); 1467 return bits; 1468 } 1469 1470 static inline unsigned int block_size(struct block_device *bdev) 1471 { 1472 return bdev->bd_block_size; 1473 } 1474 1475 typedef struct {struct page *v;} Sector; 1476 1477 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1478 1479 static inline void put_dev_sector(Sector p) 1480 { 1481 put_page(p.v); 1482 } 1483 1484 int kblockd_schedule_work(struct work_struct *work); 1485 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1486 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1487 1488 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1489 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1490 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1491 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1492 1493 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1494 1495 enum blk_integrity_flags { 1496 BLK_INTEGRITY_VERIFY = 1 << 0, 1497 BLK_INTEGRITY_GENERATE = 1 << 1, 1498 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1499 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1500 }; 1501 1502 struct blk_integrity_iter { 1503 void *prot_buf; 1504 void *data_buf; 1505 sector_t seed; 1506 unsigned int data_size; 1507 unsigned short interval; 1508 const char *disk_name; 1509 }; 1510 1511 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1512 1513 struct blk_integrity_profile { 1514 integrity_processing_fn *generate_fn; 1515 integrity_processing_fn *verify_fn; 1516 const char *name; 1517 }; 1518 1519 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1520 extern void blk_integrity_unregister(struct gendisk *); 1521 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1522 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1523 struct scatterlist *); 1524 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1525 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1526 struct request *); 1527 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1528 struct bio *); 1529 1530 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1531 { 1532 struct blk_integrity *bi = &disk->queue->integrity; 1533 1534 if (!bi->profile) 1535 return NULL; 1536 1537 return bi; 1538 } 1539 1540 static inline 1541 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1542 { 1543 return blk_get_integrity(bdev->bd_disk); 1544 } 1545 1546 static inline bool blk_integrity_rq(struct request *rq) 1547 { 1548 return rq->cmd_flags & REQ_INTEGRITY; 1549 } 1550 1551 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1552 unsigned int segs) 1553 { 1554 q->limits.max_integrity_segments = segs; 1555 } 1556 1557 static inline unsigned short 1558 queue_max_integrity_segments(const struct request_queue *q) 1559 { 1560 return q->limits.max_integrity_segments; 1561 } 1562 1563 /** 1564 * bio_integrity_intervals - Return number of integrity intervals for a bio 1565 * @bi: blk_integrity profile for device 1566 * @sectors: Size of the bio in 512-byte sectors 1567 * 1568 * Description: The block layer calculates everything in 512 byte 1569 * sectors but integrity metadata is done in terms of the data integrity 1570 * interval size of the storage device. Convert the block layer sectors 1571 * to the appropriate number of integrity intervals. 1572 */ 1573 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1574 unsigned int sectors) 1575 { 1576 return sectors >> (bi->interval_exp - 9); 1577 } 1578 1579 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1580 unsigned int sectors) 1581 { 1582 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1583 } 1584 1585 /* 1586 * Return the first bvec that contains integrity data. Only drivers that are 1587 * limited to a single integrity segment should use this helper. 1588 */ 1589 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1590 { 1591 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1592 return NULL; 1593 return rq->bio->bi_integrity->bip_vec; 1594 } 1595 1596 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1597 1598 struct bio; 1599 struct block_device; 1600 struct gendisk; 1601 struct blk_integrity; 1602 1603 static inline int blk_integrity_rq(struct request *rq) 1604 { 1605 return 0; 1606 } 1607 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1608 struct bio *b) 1609 { 1610 return 0; 1611 } 1612 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1613 struct bio *b, 1614 struct scatterlist *s) 1615 { 1616 return 0; 1617 } 1618 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1619 { 1620 return NULL; 1621 } 1622 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1623 { 1624 return NULL; 1625 } 1626 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1627 { 1628 return 0; 1629 } 1630 static inline void blk_integrity_register(struct gendisk *d, 1631 struct blk_integrity *b) 1632 { 1633 } 1634 static inline void blk_integrity_unregister(struct gendisk *d) 1635 { 1636 } 1637 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1638 unsigned int segs) 1639 { 1640 } 1641 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1642 { 1643 return 0; 1644 } 1645 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1646 struct request *r1, 1647 struct request *r2) 1648 { 1649 return true; 1650 } 1651 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1652 struct request *r, 1653 struct bio *b) 1654 { 1655 return true; 1656 } 1657 1658 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1659 unsigned int sectors) 1660 { 1661 return 0; 1662 } 1663 1664 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1665 unsigned int sectors) 1666 { 1667 return 0; 1668 } 1669 1670 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1671 { 1672 return NULL; 1673 } 1674 1675 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1676 1677 struct block_device_operations { 1678 int (*open) (struct block_device *, fmode_t); 1679 void (*release) (struct gendisk *, fmode_t); 1680 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1681 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1682 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1683 unsigned int (*check_events) (struct gendisk *disk, 1684 unsigned int clearing); 1685 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1686 int (*media_changed) (struct gendisk *); 1687 void (*unlock_native_capacity) (struct gendisk *); 1688 int (*revalidate_disk) (struct gendisk *); 1689 int (*getgeo)(struct block_device *, struct hd_geometry *); 1690 /* this callback is with swap_lock and sometimes page table lock held */ 1691 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1692 int (*report_zones)(struct gendisk *, sector_t sector, 1693 struct blk_zone *zones, unsigned int *nr_zones); 1694 struct module *owner; 1695 const struct pr_ops *pr_ops; 1696 }; 1697 1698 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1699 unsigned long); 1700 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1701 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1702 struct writeback_control *); 1703 1704 #ifdef CONFIG_BLK_DEV_ZONED 1705 bool blk_req_needs_zone_write_lock(struct request *rq); 1706 void __blk_req_zone_write_lock(struct request *rq); 1707 void __blk_req_zone_write_unlock(struct request *rq); 1708 1709 static inline void blk_req_zone_write_lock(struct request *rq) 1710 { 1711 if (blk_req_needs_zone_write_lock(rq)) 1712 __blk_req_zone_write_lock(rq); 1713 } 1714 1715 static inline void blk_req_zone_write_unlock(struct request *rq) 1716 { 1717 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1718 __blk_req_zone_write_unlock(rq); 1719 } 1720 1721 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1722 { 1723 return rq->q->seq_zones_wlock && 1724 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1725 } 1726 1727 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1728 { 1729 if (!blk_req_needs_zone_write_lock(rq)) 1730 return true; 1731 return !blk_req_zone_is_write_locked(rq); 1732 } 1733 #else 1734 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1735 { 1736 return false; 1737 } 1738 1739 static inline void blk_req_zone_write_lock(struct request *rq) 1740 { 1741 } 1742 1743 static inline void blk_req_zone_write_unlock(struct request *rq) 1744 { 1745 } 1746 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1747 { 1748 return false; 1749 } 1750 1751 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1752 { 1753 return true; 1754 } 1755 #endif /* CONFIG_BLK_DEV_ZONED */ 1756 1757 #else /* CONFIG_BLOCK */ 1758 1759 struct block_device; 1760 1761 /* 1762 * stubs for when the block layer is configured out 1763 */ 1764 #define buffer_heads_over_limit 0 1765 1766 static inline long nr_blockdev_pages(void) 1767 { 1768 return 0; 1769 } 1770 1771 struct blk_plug { 1772 }; 1773 1774 static inline void blk_start_plug(struct blk_plug *plug) 1775 { 1776 } 1777 1778 static inline void blk_finish_plug(struct blk_plug *plug) 1779 { 1780 } 1781 1782 static inline void blk_flush_plug(struct task_struct *task) 1783 { 1784 } 1785 1786 static inline void blk_schedule_flush_plug(struct task_struct *task) 1787 { 1788 } 1789 1790 1791 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1792 { 1793 return false; 1794 } 1795 1796 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1797 sector_t *error_sector) 1798 { 1799 return 0; 1800 } 1801 1802 #endif /* CONFIG_BLOCK */ 1803 1804 static inline void blk_wake_io_task(struct task_struct *waiter) 1805 { 1806 /* 1807 * If we're polling, the task itself is doing the completions. For 1808 * that case, we don't need to signal a wakeup, it's enough to just 1809 * mark us as RUNNING. 1810 */ 1811 if (waiter == current) 1812 __set_current_state(TASK_RUNNING); 1813 else 1814 wake_up_process(waiter); 1815 } 1816 1817 #endif 1818