xref: /linux-6.15/include/linux/blkdev.h (revision 5ddb88f2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 
29 struct module;
30 struct request_queue;
31 struct elevator_queue;
32 struct blk_trace;
33 struct request;
34 struct sg_io_hdr;
35 struct blkcg_gq;
36 struct blk_flush_queue;
37 struct kiocb;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43 
44 extern const struct device_type disk_type;
45 extern const struct device_type part_type;
46 extern const struct class block_class;
47 
48 /*
49  * Maximum number of blkcg policies allowed to be registered concurrently.
50  * Defined here to simplify include dependency.
51  */
52 #define BLKCG_MAX_POLS		6
53 
54 #define DISK_MAX_PARTS			256
55 #define DISK_NAME_LEN			32
56 
57 #define PARTITION_META_INFO_VOLNAMELTH	64
58 /*
59  * Enough for the string representation of any kind of UUID plus NULL.
60  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
61  */
62 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
63 
64 struct partition_meta_info {
65 	char uuid[PARTITION_META_INFO_UUIDLTH];
66 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
67 };
68 
69 /**
70  * DOC: genhd capability flags
71  *
72  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
73  * removable media.  When set, the device remains present even when media is not
74  * inserted.  Shall not be set for devices which are removed entirely when the
75  * media is removed.
76  *
77  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
78  * doesn't appear in sysfs, and can't be opened from userspace or using
79  * blkdev_get*. Used for the underlying components of multipath devices.
80  *
81  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
82  * scan for partitions from add_disk, and users can't add partitions manually.
83  *
84  */
85 enum {
86 	GENHD_FL_REMOVABLE			= 1 << 0,
87 	GENHD_FL_HIDDEN				= 1 << 1,
88 	GENHD_FL_NO_PART			= 1 << 2,
89 };
90 
91 enum {
92 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
93 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
94 };
95 
96 enum {
97 	/* Poll even if events_poll_msecs is unset */
98 	DISK_EVENT_FLAG_POLL			= 1 << 0,
99 	/* Forward events to udev */
100 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
101 	/* Block event polling when open for exclusive write */
102 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
103 };
104 
105 struct disk_events;
106 struct badblocks;
107 
108 enum blk_integrity_checksum {
109 	BLK_INTEGRITY_CSUM_NONE		= 0,
110 	BLK_INTEGRITY_CSUM_IP		= 1,
111 	BLK_INTEGRITY_CSUM_CRC		= 2,
112 	BLK_INTEGRITY_CSUM_CRC64	= 3,
113 } __packed ;
114 
115 struct blk_integrity {
116 	unsigned char				flags;
117 	enum blk_integrity_checksum		csum_type;
118 	unsigned char				tuple_size;
119 	unsigned char				pi_offset;
120 	unsigned char				interval_exp;
121 	unsigned char				tag_size;
122 };
123 
124 typedef unsigned int __bitwise blk_mode_t;
125 
126 /* open for reading */
127 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
128 /* open for writing */
129 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
130 /* open exclusively (vs other exclusive openers */
131 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
132 /* opened with O_NDELAY */
133 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
134 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
135 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
136 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
137 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
138 /* return partition scanning errors */
139 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
140 
141 struct gendisk {
142 	/*
143 	 * major/first_minor/minors should not be set by any new driver, the
144 	 * block core will take care of allocating them automatically.
145 	 */
146 	int major;
147 	int first_minor;
148 	int minors;
149 
150 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
151 
152 	unsigned short events;		/* supported events */
153 	unsigned short event_flags;	/* flags related to event processing */
154 
155 	struct xarray part_tbl;
156 	struct block_device *part0;
157 
158 	const struct block_device_operations *fops;
159 	struct request_queue *queue;
160 	void *private_data;
161 
162 	struct bio_set bio_split;
163 
164 	int flags;
165 	unsigned long state;
166 #define GD_NEED_PART_SCAN		0
167 #define GD_READ_ONLY			1
168 #define GD_DEAD				2
169 #define GD_NATIVE_CAPACITY		3
170 #define GD_ADDED			4
171 #define GD_SUPPRESS_PART_SCAN		5
172 #define GD_OWNS_QUEUE			6
173 
174 	struct mutex open_mutex;	/* open/close mutex */
175 	unsigned open_partitions;	/* number of open partitions */
176 
177 	struct backing_dev_info	*bdi;
178 	struct kobject queue_kobj;	/* the queue/ directory */
179 	struct kobject *slave_dir;
180 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
181 	struct list_head slave_bdevs;
182 #endif
183 	struct timer_rand_state *random;
184 	atomic_t sync_io;		/* RAID */
185 	struct disk_events *ev;
186 
187 #ifdef CONFIG_BLK_DEV_ZONED
188 	/*
189 	 * Zoned block device information. Reads of this information must be
190 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
191 	 * information is only allowed while no requests are being processed.
192 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
193 	 */
194 	unsigned int		nr_zones;
195 	unsigned int		zone_capacity;
196 	unsigned int		last_zone_capacity;
197 	unsigned long		*conv_zones_bitmap;
198 	unsigned int            zone_wplugs_hash_bits;
199 	spinlock_t              zone_wplugs_lock;
200 	struct mempool_s	*zone_wplugs_pool;
201 	struct hlist_head       *zone_wplugs_hash;
202 	struct list_head        zone_wplugs_err_list;
203 	struct work_struct	zone_wplugs_work;
204 	struct workqueue_struct *zone_wplugs_wq;
205 #endif /* CONFIG_BLK_DEV_ZONED */
206 
207 #if IS_ENABLED(CONFIG_CDROM)
208 	struct cdrom_device_info *cdi;
209 #endif
210 	int node_id;
211 	struct badblocks *bb;
212 	struct lockdep_map lockdep_map;
213 	u64 diskseq;
214 	blk_mode_t open_mode;
215 
216 	/*
217 	 * Independent sector access ranges. This is always NULL for
218 	 * devices that do not have multiple independent access ranges.
219 	 */
220 	struct blk_independent_access_ranges *ia_ranges;
221 };
222 
223 /**
224  * disk_openers - returns how many openers are there for a disk
225  * @disk: disk to check
226  *
227  * This returns the number of openers for a disk.  Note that this value is only
228  * stable if disk->open_mutex is held.
229  *
230  * Note: Due to a quirk in the block layer open code, each open partition is
231  * only counted once even if there are multiple openers.
232  */
233 static inline unsigned int disk_openers(struct gendisk *disk)
234 {
235 	return atomic_read(&disk->part0->bd_openers);
236 }
237 
238 /**
239  * disk_has_partscan - return %true if partition scanning is enabled on a disk
240  * @disk: disk to check
241  *
242  * Returns %true if partitions scanning is enabled for @disk, or %false if
243  * partition scanning is disabled either permanently or temporarily.
244  */
245 static inline bool disk_has_partscan(struct gendisk *disk)
246 {
247 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
248 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
249 }
250 
251 /*
252  * The gendisk is refcounted by the part0 block_device, and the bd_device
253  * therein is also used for device model presentation in sysfs.
254  */
255 #define dev_to_disk(device) \
256 	(dev_to_bdev(device)->bd_disk)
257 #define disk_to_dev(disk) \
258 	(&((disk)->part0->bd_device))
259 
260 #if IS_REACHABLE(CONFIG_CDROM)
261 #define disk_to_cdi(disk)	((disk)->cdi)
262 #else
263 #define disk_to_cdi(disk)	NULL
264 #endif
265 
266 static inline dev_t disk_devt(struct gendisk *disk)
267 {
268 	return MKDEV(disk->major, disk->first_minor);
269 }
270 
271 static inline int blk_validate_block_size(unsigned long bsize)
272 {
273 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
274 		return -EINVAL;
275 
276 	return 0;
277 }
278 
279 static inline bool blk_op_is_passthrough(blk_opf_t op)
280 {
281 	op &= REQ_OP_MASK;
282 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
283 }
284 
285 /* flags set by the driver in queue_limits.features */
286 enum {
287 	/* supports a volatile write cache */
288 	BLK_FEAT_WRITE_CACHE			= (1u << 0),
289 
290 	/* supports passing on the FUA bit */
291 	BLK_FEAT_FUA				= (1u << 1),
292 
293 	/* rotational device (hard drive or floppy) */
294 	BLK_FEAT_ROTATIONAL			= (1u << 2),
295 
296 	/* contributes to the random number pool */
297 	BLK_FEAT_ADD_RANDOM			= (1u << 3),
298 
299 	/* do disk/partitions IO accounting */
300 	BLK_FEAT_IO_STAT			= (1u << 4),
301 
302 	/* don't modify data until writeback is done */
303 	BLK_FEAT_STABLE_WRITES			= (1u << 5),
304 
305 	/* always completes in submit context */
306 	BLK_FEAT_SYNCHRONOUS			= (1u << 6),
307 
308 	/* supports REQ_NOWAIT */
309 	BLK_FEAT_NOWAIT				= (1u << 7),
310 
311 	/* supports DAX */
312 	BLK_FEAT_DAX				= (1u << 8),
313 
314 	/* supports I/O polling */
315 	BLK_FEAT_POLL				= (1u << 9),
316 
317 	/* is a zoned device */
318 	BLK_FEAT_ZONED				= (1u << 10),
319 
320 	/* supports Zone Reset All */
321 	BLK_FEAT_ZONE_RESETALL			= (1u << 11),
322 
323 	/* supports PCI(e) p2p requests */
324 	BLK_FEAT_PCI_P2PDMA			= (1u << 12),
325 
326 	/* skip this queue in blk_mq_(un)quiesce_tagset */
327 	BLK_FEAT_SKIP_TAGSET_QUIESCE		= (1u << 13),
328 
329 	/* bounce all highmem pages */
330 	BLK_FEAT_BOUNCE_HIGH			= (1u << 14),
331 };
332 
333 /*
334  * Flags automatically inherited when stacking limits.
335  */
336 #define BLK_FEAT_INHERIT_MASK \
337 	(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
338 	 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH)
339 
340 /* internal flags in queue_limits.flags */
341 enum {
342 	/* do not send FLUSH or FUA command despite advertised write cache */
343 	BLK_FLAGS_WRITE_CACHE_DISABLED		= (1u << 31),
344 };
345 
346 /*
347  * BLK_BOUNCE_NONE:	never bounce (default)
348  * BLK_BOUNCE_HIGH:	bounce all highmem pages
349  */
350 enum blk_bounce {
351 	BLK_BOUNCE_NONE,
352 	BLK_BOUNCE_HIGH,
353 };
354 
355 struct queue_limits {
356 	unsigned int		features;
357 	unsigned int		flags;
358 	unsigned long		seg_boundary_mask;
359 	unsigned long		virt_boundary_mask;
360 
361 	unsigned int		max_hw_sectors;
362 	unsigned int		max_dev_sectors;
363 	unsigned int		chunk_sectors;
364 	unsigned int		max_sectors;
365 	unsigned int		max_user_sectors;
366 	unsigned int		max_segment_size;
367 	unsigned int		physical_block_size;
368 	unsigned int		logical_block_size;
369 	unsigned int		alignment_offset;
370 	unsigned int		io_min;
371 	unsigned int		io_opt;
372 	unsigned int		max_discard_sectors;
373 	unsigned int		max_hw_discard_sectors;
374 	unsigned int		max_user_discard_sectors;
375 	unsigned int		max_secure_erase_sectors;
376 	unsigned int		max_write_zeroes_sectors;
377 	unsigned int		max_zone_append_sectors;
378 	unsigned int		discard_granularity;
379 	unsigned int		discard_alignment;
380 	unsigned int		zone_write_granularity;
381 
382 	unsigned short		max_segments;
383 	unsigned short		max_integrity_segments;
384 	unsigned short		max_discard_segments;
385 
386 	unsigned char		misaligned;
387 	unsigned char		discard_misaligned;
388 	unsigned char		raid_partial_stripes_expensive;
389 	unsigned int		max_open_zones;
390 	unsigned int		max_active_zones;
391 
392 	/*
393 	 * Drivers that set dma_alignment to less than 511 must be prepared to
394 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
395 	 * due to possible offsets.
396 	 */
397 	unsigned int		dma_alignment;
398 
399 	struct blk_integrity	integrity;
400 };
401 
402 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
403 			       void *data);
404 
405 #define BLK_ALL_ZONES  ((unsigned int)-1)
406 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
407 		unsigned int nr_zones, report_zones_cb cb, void *data);
408 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
409 		sector_t sectors, sector_t nr_sectors);
410 int blk_revalidate_disk_zones(struct gendisk *disk);
411 
412 /*
413  * Independent access ranges: struct blk_independent_access_range describes
414  * a range of contiguous sectors that can be accessed using device command
415  * execution resources that are independent from the resources used for
416  * other access ranges. This is typically found with single-LUN multi-actuator
417  * HDDs where each access range is served by a different set of heads.
418  * The set of independent ranges supported by the device is defined using
419  * struct blk_independent_access_ranges. The independent ranges must not overlap
420  * and must include all sectors within the disk capacity (no sector holes
421  * allowed).
422  * For a device with multiple ranges, requests targeting sectors in different
423  * ranges can be executed in parallel. A request can straddle an access range
424  * boundary.
425  */
426 struct blk_independent_access_range {
427 	struct kobject		kobj;
428 	sector_t		sector;
429 	sector_t		nr_sectors;
430 };
431 
432 struct blk_independent_access_ranges {
433 	struct kobject				kobj;
434 	bool					sysfs_registered;
435 	unsigned int				nr_ia_ranges;
436 	struct blk_independent_access_range	ia_range[];
437 };
438 
439 struct request_queue {
440 	/*
441 	 * The queue owner gets to use this for whatever they like.
442 	 * ll_rw_blk doesn't touch it.
443 	 */
444 	void			*queuedata;
445 
446 	struct elevator_queue	*elevator;
447 
448 	const struct blk_mq_ops	*mq_ops;
449 
450 	/* sw queues */
451 	struct blk_mq_ctx __percpu	*queue_ctx;
452 
453 	/*
454 	 * various queue flags, see QUEUE_* below
455 	 */
456 	unsigned long		queue_flags;
457 
458 	unsigned int		rq_timeout;
459 
460 	unsigned int		queue_depth;
461 
462 	refcount_t		refs;
463 
464 	/* hw dispatch queues */
465 	unsigned int		nr_hw_queues;
466 	struct xarray		hctx_table;
467 
468 	struct percpu_ref	q_usage_counter;
469 
470 	struct request		*last_merge;
471 
472 	spinlock_t		queue_lock;
473 
474 	int			quiesce_depth;
475 
476 	struct gendisk		*disk;
477 
478 	/*
479 	 * mq queue kobject
480 	 */
481 	struct kobject *mq_kobj;
482 
483 	struct queue_limits	limits;
484 
485 #ifdef CONFIG_PM
486 	struct device		*dev;
487 	enum rpm_status		rpm_status;
488 #endif
489 
490 	/*
491 	 * Number of contexts that have called blk_set_pm_only(). If this
492 	 * counter is above zero then only RQF_PM requests are processed.
493 	 */
494 	atomic_t		pm_only;
495 
496 	struct blk_queue_stats	*stats;
497 	struct rq_qos		*rq_qos;
498 	struct mutex		rq_qos_mutex;
499 
500 	/*
501 	 * ida allocated id for this queue.  Used to index queues from
502 	 * ioctx.
503 	 */
504 	int			id;
505 
506 	unsigned int		dma_pad_mask;
507 
508 	/*
509 	 * queue settings
510 	 */
511 	unsigned long		nr_requests;	/* Max # of requests */
512 
513 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
514 	struct blk_crypto_profile *crypto_profile;
515 	struct kobject *crypto_kobject;
516 #endif
517 
518 	struct timer_list	timeout;
519 	struct work_struct	timeout_work;
520 
521 	atomic_t		nr_active_requests_shared_tags;
522 
523 	struct blk_mq_tags	*sched_shared_tags;
524 
525 	struct list_head	icq_list;
526 #ifdef CONFIG_BLK_CGROUP
527 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
528 	struct blkcg_gq		*root_blkg;
529 	struct list_head	blkg_list;
530 	struct mutex		blkcg_mutex;
531 #endif
532 
533 	int			node;
534 
535 	spinlock_t		requeue_lock;
536 	struct list_head	requeue_list;
537 	struct delayed_work	requeue_work;
538 
539 #ifdef CONFIG_BLK_DEV_IO_TRACE
540 	struct blk_trace __rcu	*blk_trace;
541 #endif
542 	/*
543 	 * for flush operations
544 	 */
545 	struct blk_flush_queue	*fq;
546 	struct list_head	flush_list;
547 
548 	struct mutex		sysfs_lock;
549 	struct mutex		sysfs_dir_lock;
550 	struct mutex		limits_lock;
551 
552 	/*
553 	 * for reusing dead hctx instance in case of updating
554 	 * nr_hw_queues
555 	 */
556 	struct list_head	unused_hctx_list;
557 	spinlock_t		unused_hctx_lock;
558 
559 	int			mq_freeze_depth;
560 
561 #ifdef CONFIG_BLK_DEV_THROTTLING
562 	/* Throttle data */
563 	struct throtl_data *td;
564 #endif
565 	struct rcu_head		rcu_head;
566 	wait_queue_head_t	mq_freeze_wq;
567 	/*
568 	 * Protect concurrent access to q_usage_counter by
569 	 * percpu_ref_kill() and percpu_ref_reinit().
570 	 */
571 	struct mutex		mq_freeze_lock;
572 
573 	struct blk_mq_tag_set	*tag_set;
574 	struct list_head	tag_set_list;
575 
576 	struct dentry		*debugfs_dir;
577 	struct dentry		*sched_debugfs_dir;
578 	struct dentry		*rqos_debugfs_dir;
579 	/*
580 	 * Serializes all debugfs metadata operations using the above dentries.
581 	 */
582 	struct mutex		debugfs_mutex;
583 
584 	bool			mq_sysfs_init_done;
585 };
586 
587 /* Keep blk_queue_flag_name[] in sync with the definitions below */
588 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
589 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
590 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
591 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
592 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
593 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
594 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
595 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
596 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
597 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
598 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
599 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
600 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
601 #define QUEUE_FLAG_SQ_SCHED     30	/* single queue style io dispatch */
602 
603 #define QUEUE_FLAG_MQ_DEFAULT	(1UL << QUEUE_FLAG_SAME_COMP)
604 
605 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
606 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
607 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
608 
609 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
610 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
611 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
612 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
613 #define blk_queue_noxmerges(q)	\
614 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
615 #define blk_queue_nonrot(q)	((q)->limits.features & BLK_FEAT_ROTATIONAL)
616 #define blk_queue_io_stat(q)	((q)->limits.features & BLK_FEAT_IO_STAT)
617 #define blk_queue_zone_resetall(q)	\
618 	((q)->limits.features & BLK_FEAT_ZONE_RESETALL)
619 #define blk_queue_dax(q)	((q)->limits.features & BLK_FEAT_DAX)
620 #define blk_queue_pci_p2pdma(q)	((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
621 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
622 #define blk_queue_rq_alloc_time(q)	\
623 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
624 #else
625 #define blk_queue_rq_alloc_time(q)	false
626 #endif
627 
628 #define blk_noretry_request(rq) \
629 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
630 			     REQ_FAILFAST_DRIVER))
631 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
632 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
633 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
634 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
635 #define blk_queue_skip_tagset_quiesce(q) \
636 	((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
637 
638 extern void blk_set_pm_only(struct request_queue *q);
639 extern void blk_clear_pm_only(struct request_queue *q);
640 
641 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
642 
643 #define dma_map_bvec(dev, bv, dir, attrs) \
644 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
645 	(dir), (attrs))
646 
647 static inline bool queue_is_mq(struct request_queue *q)
648 {
649 	return q->mq_ops;
650 }
651 
652 #ifdef CONFIG_PM
653 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
654 {
655 	return q->rpm_status;
656 }
657 #else
658 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
659 {
660 	return RPM_ACTIVE;
661 }
662 #endif
663 
664 static inline bool blk_queue_is_zoned(struct request_queue *q)
665 {
666 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
667 		(q->limits.features & BLK_FEAT_ZONED);
668 }
669 
670 #ifdef CONFIG_BLK_DEV_ZONED
671 unsigned int bdev_nr_zones(struct block_device *bdev);
672 
673 static inline unsigned int disk_nr_zones(struct gendisk *disk)
674 {
675 	return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
676 }
677 
678 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
679 {
680 	if (!blk_queue_is_zoned(disk->queue))
681 		return 0;
682 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
683 }
684 
685 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
686 {
687 	return bdev->bd_disk->queue->limits.max_open_zones;
688 }
689 
690 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
691 {
692 	return bdev->bd_disk->queue->limits.max_active_zones;
693 }
694 
695 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
696 #else /* CONFIG_BLK_DEV_ZONED */
697 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
698 {
699 	return 0;
700 }
701 
702 static inline unsigned int disk_nr_zones(struct gendisk *disk)
703 {
704 	return 0;
705 }
706 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
707 {
708 	return 0;
709 }
710 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
711 {
712 	return 0;
713 }
714 
715 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
716 {
717 	return 0;
718 }
719 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
720 {
721 	return false;
722 }
723 #endif /* CONFIG_BLK_DEV_ZONED */
724 
725 static inline unsigned int blk_queue_depth(struct request_queue *q)
726 {
727 	if (q->queue_depth)
728 		return q->queue_depth;
729 
730 	return q->nr_requests;
731 }
732 
733 /*
734  * default timeout for SG_IO if none specified
735  */
736 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
737 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
738 
739 /* This should not be used directly - use rq_for_each_segment */
740 #define for_each_bio(_bio)		\
741 	for (; _bio; _bio = _bio->bi_next)
742 
743 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
744 				 const struct attribute_group **groups);
745 static inline int __must_check add_disk(struct gendisk *disk)
746 {
747 	return device_add_disk(NULL, disk, NULL);
748 }
749 void del_gendisk(struct gendisk *gp);
750 void invalidate_disk(struct gendisk *disk);
751 void set_disk_ro(struct gendisk *disk, bool read_only);
752 void disk_uevent(struct gendisk *disk, enum kobject_action action);
753 
754 static inline u8 bdev_partno(const struct block_device *bdev)
755 {
756 	return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
757 }
758 
759 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
760 {
761 	return atomic_read(&bdev->__bd_flags) & flag;
762 }
763 
764 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
765 {
766 	atomic_or(flag, &bdev->__bd_flags);
767 }
768 
769 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
770 {
771 	atomic_andnot(flag, &bdev->__bd_flags);
772 }
773 
774 static inline int get_disk_ro(struct gendisk *disk)
775 {
776 	return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
777 		test_bit(GD_READ_ONLY, &disk->state);
778 }
779 
780 static inline int bdev_read_only(struct block_device *bdev)
781 {
782 	return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
783 }
784 
785 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
786 void disk_force_media_change(struct gendisk *disk);
787 void bdev_mark_dead(struct block_device *bdev, bool surprise);
788 
789 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
790 void rand_initialize_disk(struct gendisk *disk);
791 
792 static inline sector_t get_start_sect(struct block_device *bdev)
793 {
794 	return bdev->bd_start_sect;
795 }
796 
797 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
798 {
799 	return bdev->bd_nr_sectors;
800 }
801 
802 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
803 {
804 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
805 }
806 
807 static inline sector_t get_capacity(struct gendisk *disk)
808 {
809 	return bdev_nr_sectors(disk->part0);
810 }
811 
812 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
813 {
814 	return bdev_nr_sectors(sb->s_bdev) >>
815 		(sb->s_blocksize_bits - SECTOR_SHIFT);
816 }
817 
818 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
819 
820 void put_disk(struct gendisk *disk);
821 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
822 		struct lock_class_key *lkclass);
823 
824 /**
825  * blk_alloc_disk - allocate a gendisk structure
826  * @lim: queue limits to be used for this disk.
827  * @node_id: numa node to allocate on
828  *
829  * Allocate and pre-initialize a gendisk structure for use with BIO based
830  * drivers.
831  *
832  * Returns an ERR_PTR on error, else the allocated disk.
833  *
834  * Context: can sleep
835  */
836 #define blk_alloc_disk(lim, node_id)					\
837 ({									\
838 	static struct lock_class_key __key;				\
839 									\
840 	__blk_alloc_disk(lim, node_id, &__key);				\
841 })
842 
843 int __register_blkdev(unsigned int major, const char *name,
844 		void (*probe)(dev_t devt));
845 #define register_blkdev(major, name) \
846 	__register_blkdev(major, name, NULL)
847 void unregister_blkdev(unsigned int major, const char *name);
848 
849 bool disk_check_media_change(struct gendisk *disk);
850 void set_capacity(struct gendisk *disk, sector_t size);
851 
852 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
853 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
854 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
855 #else
856 static inline int bd_link_disk_holder(struct block_device *bdev,
857 				      struct gendisk *disk)
858 {
859 	return 0;
860 }
861 static inline void bd_unlink_disk_holder(struct block_device *bdev,
862 					 struct gendisk *disk)
863 {
864 }
865 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
866 
867 dev_t part_devt(struct gendisk *disk, u8 partno);
868 void inc_diskseq(struct gendisk *disk);
869 void blk_request_module(dev_t devt);
870 
871 extern int blk_register_queue(struct gendisk *disk);
872 extern void blk_unregister_queue(struct gendisk *disk);
873 void submit_bio_noacct(struct bio *bio);
874 struct bio *bio_split_to_limits(struct bio *bio);
875 
876 extern int blk_lld_busy(struct request_queue *q);
877 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
878 extern void blk_queue_exit(struct request_queue *q);
879 extern void blk_sync_queue(struct request_queue *q);
880 
881 /* Helper to convert REQ_OP_XXX to its string format XXX */
882 extern const char *blk_op_str(enum req_op op);
883 
884 int blk_status_to_errno(blk_status_t status);
885 blk_status_t errno_to_blk_status(int errno);
886 const char *blk_status_to_str(blk_status_t status);
887 
888 /* only poll the hardware once, don't continue until a completion was found */
889 #define BLK_POLL_ONESHOT		(1 << 0)
890 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
891 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
892 			unsigned int flags);
893 
894 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
895 {
896 	return bdev->bd_queue;	/* this is never NULL */
897 }
898 
899 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
900 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
901 
902 static inline unsigned int bio_zone_no(struct bio *bio)
903 {
904 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
905 }
906 
907 static inline bool bio_straddles_zones(struct bio *bio)
908 {
909 	return bio_sectors(bio) &&
910 		bio_zone_no(bio) !=
911 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
912 }
913 
914 /*
915  * Return how much of the chunk is left to be used for I/O at a given offset.
916  */
917 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
918 		unsigned int chunk_sectors)
919 {
920 	if (unlikely(!is_power_of_2(chunk_sectors)))
921 		return chunk_sectors - sector_div(offset, chunk_sectors);
922 	return chunk_sectors - (offset & (chunk_sectors - 1));
923 }
924 
925 /**
926  * queue_limits_start_update - start an atomic update of queue limits
927  * @q:		queue to update
928  *
929  * This functions starts an atomic update of the queue limits.  It takes a lock
930  * to prevent other updates and returns a snapshot of the current limits that
931  * the caller can modify.  The caller must call queue_limits_commit_update()
932  * to finish the update.
933  *
934  * Context: process context.  The caller must have frozen the queue or ensured
935  * that there is outstanding I/O by other means.
936  */
937 static inline struct queue_limits
938 queue_limits_start_update(struct request_queue *q)
939 {
940 	mutex_lock(&q->limits_lock);
941 	return q->limits;
942 }
943 int queue_limits_commit_update(struct request_queue *q,
944 		struct queue_limits *lim);
945 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
946 
947 /**
948  * queue_limits_cancel_update - cancel an atomic update of queue limits
949  * @q:		queue to update
950  *
951  * This functions cancels an atomic update of the queue limits started by
952  * queue_limits_start_update() and should be used when an error occurs after
953  * starting update.
954  */
955 static inline void queue_limits_cancel_update(struct request_queue *q)
956 {
957 	mutex_unlock(&q->limits_lock);
958 }
959 
960 /*
961  * These helpers are for drivers that have sloppy feature negotiation and might
962  * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
963  * completion handler when the device returned an indicator that the respective
964  * feature is not actually supported.  They are racy and the driver needs to
965  * cope with that.  Try to avoid this scheme if you can.
966  */
967 static inline void blk_queue_disable_discard(struct request_queue *q)
968 {
969 	q->limits.max_discard_sectors = 0;
970 }
971 
972 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
973 {
974 	q->limits.max_secure_erase_sectors = 0;
975 }
976 
977 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
978 {
979 	q->limits.max_write_zeroes_sectors = 0;
980 }
981 
982 /*
983  * Access functions for manipulating queue properties
984  */
985 void disk_update_readahead(struct gendisk *disk);
986 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
987 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
988 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
989 extern void blk_set_stacking_limits(struct queue_limits *lim);
990 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
991 			    sector_t offset);
992 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
993 		sector_t offset, const char *pfx);
994 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
995 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
996 
997 struct blk_independent_access_ranges *
998 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
999 void disk_set_independent_access_ranges(struct gendisk *disk,
1000 				struct blk_independent_access_ranges *iars);
1001 
1002 bool __must_check blk_get_queue(struct request_queue *);
1003 extern void blk_put_queue(struct request_queue *);
1004 
1005 void blk_mark_disk_dead(struct gendisk *disk);
1006 
1007 #ifdef CONFIG_BLOCK
1008 /*
1009  * blk_plug permits building a queue of related requests by holding the I/O
1010  * fragments for a short period. This allows merging of sequential requests
1011  * into single larger request. As the requests are moved from a per-task list to
1012  * the device's request_queue in a batch, this results in improved scalability
1013  * as the lock contention for request_queue lock is reduced.
1014  *
1015  * It is ok not to disable preemption when adding the request to the plug list
1016  * or when attempting a merge. For details, please see schedule() where
1017  * blk_flush_plug() is called.
1018  */
1019 struct blk_plug {
1020 	struct request *mq_list; /* blk-mq requests */
1021 
1022 	/* if ios_left is > 1, we can batch tag/rq allocations */
1023 	struct request *cached_rq;
1024 	u64 cur_ktime;
1025 	unsigned short nr_ios;
1026 
1027 	unsigned short rq_count;
1028 
1029 	bool multiple_queues;
1030 	bool has_elevator;
1031 
1032 	struct list_head cb_list; /* md requires an unplug callback */
1033 };
1034 
1035 struct blk_plug_cb;
1036 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1037 struct blk_plug_cb {
1038 	struct list_head list;
1039 	blk_plug_cb_fn callback;
1040 	void *data;
1041 };
1042 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1043 					     void *data, int size);
1044 extern void blk_start_plug(struct blk_plug *);
1045 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1046 extern void blk_finish_plug(struct blk_plug *);
1047 
1048 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
1049 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1050 {
1051 	if (plug)
1052 		__blk_flush_plug(plug, async);
1053 }
1054 
1055 /*
1056  * tsk == current here
1057  */
1058 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1059 {
1060 	struct blk_plug *plug = tsk->plug;
1061 
1062 	if (plug)
1063 		plug->cur_ktime = 0;
1064 	current->flags &= ~PF_BLOCK_TS;
1065 }
1066 
1067 int blkdev_issue_flush(struct block_device *bdev);
1068 long nr_blockdev_pages(void);
1069 #else /* CONFIG_BLOCK */
1070 struct blk_plug {
1071 };
1072 
1073 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1074 					 unsigned short nr_ios)
1075 {
1076 }
1077 
1078 static inline void blk_start_plug(struct blk_plug *plug)
1079 {
1080 }
1081 
1082 static inline void blk_finish_plug(struct blk_plug *plug)
1083 {
1084 }
1085 
1086 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1087 {
1088 }
1089 
1090 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1091 {
1092 }
1093 
1094 static inline int blkdev_issue_flush(struct block_device *bdev)
1095 {
1096 	return 0;
1097 }
1098 
1099 static inline long nr_blockdev_pages(void)
1100 {
1101 	return 0;
1102 }
1103 #endif /* CONFIG_BLOCK */
1104 
1105 extern void blk_io_schedule(void);
1106 
1107 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1108 		sector_t nr_sects, gfp_t gfp_mask);
1109 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1110 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1111 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1112 		sector_t nr_sects, gfp_t gfp);
1113 
1114 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1115 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1116 
1117 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1118 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1119 		unsigned flags);
1120 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1121 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1122 
1123 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1124 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1125 {
1126 	return blkdev_issue_discard(sb->s_bdev,
1127 				    block << (sb->s_blocksize_bits -
1128 					      SECTOR_SHIFT),
1129 				    nr_blocks << (sb->s_blocksize_bits -
1130 						  SECTOR_SHIFT),
1131 				    gfp_mask);
1132 }
1133 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1134 		sector_t nr_blocks, gfp_t gfp_mask)
1135 {
1136 	return blkdev_issue_zeroout(sb->s_bdev,
1137 				    block << (sb->s_blocksize_bits -
1138 					      SECTOR_SHIFT),
1139 				    nr_blocks << (sb->s_blocksize_bits -
1140 						  SECTOR_SHIFT),
1141 				    gfp_mask, 0);
1142 }
1143 
1144 static inline bool bdev_is_partition(struct block_device *bdev)
1145 {
1146 	return bdev_partno(bdev) != 0;
1147 }
1148 
1149 enum blk_default_limits {
1150 	BLK_MAX_SEGMENTS	= 128,
1151 	BLK_SAFE_MAX_SECTORS	= 255,
1152 	BLK_MAX_SEGMENT_SIZE	= 65536,
1153 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1154 };
1155 
1156 /*
1157  * Default upper limit for the software max_sectors limit used for
1158  * regular file system I/O.  This can be increased through sysfs.
1159  *
1160  * Not to be confused with the max_hw_sector limit that is entirely
1161  * controlled by the driver, usually based on hardware limits.
1162  */
1163 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1164 
1165 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1166 {
1167 	return q->limits.seg_boundary_mask;
1168 }
1169 
1170 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1171 {
1172 	return q->limits.virt_boundary_mask;
1173 }
1174 
1175 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1176 {
1177 	return q->limits.max_sectors;
1178 }
1179 
1180 static inline unsigned int queue_max_bytes(struct request_queue *q)
1181 {
1182 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1183 }
1184 
1185 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1186 {
1187 	return q->limits.max_hw_sectors;
1188 }
1189 
1190 static inline unsigned short queue_max_segments(const struct request_queue *q)
1191 {
1192 	return q->limits.max_segments;
1193 }
1194 
1195 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1196 {
1197 	return q->limits.max_discard_segments;
1198 }
1199 
1200 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1201 {
1202 	return q->limits.max_segment_size;
1203 }
1204 
1205 static inline unsigned int queue_limits_max_zone_append_sectors(struct queue_limits *l)
1206 {
1207 	unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors);
1208 
1209 	return min_not_zero(l->max_zone_append_sectors, max_sectors);
1210 }
1211 
1212 static inline unsigned int queue_max_zone_append_sectors(struct request_queue *q)
1213 {
1214 	if (!blk_queue_is_zoned(q))
1215 		return 0;
1216 
1217 	return queue_limits_max_zone_append_sectors(&q->limits);
1218 }
1219 
1220 static inline bool queue_emulates_zone_append(struct request_queue *q)
1221 {
1222 	return blk_queue_is_zoned(q) && !q->limits.max_zone_append_sectors;
1223 }
1224 
1225 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1226 {
1227 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1228 }
1229 
1230 static inline unsigned int
1231 bdev_max_zone_append_sectors(struct block_device *bdev)
1232 {
1233 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1234 }
1235 
1236 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1237 {
1238 	return queue_max_segments(bdev_get_queue(bdev));
1239 }
1240 
1241 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1242 {
1243 	int retval = 512;
1244 
1245 	if (q && q->limits.logical_block_size)
1246 		retval = q->limits.logical_block_size;
1247 
1248 	return retval;
1249 }
1250 
1251 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1252 {
1253 	return queue_logical_block_size(bdev_get_queue(bdev));
1254 }
1255 
1256 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1257 {
1258 	return q->limits.physical_block_size;
1259 }
1260 
1261 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1262 {
1263 	return queue_physical_block_size(bdev_get_queue(bdev));
1264 }
1265 
1266 static inline unsigned int queue_io_min(const struct request_queue *q)
1267 {
1268 	return q->limits.io_min;
1269 }
1270 
1271 static inline int bdev_io_min(struct block_device *bdev)
1272 {
1273 	return queue_io_min(bdev_get_queue(bdev));
1274 }
1275 
1276 static inline unsigned int queue_io_opt(const struct request_queue *q)
1277 {
1278 	return q->limits.io_opt;
1279 }
1280 
1281 static inline int bdev_io_opt(struct block_device *bdev)
1282 {
1283 	return queue_io_opt(bdev_get_queue(bdev));
1284 }
1285 
1286 static inline unsigned int
1287 queue_zone_write_granularity(const struct request_queue *q)
1288 {
1289 	return q->limits.zone_write_granularity;
1290 }
1291 
1292 static inline unsigned int
1293 bdev_zone_write_granularity(struct block_device *bdev)
1294 {
1295 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1296 }
1297 
1298 int bdev_alignment_offset(struct block_device *bdev);
1299 unsigned int bdev_discard_alignment(struct block_device *bdev);
1300 
1301 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1302 {
1303 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1304 }
1305 
1306 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1307 {
1308 	return bdev_get_queue(bdev)->limits.discard_granularity;
1309 }
1310 
1311 static inline unsigned int
1312 bdev_max_secure_erase_sectors(struct block_device *bdev)
1313 {
1314 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1315 }
1316 
1317 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1318 {
1319 	struct request_queue *q = bdev_get_queue(bdev);
1320 
1321 	if (q)
1322 		return q->limits.max_write_zeroes_sectors;
1323 
1324 	return 0;
1325 }
1326 
1327 static inline bool bdev_nonrot(struct block_device *bdev)
1328 {
1329 	return blk_queue_nonrot(bdev_get_queue(bdev));
1330 }
1331 
1332 static inline bool bdev_synchronous(struct block_device *bdev)
1333 {
1334 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1335 }
1336 
1337 static inline bool bdev_stable_writes(struct block_device *bdev)
1338 {
1339 	struct request_queue *q = bdev_get_queue(bdev);
1340 
1341 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1342 	    q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1343 		return true;
1344 	return q->limits.features & BLK_FEAT_STABLE_WRITES;
1345 }
1346 
1347 static inline bool blk_queue_write_cache(struct request_queue *q)
1348 {
1349 	return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1350 		!(q->limits.flags & BLK_FLAGS_WRITE_CACHE_DISABLED);
1351 }
1352 
1353 static inline bool bdev_write_cache(struct block_device *bdev)
1354 {
1355 	return blk_queue_write_cache(bdev_get_queue(bdev));
1356 }
1357 
1358 static inline bool bdev_fua(struct block_device *bdev)
1359 {
1360 	return bdev_get_queue(bdev)->limits.features & BLK_FEAT_FUA;
1361 }
1362 
1363 static inline bool bdev_nowait(struct block_device *bdev)
1364 {
1365 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1366 }
1367 
1368 static inline bool bdev_is_zoned(struct block_device *bdev)
1369 {
1370 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1371 }
1372 
1373 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1374 {
1375 	return disk_zone_no(bdev->bd_disk, sec);
1376 }
1377 
1378 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1379 {
1380 	struct request_queue *q = bdev_get_queue(bdev);
1381 
1382 	if (!blk_queue_is_zoned(q))
1383 		return 0;
1384 	return q->limits.chunk_sectors;
1385 }
1386 
1387 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1388 						   sector_t sector)
1389 {
1390 	return sector & (bdev_zone_sectors(bdev) - 1);
1391 }
1392 
1393 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1394 {
1395 	return bdev_offset_from_zone_start(bio->bi_bdev,
1396 					   bio->bi_iter.bi_sector);
1397 }
1398 
1399 static inline bool bdev_is_zone_start(struct block_device *bdev,
1400 				      sector_t sector)
1401 {
1402 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1403 }
1404 
1405 static inline int queue_dma_alignment(const struct request_queue *q)
1406 {
1407 	return q ? q->limits.dma_alignment : 511;
1408 }
1409 
1410 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1411 {
1412 	return queue_dma_alignment(bdev_get_queue(bdev));
1413 }
1414 
1415 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1416 					struct iov_iter *iter)
1417 {
1418 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1419 				   bdev_logical_block_size(bdev) - 1);
1420 }
1421 
1422 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1423 				 unsigned int len)
1424 {
1425 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1426 	return !(addr & alignment) && !(len & alignment);
1427 }
1428 
1429 /* assumes size > 256 */
1430 static inline unsigned int blksize_bits(unsigned int size)
1431 {
1432 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1433 }
1434 
1435 int kblockd_schedule_work(struct work_struct *work);
1436 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1437 
1438 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1439 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1440 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1441 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1442 
1443 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1444 
1445 bool blk_crypto_register(struct blk_crypto_profile *profile,
1446 			 struct request_queue *q);
1447 
1448 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1449 
1450 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1451 				       struct request_queue *q)
1452 {
1453 	return true;
1454 }
1455 
1456 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1457 
1458 enum blk_unique_id {
1459 	/* these match the Designator Types specified in SPC */
1460 	BLK_UID_T10	= 1,
1461 	BLK_UID_EUI64	= 2,
1462 	BLK_UID_NAA	= 3,
1463 };
1464 
1465 struct block_device_operations {
1466 	void (*submit_bio)(struct bio *bio);
1467 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1468 			unsigned int flags);
1469 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1470 	void (*release)(struct gendisk *disk);
1471 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1472 			unsigned cmd, unsigned long arg);
1473 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1474 			unsigned cmd, unsigned long arg);
1475 	unsigned int (*check_events) (struct gendisk *disk,
1476 				      unsigned int clearing);
1477 	void (*unlock_native_capacity) (struct gendisk *);
1478 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1479 	int (*set_read_only)(struct block_device *bdev, bool ro);
1480 	void (*free_disk)(struct gendisk *disk);
1481 	/* this callback is with swap_lock and sometimes page table lock held */
1482 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1483 	int (*report_zones)(struct gendisk *, sector_t sector,
1484 			unsigned int nr_zones, report_zones_cb cb, void *data);
1485 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1486 	/* returns the length of the identifier or a negative errno: */
1487 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1488 			enum blk_unique_id id_type);
1489 	struct module *owner;
1490 	const struct pr_ops *pr_ops;
1491 
1492 	/*
1493 	 * Special callback for probing GPT entry at a given sector.
1494 	 * Needed by Android devices, used by GPT scanner and MMC blk
1495 	 * driver.
1496 	 */
1497 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1498 };
1499 
1500 #ifdef CONFIG_COMPAT
1501 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1502 				      unsigned int, unsigned long);
1503 #else
1504 #define blkdev_compat_ptr_ioctl NULL
1505 #endif
1506 
1507 static inline void blk_wake_io_task(struct task_struct *waiter)
1508 {
1509 	/*
1510 	 * If we're polling, the task itself is doing the completions. For
1511 	 * that case, we don't need to signal a wakeup, it's enough to just
1512 	 * mark us as RUNNING.
1513 	 */
1514 	if (waiter == current)
1515 		__set_current_state(TASK_RUNNING);
1516 	else
1517 		wake_up_process(waiter);
1518 }
1519 
1520 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1521 				 unsigned long start_time);
1522 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1523 		      unsigned int sectors, unsigned long start_time);
1524 
1525 unsigned long bio_start_io_acct(struct bio *bio);
1526 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1527 		struct block_device *orig_bdev);
1528 
1529 /**
1530  * bio_end_io_acct - end I/O accounting for bio based drivers
1531  * @bio:	bio to end account for
1532  * @start_time:	start time returned by bio_start_io_acct()
1533  */
1534 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1535 {
1536 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1537 }
1538 
1539 int bdev_read_only(struct block_device *bdev);
1540 int set_blocksize(struct file *file, int size);
1541 
1542 int lookup_bdev(const char *pathname, dev_t *dev);
1543 
1544 void blkdev_show(struct seq_file *seqf, off_t offset);
1545 
1546 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1547 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1548 #ifdef CONFIG_BLOCK
1549 #define BLKDEV_MAJOR_MAX	512
1550 #else
1551 #define BLKDEV_MAJOR_MAX	0
1552 #endif
1553 
1554 struct blk_holder_ops {
1555 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1556 
1557 	/*
1558 	 * Sync the file system mounted on the block device.
1559 	 */
1560 	void (*sync)(struct block_device *bdev);
1561 
1562 	/*
1563 	 * Freeze the file system mounted on the block device.
1564 	 */
1565 	int (*freeze)(struct block_device *bdev);
1566 
1567 	/*
1568 	 * Thaw the file system mounted on the block device.
1569 	 */
1570 	int (*thaw)(struct block_device *bdev);
1571 };
1572 
1573 /*
1574  * For filesystems using @fs_holder_ops, the @holder argument passed to
1575  * helpers used to open and claim block devices via
1576  * bd_prepare_to_claim() must point to a superblock.
1577  */
1578 extern const struct blk_holder_ops fs_holder_ops;
1579 
1580 /*
1581  * Return the correct open flags for blkdev_get_by_* for super block flags
1582  * as stored in sb->s_flags.
1583  */
1584 #define sb_open_mode(flags) \
1585 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1586 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1587 
1588 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1589 		const struct blk_holder_ops *hops);
1590 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1591 		void *holder, const struct blk_holder_ops *hops);
1592 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1593 		const struct blk_holder_ops *hops);
1594 void bd_abort_claiming(struct block_device *bdev, void *holder);
1595 
1596 /* just for blk-cgroup, don't use elsewhere */
1597 struct block_device *blkdev_get_no_open(dev_t dev);
1598 void blkdev_put_no_open(struct block_device *bdev);
1599 
1600 struct block_device *I_BDEV(struct inode *inode);
1601 struct block_device *file_bdev(struct file *bdev_file);
1602 bool disk_live(struct gendisk *disk);
1603 unsigned int block_size(struct block_device *bdev);
1604 
1605 #ifdef CONFIG_BLOCK
1606 void invalidate_bdev(struct block_device *bdev);
1607 int sync_blockdev(struct block_device *bdev);
1608 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1609 int sync_blockdev_nowait(struct block_device *bdev);
1610 void sync_bdevs(bool wait);
1611 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1612 void printk_all_partitions(void);
1613 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1614 #else
1615 static inline void invalidate_bdev(struct block_device *bdev)
1616 {
1617 }
1618 static inline int sync_blockdev(struct block_device *bdev)
1619 {
1620 	return 0;
1621 }
1622 static inline int sync_blockdev_nowait(struct block_device *bdev)
1623 {
1624 	return 0;
1625 }
1626 static inline void sync_bdevs(bool wait)
1627 {
1628 }
1629 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1630 {
1631 }
1632 static inline void printk_all_partitions(void)
1633 {
1634 }
1635 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1636 {
1637 	return -EINVAL;
1638 }
1639 #endif /* CONFIG_BLOCK */
1640 
1641 int bdev_freeze(struct block_device *bdev);
1642 int bdev_thaw(struct block_device *bdev);
1643 void bdev_fput(struct file *bdev_file);
1644 
1645 struct io_comp_batch {
1646 	struct request *req_list;
1647 	bool need_ts;
1648 	void (*complete)(struct io_comp_batch *);
1649 };
1650 
1651 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1652 
1653 #endif /* _LINUX_BLKDEV_H */
1654