1 #ifndef _LINUX_BLKDEV_H 2 #define _LINUX_BLKDEV_H 3 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 7 #ifdef CONFIG_BLOCK 8 9 #include <linux/major.h> 10 #include <linux/genhd.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/timer.h> 14 #include <linux/workqueue.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev-defs.h> 17 #include <linux/wait.h> 18 #include <linux/mempool.h> 19 #include <linux/pfn.h> 20 #include <linux/bio.h> 21 #include <linux/stringify.h> 22 #include <linux/gfp.h> 23 #include <linux/bsg.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate.h> 26 #include <linux/percpu-refcount.h> 27 #include <linux/scatterlist.h> 28 #include <linux/blkzoned.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_wb; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consisitent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* 53 * Maximum number of blkcg policies allowed to be registered concurrently. 54 * Defined here to simplify include dependency. 55 */ 56 #define BLKCG_MAX_POLS 3 57 58 typedef void (rq_end_io_fn)(struct request *, int); 59 60 #define BLK_RL_SYNCFULL (1U << 0) 61 #define BLK_RL_ASYNCFULL (1U << 1) 62 63 struct request_list { 64 struct request_queue *q; /* the queue this rl belongs to */ 65 #ifdef CONFIG_BLK_CGROUP 66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 67 #endif 68 /* 69 * count[], starved[], and wait[] are indexed by 70 * BLK_RW_SYNC/BLK_RW_ASYNC 71 */ 72 int count[2]; 73 int starved[2]; 74 mempool_t *rq_pool; 75 wait_queue_head_t wait[2]; 76 unsigned int flags; 77 }; 78 79 /* 80 * request flags */ 81 typedef __u32 __bitwise req_flags_t; 82 83 /* elevator knows about this request */ 84 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 85 /* drive already may have started this one */ 86 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 87 /* uses tagged queueing */ 88 #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 89 /* may not be passed by ioscheduler */ 90 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 91 /* request for flush sequence */ 92 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 93 /* merge of different types, fail separately */ 94 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 95 /* track inflight for MQ */ 96 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 97 /* don't call prep for this one */ 98 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 99 /* set for "ide_preempt" requests and also for requests for which the SCSI 100 "quiesce" state must be ignored. */ 101 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 102 /* contains copies of user pages */ 103 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 104 /* vaguely specified driver internal error. Ignored by the block layer */ 105 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 106 /* don't warn about errors */ 107 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 108 /* elevator private data attached */ 109 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 110 /* account I/O stat */ 111 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 112 /* request came from our alloc pool */ 113 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 114 /* runtime pm request */ 115 #define RQF_PM ((__force req_flags_t)(1 << 15)) 116 /* on IO scheduler merge hash */ 117 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 118 /* IO stats tracking on */ 119 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 120 /* Look at ->special_vec for the actual data payload instead of the 121 bio chain. */ 122 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 123 124 /* flags that prevent us from merging requests: */ 125 #define RQF_NOMERGE_FLAGS \ 126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 127 128 /* 129 * Try to put the fields that are referenced together in the same cacheline. 130 * 131 * If you modify this structure, make sure to update blk_rq_init() and 132 * especially blk_mq_rq_ctx_init() to take care of the added fields. 133 */ 134 struct request { 135 struct list_head queuelist; 136 union { 137 struct call_single_data csd; 138 u64 fifo_time; 139 }; 140 141 struct request_queue *q; 142 struct blk_mq_ctx *mq_ctx; 143 144 int cpu; 145 unsigned int cmd_flags; /* op and common flags */ 146 req_flags_t rq_flags; 147 148 int internal_tag; 149 150 unsigned long atomic_flags; 151 152 /* the following two fields are internal, NEVER access directly */ 153 unsigned int __data_len; /* total data len */ 154 int tag; 155 sector_t __sector; /* sector cursor */ 156 157 struct bio *bio; 158 struct bio *biotail; 159 160 /* 161 * The hash is used inside the scheduler, and killed once the 162 * request reaches the dispatch list. The ipi_list is only used 163 * to queue the request for softirq completion, which is long 164 * after the request has been unhashed (and even removed from 165 * the dispatch list). 166 */ 167 union { 168 struct hlist_node hash; /* merge hash */ 169 struct list_head ipi_list; 170 }; 171 172 /* 173 * The rb_node is only used inside the io scheduler, requests 174 * are pruned when moved to the dispatch queue. So let the 175 * completion_data share space with the rb_node. 176 */ 177 union { 178 struct rb_node rb_node; /* sort/lookup */ 179 struct bio_vec special_vec; 180 void *completion_data; 181 int error_count; /* for legacy drivers, don't use */ 182 }; 183 184 /* 185 * Three pointers are available for the IO schedulers, if they need 186 * more they have to dynamically allocate it. Flush requests are 187 * never put on the IO scheduler. So let the flush fields share 188 * space with the elevator data. 189 */ 190 union { 191 struct { 192 struct io_cq *icq; 193 void *priv[2]; 194 } elv; 195 196 struct { 197 unsigned int seq; 198 struct list_head list; 199 rq_end_io_fn *saved_end_io; 200 } flush; 201 }; 202 203 struct gendisk *rq_disk; 204 struct hd_struct *part; 205 unsigned long start_time; 206 struct blk_issue_stat issue_stat; 207 #ifdef CONFIG_BLK_CGROUP 208 struct request_list *rl; /* rl this rq is alloced from */ 209 unsigned long long start_time_ns; 210 unsigned long long io_start_time_ns; /* when passed to hardware */ 211 #endif 212 /* Number of scatter-gather DMA addr+len pairs after 213 * physical address coalescing is performed. 214 */ 215 unsigned short nr_phys_segments; 216 #if defined(CONFIG_BLK_DEV_INTEGRITY) 217 unsigned short nr_integrity_segments; 218 #endif 219 220 unsigned short ioprio; 221 222 unsigned int timeout; 223 224 void *special; /* opaque pointer available for LLD use */ 225 226 unsigned int extra_len; /* length of alignment and padding */ 227 228 unsigned long deadline; 229 struct list_head timeout_list; 230 231 /* 232 * completion callback. 233 */ 234 rq_end_io_fn *end_io; 235 void *end_io_data; 236 237 /* for bidi */ 238 struct request *next_rq; 239 }; 240 241 static inline bool blk_rq_is_scsi(struct request *rq) 242 { 243 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT; 244 } 245 246 static inline bool blk_rq_is_private(struct request *rq) 247 { 248 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT; 249 } 250 251 static inline bool blk_rq_is_passthrough(struct request *rq) 252 { 253 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 254 } 255 256 static inline unsigned short req_get_ioprio(struct request *req) 257 { 258 return req->ioprio; 259 } 260 261 #include <linux/elevator.h> 262 263 struct blk_queue_ctx; 264 265 typedef void (request_fn_proc) (struct request_queue *q); 266 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 267 typedef int (prep_rq_fn) (struct request_queue *, struct request *); 268 typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 269 270 struct bio_vec; 271 typedef void (softirq_done_fn)(struct request *); 272 typedef int (dma_drain_needed_fn)(struct request *); 273 typedef int (lld_busy_fn) (struct request_queue *q); 274 typedef int (bsg_job_fn) (struct bsg_job *); 275 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 276 typedef void (exit_rq_fn)(struct request_queue *, struct request *); 277 278 enum blk_eh_timer_return { 279 BLK_EH_NOT_HANDLED, 280 BLK_EH_HANDLED, 281 BLK_EH_RESET_TIMER, 282 }; 283 284 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 285 286 enum blk_queue_state { 287 Queue_down, 288 Queue_up, 289 }; 290 291 struct blk_queue_tag { 292 struct request **tag_index; /* map of busy tags */ 293 unsigned long *tag_map; /* bit map of free/busy tags */ 294 int max_depth; /* what we will send to device */ 295 int real_max_depth; /* what the array can hold */ 296 atomic_t refcnt; /* map can be shared */ 297 int alloc_policy; /* tag allocation policy */ 298 int next_tag; /* next tag */ 299 }; 300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 302 303 #define BLK_SCSI_MAX_CMDS (256) 304 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 305 306 /* 307 * Zoned block device models (zoned limit). 308 */ 309 enum blk_zoned_model { 310 BLK_ZONED_NONE, /* Regular block device */ 311 BLK_ZONED_HA, /* Host-aware zoned block device */ 312 BLK_ZONED_HM, /* Host-managed zoned block device */ 313 }; 314 315 struct queue_limits { 316 unsigned long bounce_pfn; 317 unsigned long seg_boundary_mask; 318 unsigned long virt_boundary_mask; 319 320 unsigned int max_hw_sectors; 321 unsigned int max_dev_sectors; 322 unsigned int chunk_sectors; 323 unsigned int max_sectors; 324 unsigned int max_segment_size; 325 unsigned int physical_block_size; 326 unsigned int alignment_offset; 327 unsigned int io_min; 328 unsigned int io_opt; 329 unsigned int max_discard_sectors; 330 unsigned int max_hw_discard_sectors; 331 unsigned int max_write_same_sectors; 332 unsigned int max_write_zeroes_sectors; 333 unsigned int discard_granularity; 334 unsigned int discard_alignment; 335 336 unsigned short logical_block_size; 337 unsigned short max_segments; 338 unsigned short max_integrity_segments; 339 unsigned short max_discard_segments; 340 341 unsigned char misaligned; 342 unsigned char discard_misaligned; 343 unsigned char cluster; 344 unsigned char raid_partial_stripes_expensive; 345 enum blk_zoned_model zoned; 346 }; 347 348 #ifdef CONFIG_BLK_DEV_ZONED 349 350 struct blk_zone_report_hdr { 351 unsigned int nr_zones; 352 u8 padding[60]; 353 }; 354 355 extern int blkdev_report_zones(struct block_device *bdev, 356 sector_t sector, struct blk_zone *zones, 357 unsigned int *nr_zones, gfp_t gfp_mask); 358 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 359 sector_t nr_sectors, gfp_t gfp_mask); 360 361 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 362 unsigned int cmd, unsigned long arg); 363 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 364 unsigned int cmd, unsigned long arg); 365 366 #else /* CONFIG_BLK_DEV_ZONED */ 367 368 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 369 fmode_t mode, unsigned int cmd, 370 unsigned long arg) 371 { 372 return -ENOTTY; 373 } 374 375 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 376 fmode_t mode, unsigned int cmd, 377 unsigned long arg) 378 { 379 return -ENOTTY; 380 } 381 382 #endif /* CONFIG_BLK_DEV_ZONED */ 383 384 struct request_queue { 385 /* 386 * Together with queue_head for cacheline sharing 387 */ 388 struct list_head queue_head; 389 struct request *last_merge; 390 struct elevator_queue *elevator; 391 int nr_rqs[2]; /* # allocated [a]sync rqs */ 392 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 393 394 struct blk_queue_stats *stats; 395 struct rq_wb *rq_wb; 396 397 /* 398 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 399 * is used, root blkg allocates from @q->root_rl and all other 400 * blkgs from their own blkg->rl. Which one to use should be 401 * determined using bio_request_list(). 402 */ 403 struct request_list root_rl; 404 405 request_fn_proc *request_fn; 406 make_request_fn *make_request_fn; 407 prep_rq_fn *prep_rq_fn; 408 unprep_rq_fn *unprep_rq_fn; 409 softirq_done_fn *softirq_done_fn; 410 rq_timed_out_fn *rq_timed_out_fn; 411 dma_drain_needed_fn *dma_drain_needed; 412 lld_busy_fn *lld_busy_fn; 413 init_rq_fn *init_rq_fn; 414 exit_rq_fn *exit_rq_fn; 415 416 const struct blk_mq_ops *mq_ops; 417 418 unsigned int *mq_map; 419 420 /* sw queues */ 421 struct blk_mq_ctx __percpu *queue_ctx; 422 unsigned int nr_queues; 423 424 unsigned int queue_depth; 425 426 /* hw dispatch queues */ 427 struct blk_mq_hw_ctx **queue_hw_ctx; 428 unsigned int nr_hw_queues; 429 430 /* 431 * Dispatch queue sorting 432 */ 433 sector_t end_sector; 434 struct request *boundary_rq; 435 436 /* 437 * Delayed queue handling 438 */ 439 struct delayed_work delay_work; 440 441 struct backing_dev_info *backing_dev_info; 442 443 /* 444 * The queue owner gets to use this for whatever they like. 445 * ll_rw_blk doesn't touch it. 446 */ 447 void *queuedata; 448 449 /* 450 * various queue flags, see QUEUE_* below 451 */ 452 unsigned long queue_flags; 453 454 /* 455 * ida allocated id for this queue. Used to index queues from 456 * ioctx. 457 */ 458 int id; 459 460 /* 461 * queue needs bounce pages for pages above this limit 462 */ 463 gfp_t bounce_gfp; 464 465 /* 466 * protects queue structures from reentrancy. ->__queue_lock should 467 * _never_ be used directly, it is queue private. always use 468 * ->queue_lock. 469 */ 470 spinlock_t __queue_lock; 471 spinlock_t *queue_lock; 472 473 /* 474 * queue kobject 475 */ 476 struct kobject kobj; 477 478 /* 479 * mq queue kobject 480 */ 481 struct kobject mq_kobj; 482 483 #ifdef CONFIG_BLK_DEV_INTEGRITY 484 struct blk_integrity integrity; 485 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 486 487 #ifdef CONFIG_PM 488 struct device *dev; 489 int rpm_status; 490 unsigned int nr_pending; 491 #endif 492 493 /* 494 * queue settings 495 */ 496 unsigned long nr_requests; /* Max # of requests */ 497 unsigned int nr_congestion_on; 498 unsigned int nr_congestion_off; 499 unsigned int nr_batching; 500 501 unsigned int dma_drain_size; 502 void *dma_drain_buffer; 503 unsigned int dma_pad_mask; 504 unsigned int dma_alignment; 505 506 struct blk_queue_tag *queue_tags; 507 struct list_head tag_busy_list; 508 509 unsigned int nr_sorted; 510 unsigned int in_flight[2]; 511 512 /* 513 * Number of active block driver functions for which blk_drain_queue() 514 * must wait. Must be incremented around functions that unlock the 515 * queue_lock internally, e.g. scsi_request_fn(). 516 */ 517 unsigned int request_fn_active; 518 519 unsigned int rq_timeout; 520 int poll_nsec; 521 522 struct blk_stat_callback *poll_cb; 523 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 524 525 struct timer_list timeout; 526 struct work_struct timeout_work; 527 struct list_head timeout_list; 528 529 struct list_head icq_list; 530 #ifdef CONFIG_BLK_CGROUP 531 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 532 struct blkcg_gq *root_blkg; 533 struct list_head blkg_list; 534 #endif 535 536 struct queue_limits limits; 537 538 /* 539 * sg stuff 540 */ 541 unsigned int sg_timeout; 542 unsigned int sg_reserved_size; 543 int node; 544 #ifdef CONFIG_BLK_DEV_IO_TRACE 545 struct blk_trace *blk_trace; 546 #endif 547 /* 548 * for flush operations 549 */ 550 struct blk_flush_queue *fq; 551 552 struct list_head requeue_list; 553 spinlock_t requeue_lock; 554 struct delayed_work requeue_work; 555 556 struct mutex sysfs_lock; 557 558 int bypass_depth; 559 atomic_t mq_freeze_depth; 560 561 #if defined(CONFIG_BLK_DEV_BSG) 562 bsg_job_fn *bsg_job_fn; 563 int bsg_job_size; 564 struct bsg_class_device bsg_dev; 565 #endif 566 567 #ifdef CONFIG_BLK_DEV_THROTTLING 568 /* Throttle data */ 569 struct throtl_data *td; 570 #endif 571 struct rcu_head rcu_head; 572 wait_queue_head_t mq_freeze_wq; 573 struct percpu_ref q_usage_counter; 574 struct list_head all_q_node; 575 576 struct blk_mq_tag_set *tag_set; 577 struct list_head tag_set_list; 578 struct bio_set *bio_split; 579 580 #ifdef CONFIG_BLK_DEBUG_FS 581 struct dentry *debugfs_dir; 582 struct dentry *sched_debugfs_dir; 583 #endif 584 585 bool mq_sysfs_init_done; 586 587 size_t cmd_size; 588 void *rq_alloc_data; 589 }; 590 591 #define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */ 592 #define QUEUE_FLAG_STOPPED 2 /* queue is stopped */ 593 #define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */ 594 #define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */ 595 #define QUEUE_FLAG_DYING 5 /* queue being torn down */ 596 #define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */ 597 #define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */ 598 #define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */ 599 #define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */ 600 #define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */ 601 #define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */ 602 #define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */ 603 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 604 #define QUEUE_FLAG_IO_STAT 13 /* do IO stats */ 605 #define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */ 606 #define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */ 607 #define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */ 608 #define QUEUE_FLAG_SECERASE 17 /* supports secure erase */ 609 #define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */ 610 #define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */ 611 #define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */ 612 #define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/ 613 #define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */ 614 #define QUEUE_FLAG_WC 23 /* Write back caching */ 615 #define QUEUE_FLAG_FUA 24 /* device supports FUA writes */ 616 #define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */ 617 #define QUEUE_FLAG_DAX 26 /* device supports DAX */ 618 #define QUEUE_FLAG_STATS 27 /* track rq completion times */ 619 #define QUEUE_FLAG_POLL_STATS 28 /* collecting stats for hybrid polling */ 620 #define QUEUE_FLAG_REGISTERED 29 /* queue has been registered to a disk */ 621 622 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 623 (1 << QUEUE_FLAG_STACKABLE) | \ 624 (1 << QUEUE_FLAG_SAME_COMP) | \ 625 (1 << QUEUE_FLAG_ADD_RANDOM)) 626 627 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 628 (1 << QUEUE_FLAG_STACKABLE) | \ 629 (1 << QUEUE_FLAG_SAME_COMP) | \ 630 (1 << QUEUE_FLAG_POLL)) 631 632 static inline void queue_lockdep_assert_held(struct request_queue *q) 633 { 634 if (q->queue_lock) 635 lockdep_assert_held(q->queue_lock); 636 } 637 638 static inline void queue_flag_set_unlocked(unsigned int flag, 639 struct request_queue *q) 640 { 641 __set_bit(flag, &q->queue_flags); 642 } 643 644 static inline int queue_flag_test_and_clear(unsigned int flag, 645 struct request_queue *q) 646 { 647 queue_lockdep_assert_held(q); 648 649 if (test_bit(flag, &q->queue_flags)) { 650 __clear_bit(flag, &q->queue_flags); 651 return 1; 652 } 653 654 return 0; 655 } 656 657 static inline int queue_flag_test_and_set(unsigned int flag, 658 struct request_queue *q) 659 { 660 queue_lockdep_assert_held(q); 661 662 if (!test_bit(flag, &q->queue_flags)) { 663 __set_bit(flag, &q->queue_flags); 664 return 0; 665 } 666 667 return 1; 668 } 669 670 static inline void queue_flag_set(unsigned int flag, struct request_queue *q) 671 { 672 queue_lockdep_assert_held(q); 673 __set_bit(flag, &q->queue_flags); 674 } 675 676 static inline void queue_flag_clear_unlocked(unsigned int flag, 677 struct request_queue *q) 678 { 679 __clear_bit(flag, &q->queue_flags); 680 } 681 682 static inline int queue_in_flight(struct request_queue *q) 683 { 684 return q->in_flight[0] + q->in_flight[1]; 685 } 686 687 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) 688 { 689 queue_lockdep_assert_held(q); 690 __clear_bit(flag, &q->queue_flags); 691 } 692 693 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 694 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 695 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 696 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 697 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 698 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 699 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 700 #define blk_queue_noxmerges(q) \ 701 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 702 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 703 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 704 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 705 #define blk_queue_stackable(q) \ 706 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags) 707 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 708 #define blk_queue_secure_erase(q) \ 709 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 710 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 711 712 #define blk_noretry_request(rq) \ 713 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 714 REQ_FAILFAST_DRIVER)) 715 716 static inline bool blk_account_rq(struct request *rq) 717 { 718 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 719 } 720 721 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 722 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 723 /* rq->queuelist of dequeued request must be list_empty() */ 724 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 725 726 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 727 728 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 729 730 /* 731 * Driver can handle struct request, if it either has an old style 732 * request_fn defined, or is blk-mq based. 733 */ 734 static inline bool queue_is_rq_based(struct request_queue *q) 735 { 736 return q->request_fn || q->mq_ops; 737 } 738 739 static inline unsigned int blk_queue_cluster(struct request_queue *q) 740 { 741 return q->limits.cluster; 742 } 743 744 static inline enum blk_zoned_model 745 blk_queue_zoned_model(struct request_queue *q) 746 { 747 return q->limits.zoned; 748 } 749 750 static inline bool blk_queue_is_zoned(struct request_queue *q) 751 { 752 switch (blk_queue_zoned_model(q)) { 753 case BLK_ZONED_HA: 754 case BLK_ZONED_HM: 755 return true; 756 default: 757 return false; 758 } 759 } 760 761 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 762 { 763 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 764 } 765 766 static inline bool rq_is_sync(struct request *rq) 767 { 768 return op_is_sync(rq->cmd_flags); 769 } 770 771 static inline bool blk_rl_full(struct request_list *rl, bool sync) 772 { 773 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 774 775 return rl->flags & flag; 776 } 777 778 static inline void blk_set_rl_full(struct request_list *rl, bool sync) 779 { 780 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 781 782 rl->flags |= flag; 783 } 784 785 static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 786 { 787 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 788 789 rl->flags &= ~flag; 790 } 791 792 static inline bool rq_mergeable(struct request *rq) 793 { 794 if (blk_rq_is_passthrough(rq)) 795 return false; 796 797 if (req_op(rq) == REQ_OP_FLUSH) 798 return false; 799 800 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 801 return false; 802 803 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 804 return false; 805 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 806 return false; 807 808 return true; 809 } 810 811 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 812 { 813 if (bio_data(a) == bio_data(b)) 814 return true; 815 816 return false; 817 } 818 819 static inline unsigned int blk_queue_depth(struct request_queue *q) 820 { 821 if (q->queue_depth) 822 return q->queue_depth; 823 824 return q->nr_requests; 825 } 826 827 /* 828 * q->prep_rq_fn return values 829 */ 830 enum { 831 BLKPREP_OK, /* serve it */ 832 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 833 BLKPREP_DEFER, /* leave on queue */ 834 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 835 }; 836 837 extern unsigned long blk_max_low_pfn, blk_max_pfn; 838 839 /* 840 * standard bounce addresses: 841 * 842 * BLK_BOUNCE_HIGH : bounce all highmem pages 843 * BLK_BOUNCE_ANY : don't bounce anything 844 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 845 */ 846 847 #if BITS_PER_LONG == 32 848 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 849 #else 850 #define BLK_BOUNCE_HIGH -1ULL 851 #endif 852 #define BLK_BOUNCE_ANY (-1ULL) 853 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 854 855 /* 856 * default timeout for SG_IO if none specified 857 */ 858 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 859 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 860 861 #ifdef CONFIG_BOUNCE 862 extern int init_emergency_isa_pool(void); 863 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); 864 #else 865 static inline int init_emergency_isa_pool(void) 866 { 867 return 0; 868 } 869 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) 870 { 871 } 872 #endif /* CONFIG_MMU */ 873 874 struct rq_map_data { 875 struct page **pages; 876 int page_order; 877 int nr_entries; 878 unsigned long offset; 879 int null_mapped; 880 int from_user; 881 }; 882 883 struct req_iterator { 884 struct bvec_iter iter; 885 struct bio *bio; 886 }; 887 888 /* This should not be used directly - use rq_for_each_segment */ 889 #define for_each_bio(_bio) \ 890 for (; _bio; _bio = _bio->bi_next) 891 #define __rq_for_each_bio(_bio, rq) \ 892 if ((rq->bio)) \ 893 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 894 895 #define rq_for_each_segment(bvl, _rq, _iter) \ 896 __rq_for_each_bio(_iter.bio, _rq) \ 897 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 898 899 #define rq_iter_last(bvec, _iter) \ 900 (_iter.bio->bi_next == NULL && \ 901 bio_iter_last(bvec, _iter.iter)) 902 903 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 904 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 905 #endif 906 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 907 extern void rq_flush_dcache_pages(struct request *rq); 908 #else 909 static inline void rq_flush_dcache_pages(struct request *rq) 910 { 911 } 912 #endif 913 914 #ifdef CONFIG_PRINTK 915 #define vfs_msg(sb, level, fmt, ...) \ 916 __vfs_msg(sb, level, fmt, ##__VA_ARGS__) 917 #else 918 #define vfs_msg(sb, level, fmt, ...) \ 919 do { \ 920 no_printk(fmt, ##__VA_ARGS__); \ 921 __vfs_msg(sb, "", " "); \ 922 } while (0) 923 #endif 924 925 extern int blk_register_queue(struct gendisk *disk); 926 extern void blk_unregister_queue(struct gendisk *disk); 927 extern blk_qc_t generic_make_request(struct bio *bio); 928 extern void blk_rq_init(struct request_queue *q, struct request *rq); 929 extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 930 extern void blk_put_request(struct request *); 931 extern void __blk_put_request(struct request_queue *, struct request *); 932 extern struct request *blk_get_request(struct request_queue *, int, gfp_t); 933 extern void blk_requeue_request(struct request_queue *, struct request *); 934 extern int blk_lld_busy(struct request_queue *q); 935 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 936 struct bio_set *bs, gfp_t gfp_mask, 937 int (*bio_ctr)(struct bio *, struct bio *, void *), 938 void *data); 939 extern void blk_rq_unprep_clone(struct request *rq); 940 extern int blk_insert_cloned_request(struct request_queue *q, 941 struct request *rq); 942 extern int blk_rq_append_bio(struct request *rq, struct bio *bio); 943 extern void blk_delay_queue(struct request_queue *, unsigned long); 944 extern void blk_queue_split(struct request_queue *, struct bio **, 945 struct bio_set *); 946 extern void blk_recount_segments(struct request_queue *, struct bio *); 947 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 948 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 949 unsigned int, void __user *); 950 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 951 unsigned int, void __user *); 952 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 953 struct scsi_ioctl_command __user *); 954 955 extern int blk_queue_enter(struct request_queue *q, bool nowait); 956 extern void blk_queue_exit(struct request_queue *q); 957 extern void blk_start_queue(struct request_queue *q); 958 extern void blk_start_queue_async(struct request_queue *q); 959 extern void blk_stop_queue(struct request_queue *q); 960 extern void blk_sync_queue(struct request_queue *q); 961 extern void __blk_stop_queue(struct request_queue *q); 962 extern void __blk_run_queue(struct request_queue *q); 963 extern void __blk_run_queue_uncond(struct request_queue *q); 964 extern void blk_run_queue(struct request_queue *); 965 extern void blk_run_queue_async(struct request_queue *q); 966 extern void blk_mq_quiesce_queue(struct request_queue *q); 967 extern int blk_rq_map_user(struct request_queue *, struct request *, 968 struct rq_map_data *, void __user *, unsigned long, 969 gfp_t); 970 extern int blk_rq_unmap_user(struct bio *); 971 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 972 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 973 struct rq_map_data *, const struct iov_iter *, 974 gfp_t); 975 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 976 struct request *, int); 977 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 978 struct request *, int, rq_end_io_fn *); 979 980 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 981 982 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 983 { 984 return bdev->bd_disk->queue; /* this is never NULL */ 985 } 986 987 /* 988 * blk_rq_pos() : the current sector 989 * blk_rq_bytes() : bytes left in the entire request 990 * blk_rq_cur_bytes() : bytes left in the current segment 991 * blk_rq_err_bytes() : bytes left till the next error boundary 992 * blk_rq_sectors() : sectors left in the entire request 993 * blk_rq_cur_sectors() : sectors left in the current segment 994 */ 995 static inline sector_t blk_rq_pos(const struct request *rq) 996 { 997 return rq->__sector; 998 } 999 1000 static inline unsigned int blk_rq_bytes(const struct request *rq) 1001 { 1002 return rq->__data_len; 1003 } 1004 1005 static inline int blk_rq_cur_bytes(const struct request *rq) 1006 { 1007 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1008 } 1009 1010 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1011 1012 static inline unsigned int blk_rq_sectors(const struct request *rq) 1013 { 1014 return blk_rq_bytes(rq) >> 9; 1015 } 1016 1017 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1018 { 1019 return blk_rq_cur_bytes(rq) >> 9; 1020 } 1021 1022 /* 1023 * Some commands like WRITE SAME have a payload or data transfer size which 1024 * is different from the size of the request. Any driver that supports such 1025 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1026 * calculate the data transfer size. 1027 */ 1028 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1029 { 1030 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1031 return rq->special_vec.bv_len; 1032 return blk_rq_bytes(rq); 1033 } 1034 1035 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1036 int op) 1037 { 1038 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1039 return min(q->limits.max_discard_sectors, UINT_MAX >> 9); 1040 1041 if (unlikely(op == REQ_OP_WRITE_SAME)) 1042 return q->limits.max_write_same_sectors; 1043 1044 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1045 return q->limits.max_write_zeroes_sectors; 1046 1047 return q->limits.max_sectors; 1048 } 1049 1050 /* 1051 * Return maximum size of a request at given offset. Only valid for 1052 * file system requests. 1053 */ 1054 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1055 sector_t offset) 1056 { 1057 if (!q->limits.chunk_sectors) 1058 return q->limits.max_sectors; 1059 1060 return q->limits.chunk_sectors - 1061 (offset & (q->limits.chunk_sectors - 1)); 1062 } 1063 1064 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1065 sector_t offset) 1066 { 1067 struct request_queue *q = rq->q; 1068 1069 if (blk_rq_is_passthrough(rq)) 1070 return q->limits.max_hw_sectors; 1071 1072 if (!q->limits.chunk_sectors || 1073 req_op(rq) == REQ_OP_DISCARD || 1074 req_op(rq) == REQ_OP_SECURE_ERASE) 1075 return blk_queue_get_max_sectors(q, req_op(rq)); 1076 1077 return min(blk_max_size_offset(q, offset), 1078 blk_queue_get_max_sectors(q, req_op(rq))); 1079 } 1080 1081 static inline unsigned int blk_rq_count_bios(struct request *rq) 1082 { 1083 unsigned int nr_bios = 0; 1084 struct bio *bio; 1085 1086 __rq_for_each_bio(bio, rq) 1087 nr_bios++; 1088 1089 return nr_bios; 1090 } 1091 1092 /* 1093 * Request issue related functions. 1094 */ 1095 extern struct request *blk_peek_request(struct request_queue *q); 1096 extern void blk_start_request(struct request *rq); 1097 extern struct request *blk_fetch_request(struct request_queue *q); 1098 1099 /* 1100 * Request completion related functions. 1101 * 1102 * blk_update_request() completes given number of bytes and updates 1103 * the request without completing it. 1104 * 1105 * blk_end_request() and friends. __blk_end_request() must be called 1106 * with the request queue spinlock acquired. 1107 * 1108 * Several drivers define their own end_request and call 1109 * blk_end_request() for parts of the original function. 1110 * This prevents code duplication in drivers. 1111 */ 1112 extern bool blk_update_request(struct request *rq, int error, 1113 unsigned int nr_bytes); 1114 extern void blk_finish_request(struct request *rq, int error); 1115 extern bool blk_end_request(struct request *rq, int error, 1116 unsigned int nr_bytes); 1117 extern void blk_end_request_all(struct request *rq, int error); 1118 extern bool __blk_end_request(struct request *rq, int error, 1119 unsigned int nr_bytes); 1120 extern void __blk_end_request_all(struct request *rq, int error); 1121 extern bool __blk_end_request_cur(struct request *rq, int error); 1122 1123 extern void blk_complete_request(struct request *); 1124 extern void __blk_complete_request(struct request *); 1125 extern void blk_abort_request(struct request *); 1126 extern void blk_unprep_request(struct request *); 1127 1128 /* 1129 * Access functions for manipulating queue properties 1130 */ 1131 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1132 spinlock_t *lock, int node_id); 1133 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1134 extern int blk_init_allocated_queue(struct request_queue *); 1135 extern void blk_cleanup_queue(struct request_queue *); 1136 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1137 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1138 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1139 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1140 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1141 extern void blk_queue_max_discard_segments(struct request_queue *, 1142 unsigned short); 1143 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1144 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1145 unsigned int max_discard_sectors); 1146 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1147 unsigned int max_write_same_sectors); 1148 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1149 unsigned int max_write_same_sectors); 1150 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1151 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1152 extern void blk_queue_alignment_offset(struct request_queue *q, 1153 unsigned int alignment); 1154 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1155 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1156 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1157 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1158 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1159 extern void blk_set_default_limits(struct queue_limits *lim); 1160 extern void blk_set_stacking_limits(struct queue_limits *lim); 1161 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1162 sector_t offset); 1163 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1164 sector_t offset); 1165 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1166 sector_t offset); 1167 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1168 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1169 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1170 extern int blk_queue_dma_drain(struct request_queue *q, 1171 dma_drain_needed_fn *dma_drain_needed, 1172 void *buf, unsigned int size); 1173 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1174 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1175 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1176 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1177 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1178 extern void blk_queue_dma_alignment(struct request_queue *, int); 1179 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1180 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1181 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1182 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1183 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1184 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1185 1186 /* 1187 * Number of physical segments as sent to the device. 1188 * 1189 * Normally this is the number of discontiguous data segments sent by the 1190 * submitter. But for data-less command like discard we might have no 1191 * actual data segments submitted, but the driver might have to add it's 1192 * own special payload. In that case we still return 1 here so that this 1193 * special payload will be mapped. 1194 */ 1195 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1196 { 1197 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1198 return 1; 1199 return rq->nr_phys_segments; 1200 } 1201 1202 /* 1203 * Number of discard segments (or ranges) the driver needs to fill in. 1204 * Each discard bio merged into a request is counted as one segment. 1205 */ 1206 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1207 { 1208 return max_t(unsigned short, rq->nr_phys_segments, 1); 1209 } 1210 1211 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1212 extern void blk_dump_rq_flags(struct request *, char *); 1213 extern long nr_blockdev_pages(void); 1214 1215 bool __must_check blk_get_queue(struct request_queue *); 1216 struct request_queue *blk_alloc_queue(gfp_t); 1217 struct request_queue *blk_alloc_queue_node(gfp_t, int); 1218 extern void blk_put_queue(struct request_queue *); 1219 extern void blk_set_queue_dying(struct request_queue *); 1220 1221 /* 1222 * block layer runtime pm functions 1223 */ 1224 #ifdef CONFIG_PM 1225 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1226 extern int blk_pre_runtime_suspend(struct request_queue *q); 1227 extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1228 extern void blk_pre_runtime_resume(struct request_queue *q); 1229 extern void blk_post_runtime_resume(struct request_queue *q, int err); 1230 extern void blk_set_runtime_active(struct request_queue *q); 1231 #else 1232 static inline void blk_pm_runtime_init(struct request_queue *q, 1233 struct device *dev) {} 1234 static inline int blk_pre_runtime_suspend(struct request_queue *q) 1235 { 1236 return -ENOSYS; 1237 } 1238 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1239 static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1240 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1241 static inline void blk_set_runtime_active(struct request_queue *q) {} 1242 #endif 1243 1244 /* 1245 * blk_plug permits building a queue of related requests by holding the I/O 1246 * fragments for a short period. This allows merging of sequential requests 1247 * into single larger request. As the requests are moved from a per-task list to 1248 * the device's request_queue in a batch, this results in improved scalability 1249 * as the lock contention for request_queue lock is reduced. 1250 * 1251 * It is ok not to disable preemption when adding the request to the plug list 1252 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1253 * the plug list when the task sleeps by itself. For details, please see 1254 * schedule() where blk_schedule_flush_plug() is called. 1255 */ 1256 struct blk_plug { 1257 struct list_head list; /* requests */ 1258 struct list_head mq_list; /* blk-mq requests */ 1259 struct list_head cb_list; /* md requires an unplug callback */ 1260 }; 1261 #define BLK_MAX_REQUEST_COUNT 16 1262 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1263 1264 struct blk_plug_cb; 1265 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1266 struct blk_plug_cb { 1267 struct list_head list; 1268 blk_plug_cb_fn callback; 1269 void *data; 1270 }; 1271 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1272 void *data, int size); 1273 extern void blk_start_plug(struct blk_plug *); 1274 extern void blk_finish_plug(struct blk_plug *); 1275 extern void blk_flush_plug_list(struct blk_plug *, bool); 1276 1277 static inline void blk_flush_plug(struct task_struct *tsk) 1278 { 1279 struct blk_plug *plug = tsk->plug; 1280 1281 if (plug) 1282 blk_flush_plug_list(plug, false); 1283 } 1284 1285 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1286 { 1287 struct blk_plug *plug = tsk->plug; 1288 1289 if (plug) 1290 blk_flush_plug_list(plug, true); 1291 } 1292 1293 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1294 { 1295 struct blk_plug *plug = tsk->plug; 1296 1297 return plug && 1298 (!list_empty(&plug->list) || 1299 !list_empty(&plug->mq_list) || 1300 !list_empty(&plug->cb_list)); 1301 } 1302 1303 /* 1304 * tag stuff 1305 */ 1306 extern int blk_queue_start_tag(struct request_queue *, struct request *); 1307 extern struct request *blk_queue_find_tag(struct request_queue *, int); 1308 extern void blk_queue_end_tag(struct request_queue *, struct request *); 1309 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1310 extern void blk_queue_free_tags(struct request_queue *); 1311 extern int blk_queue_resize_tags(struct request_queue *, int); 1312 extern void blk_queue_invalidate_tags(struct request_queue *); 1313 extern struct blk_queue_tag *blk_init_tags(int, int); 1314 extern void blk_free_tags(struct blk_queue_tag *); 1315 1316 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1317 int tag) 1318 { 1319 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1320 return NULL; 1321 return bqt->tag_index[tag]; 1322 } 1323 1324 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1325 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1326 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1327 1328 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1329 1330 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1331 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1332 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1333 sector_t nr_sects, gfp_t gfp_mask, int flags, 1334 struct bio **biop); 1335 1336 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1337 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1338 1339 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1340 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1341 unsigned flags); 1342 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1343 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1344 1345 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1346 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1347 { 1348 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9), 1349 nr_blocks << (sb->s_blocksize_bits - 9), 1350 gfp_mask, flags); 1351 } 1352 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1353 sector_t nr_blocks, gfp_t gfp_mask) 1354 { 1355 return blkdev_issue_zeroout(sb->s_bdev, 1356 block << (sb->s_blocksize_bits - 9), 1357 nr_blocks << (sb->s_blocksize_bits - 9), 1358 gfp_mask, 0); 1359 } 1360 1361 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm); 1362 1363 enum blk_default_limits { 1364 BLK_MAX_SEGMENTS = 128, 1365 BLK_SAFE_MAX_SECTORS = 255, 1366 BLK_DEF_MAX_SECTORS = 2560, 1367 BLK_MAX_SEGMENT_SIZE = 65536, 1368 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1369 }; 1370 1371 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1372 1373 static inline unsigned long queue_bounce_pfn(struct request_queue *q) 1374 { 1375 return q->limits.bounce_pfn; 1376 } 1377 1378 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1379 { 1380 return q->limits.seg_boundary_mask; 1381 } 1382 1383 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1384 { 1385 return q->limits.virt_boundary_mask; 1386 } 1387 1388 static inline unsigned int queue_max_sectors(struct request_queue *q) 1389 { 1390 return q->limits.max_sectors; 1391 } 1392 1393 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1394 { 1395 return q->limits.max_hw_sectors; 1396 } 1397 1398 static inline unsigned short queue_max_segments(struct request_queue *q) 1399 { 1400 return q->limits.max_segments; 1401 } 1402 1403 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1404 { 1405 return q->limits.max_discard_segments; 1406 } 1407 1408 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1409 { 1410 return q->limits.max_segment_size; 1411 } 1412 1413 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1414 { 1415 int retval = 512; 1416 1417 if (q && q->limits.logical_block_size) 1418 retval = q->limits.logical_block_size; 1419 1420 return retval; 1421 } 1422 1423 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1424 { 1425 return queue_logical_block_size(bdev_get_queue(bdev)); 1426 } 1427 1428 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1429 { 1430 return q->limits.physical_block_size; 1431 } 1432 1433 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1434 { 1435 return queue_physical_block_size(bdev_get_queue(bdev)); 1436 } 1437 1438 static inline unsigned int queue_io_min(struct request_queue *q) 1439 { 1440 return q->limits.io_min; 1441 } 1442 1443 static inline int bdev_io_min(struct block_device *bdev) 1444 { 1445 return queue_io_min(bdev_get_queue(bdev)); 1446 } 1447 1448 static inline unsigned int queue_io_opt(struct request_queue *q) 1449 { 1450 return q->limits.io_opt; 1451 } 1452 1453 static inline int bdev_io_opt(struct block_device *bdev) 1454 { 1455 return queue_io_opt(bdev_get_queue(bdev)); 1456 } 1457 1458 static inline int queue_alignment_offset(struct request_queue *q) 1459 { 1460 if (q->limits.misaligned) 1461 return -1; 1462 1463 return q->limits.alignment_offset; 1464 } 1465 1466 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1467 { 1468 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1469 unsigned int alignment = sector_div(sector, granularity >> 9) << 9; 1470 1471 return (granularity + lim->alignment_offset - alignment) % granularity; 1472 } 1473 1474 static inline int bdev_alignment_offset(struct block_device *bdev) 1475 { 1476 struct request_queue *q = bdev_get_queue(bdev); 1477 1478 if (q->limits.misaligned) 1479 return -1; 1480 1481 if (bdev != bdev->bd_contains) 1482 return bdev->bd_part->alignment_offset; 1483 1484 return q->limits.alignment_offset; 1485 } 1486 1487 static inline int queue_discard_alignment(struct request_queue *q) 1488 { 1489 if (q->limits.discard_misaligned) 1490 return -1; 1491 1492 return q->limits.discard_alignment; 1493 } 1494 1495 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1496 { 1497 unsigned int alignment, granularity, offset; 1498 1499 if (!lim->max_discard_sectors) 1500 return 0; 1501 1502 /* Why are these in bytes, not sectors? */ 1503 alignment = lim->discard_alignment >> 9; 1504 granularity = lim->discard_granularity >> 9; 1505 if (!granularity) 1506 return 0; 1507 1508 /* Offset of the partition start in 'granularity' sectors */ 1509 offset = sector_div(sector, granularity); 1510 1511 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1512 offset = (granularity + alignment - offset) % granularity; 1513 1514 /* Turn it back into bytes, gaah */ 1515 return offset << 9; 1516 } 1517 1518 static inline int bdev_discard_alignment(struct block_device *bdev) 1519 { 1520 struct request_queue *q = bdev_get_queue(bdev); 1521 1522 if (bdev != bdev->bd_contains) 1523 return bdev->bd_part->discard_alignment; 1524 1525 return q->limits.discard_alignment; 1526 } 1527 1528 static inline unsigned int bdev_write_same(struct block_device *bdev) 1529 { 1530 struct request_queue *q = bdev_get_queue(bdev); 1531 1532 if (q) 1533 return q->limits.max_write_same_sectors; 1534 1535 return 0; 1536 } 1537 1538 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1539 { 1540 struct request_queue *q = bdev_get_queue(bdev); 1541 1542 if (q) 1543 return q->limits.max_write_zeroes_sectors; 1544 1545 return 0; 1546 } 1547 1548 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1549 { 1550 struct request_queue *q = bdev_get_queue(bdev); 1551 1552 if (q) 1553 return blk_queue_zoned_model(q); 1554 1555 return BLK_ZONED_NONE; 1556 } 1557 1558 static inline bool bdev_is_zoned(struct block_device *bdev) 1559 { 1560 struct request_queue *q = bdev_get_queue(bdev); 1561 1562 if (q) 1563 return blk_queue_is_zoned(q); 1564 1565 return false; 1566 } 1567 1568 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1569 { 1570 struct request_queue *q = bdev_get_queue(bdev); 1571 1572 if (q) 1573 return blk_queue_zone_sectors(q); 1574 1575 return 0; 1576 } 1577 1578 static inline int queue_dma_alignment(struct request_queue *q) 1579 { 1580 return q ? q->dma_alignment : 511; 1581 } 1582 1583 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1584 unsigned int len) 1585 { 1586 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1587 return !(addr & alignment) && !(len & alignment); 1588 } 1589 1590 /* assumes size > 256 */ 1591 static inline unsigned int blksize_bits(unsigned int size) 1592 { 1593 unsigned int bits = 8; 1594 do { 1595 bits++; 1596 size >>= 1; 1597 } while (size > 256); 1598 return bits; 1599 } 1600 1601 static inline unsigned int block_size(struct block_device *bdev) 1602 { 1603 return bdev->bd_block_size; 1604 } 1605 1606 static inline bool queue_flush_queueable(struct request_queue *q) 1607 { 1608 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1609 } 1610 1611 typedef struct {struct page *v;} Sector; 1612 1613 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1614 1615 static inline void put_dev_sector(Sector p) 1616 { 1617 put_page(p.v); 1618 } 1619 1620 static inline bool __bvec_gap_to_prev(struct request_queue *q, 1621 struct bio_vec *bprv, unsigned int offset) 1622 { 1623 return offset || 1624 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1625 } 1626 1627 /* 1628 * Check if adding a bio_vec after bprv with offset would create a gap in 1629 * the SG list. Most drivers don't care about this, but some do. 1630 */ 1631 static inline bool bvec_gap_to_prev(struct request_queue *q, 1632 struct bio_vec *bprv, unsigned int offset) 1633 { 1634 if (!queue_virt_boundary(q)) 1635 return false; 1636 return __bvec_gap_to_prev(q, bprv, offset); 1637 } 1638 1639 /* 1640 * Check if the two bvecs from two bios can be merged to one segment. 1641 * If yes, no need to check gap between the two bios since the 1st bio 1642 * and the 1st bvec in the 2nd bio can be handled in one segment. 1643 */ 1644 static inline bool bios_segs_mergeable(struct request_queue *q, 1645 struct bio *prev, struct bio_vec *prev_last_bv, 1646 struct bio_vec *next_first_bv) 1647 { 1648 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1649 return false; 1650 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1651 return false; 1652 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1653 queue_max_segment_size(q)) 1654 return false; 1655 return true; 1656 } 1657 1658 static inline bool bio_will_gap(struct request_queue *q, 1659 struct request *prev_rq, 1660 struct bio *prev, 1661 struct bio *next) 1662 { 1663 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1664 struct bio_vec pb, nb; 1665 1666 /* 1667 * don't merge if the 1st bio starts with non-zero 1668 * offset, otherwise it is quite difficult to respect 1669 * sg gap limit. We work hard to merge a huge number of small 1670 * single bios in case of mkfs. 1671 */ 1672 if (prev_rq) 1673 bio_get_first_bvec(prev_rq->bio, &pb); 1674 else 1675 bio_get_first_bvec(prev, &pb); 1676 if (pb.bv_offset) 1677 return true; 1678 1679 /* 1680 * We don't need to worry about the situation that the 1681 * merged segment ends in unaligned virt boundary: 1682 * 1683 * - if 'pb' ends aligned, the merged segment ends aligned 1684 * - if 'pb' ends unaligned, the next bio must include 1685 * one single bvec of 'nb', otherwise the 'nb' can't 1686 * merge with 'pb' 1687 */ 1688 bio_get_last_bvec(prev, &pb); 1689 bio_get_first_bvec(next, &nb); 1690 1691 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1692 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1693 } 1694 1695 return false; 1696 } 1697 1698 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1699 { 1700 return bio_will_gap(req->q, req, req->biotail, bio); 1701 } 1702 1703 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1704 { 1705 return bio_will_gap(req->q, NULL, bio, req->bio); 1706 } 1707 1708 int kblockd_schedule_work(struct work_struct *work); 1709 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1710 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay); 1711 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1712 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1713 1714 #ifdef CONFIG_BLK_CGROUP 1715 /* 1716 * This should not be using sched_clock(). A real patch is in progress 1717 * to fix this up, until that is in place we need to disable preemption 1718 * around sched_clock() in this function and set_io_start_time_ns(). 1719 */ 1720 static inline void set_start_time_ns(struct request *req) 1721 { 1722 preempt_disable(); 1723 req->start_time_ns = sched_clock(); 1724 preempt_enable(); 1725 } 1726 1727 static inline void set_io_start_time_ns(struct request *req) 1728 { 1729 preempt_disable(); 1730 req->io_start_time_ns = sched_clock(); 1731 preempt_enable(); 1732 } 1733 1734 static inline uint64_t rq_start_time_ns(struct request *req) 1735 { 1736 return req->start_time_ns; 1737 } 1738 1739 static inline uint64_t rq_io_start_time_ns(struct request *req) 1740 { 1741 return req->io_start_time_ns; 1742 } 1743 #else 1744 static inline void set_start_time_ns(struct request *req) {} 1745 static inline void set_io_start_time_ns(struct request *req) {} 1746 static inline uint64_t rq_start_time_ns(struct request *req) 1747 { 1748 return 0; 1749 } 1750 static inline uint64_t rq_io_start_time_ns(struct request *req) 1751 { 1752 return 0; 1753 } 1754 #endif 1755 1756 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1757 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1758 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1759 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1760 1761 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1762 1763 enum blk_integrity_flags { 1764 BLK_INTEGRITY_VERIFY = 1 << 0, 1765 BLK_INTEGRITY_GENERATE = 1 << 1, 1766 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1767 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1768 }; 1769 1770 struct blk_integrity_iter { 1771 void *prot_buf; 1772 void *data_buf; 1773 sector_t seed; 1774 unsigned int data_size; 1775 unsigned short interval; 1776 const char *disk_name; 1777 }; 1778 1779 typedef int (integrity_processing_fn) (struct blk_integrity_iter *); 1780 1781 struct blk_integrity_profile { 1782 integrity_processing_fn *generate_fn; 1783 integrity_processing_fn *verify_fn; 1784 const char *name; 1785 }; 1786 1787 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1788 extern void blk_integrity_unregister(struct gendisk *); 1789 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1790 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1791 struct scatterlist *); 1792 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1793 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1794 struct request *); 1795 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1796 struct bio *); 1797 1798 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1799 { 1800 struct blk_integrity *bi = &disk->queue->integrity; 1801 1802 if (!bi->profile) 1803 return NULL; 1804 1805 return bi; 1806 } 1807 1808 static inline 1809 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1810 { 1811 return blk_get_integrity(bdev->bd_disk); 1812 } 1813 1814 static inline bool blk_integrity_rq(struct request *rq) 1815 { 1816 return rq->cmd_flags & REQ_INTEGRITY; 1817 } 1818 1819 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1820 unsigned int segs) 1821 { 1822 q->limits.max_integrity_segments = segs; 1823 } 1824 1825 static inline unsigned short 1826 queue_max_integrity_segments(struct request_queue *q) 1827 { 1828 return q->limits.max_integrity_segments; 1829 } 1830 1831 static inline bool integrity_req_gap_back_merge(struct request *req, 1832 struct bio *next) 1833 { 1834 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1835 struct bio_integrity_payload *bip_next = bio_integrity(next); 1836 1837 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1838 bip_next->bip_vec[0].bv_offset); 1839 } 1840 1841 static inline bool integrity_req_gap_front_merge(struct request *req, 1842 struct bio *bio) 1843 { 1844 struct bio_integrity_payload *bip = bio_integrity(bio); 1845 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1846 1847 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1848 bip_next->bip_vec[0].bv_offset); 1849 } 1850 1851 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1852 1853 struct bio; 1854 struct block_device; 1855 struct gendisk; 1856 struct blk_integrity; 1857 1858 static inline int blk_integrity_rq(struct request *rq) 1859 { 1860 return 0; 1861 } 1862 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1863 struct bio *b) 1864 { 1865 return 0; 1866 } 1867 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1868 struct bio *b, 1869 struct scatterlist *s) 1870 { 1871 return 0; 1872 } 1873 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1874 { 1875 return NULL; 1876 } 1877 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1878 { 1879 return NULL; 1880 } 1881 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1882 { 1883 return 0; 1884 } 1885 static inline void blk_integrity_register(struct gendisk *d, 1886 struct blk_integrity *b) 1887 { 1888 } 1889 static inline void blk_integrity_unregister(struct gendisk *d) 1890 { 1891 } 1892 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1893 unsigned int segs) 1894 { 1895 } 1896 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1897 { 1898 return 0; 1899 } 1900 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1901 struct request *r1, 1902 struct request *r2) 1903 { 1904 return true; 1905 } 1906 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1907 struct request *r, 1908 struct bio *b) 1909 { 1910 return true; 1911 } 1912 1913 static inline bool integrity_req_gap_back_merge(struct request *req, 1914 struct bio *next) 1915 { 1916 return false; 1917 } 1918 static inline bool integrity_req_gap_front_merge(struct request *req, 1919 struct bio *bio) 1920 { 1921 return false; 1922 } 1923 1924 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1925 1926 struct block_device_operations { 1927 int (*open) (struct block_device *, fmode_t); 1928 void (*release) (struct gendisk *, fmode_t); 1929 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 1930 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1931 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1932 unsigned int (*check_events) (struct gendisk *disk, 1933 unsigned int clearing); 1934 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1935 int (*media_changed) (struct gendisk *); 1936 void (*unlock_native_capacity) (struct gendisk *); 1937 int (*revalidate_disk) (struct gendisk *); 1938 int (*getgeo)(struct block_device *, struct hd_geometry *); 1939 /* this callback is with swap_lock and sometimes page table lock held */ 1940 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1941 struct module *owner; 1942 const struct pr_ops *pr_ops; 1943 }; 1944 1945 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1946 unsigned long); 1947 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1948 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1949 struct writeback_control *); 1950 #else /* CONFIG_BLOCK */ 1951 1952 struct block_device; 1953 1954 /* 1955 * stubs for when the block layer is configured out 1956 */ 1957 #define buffer_heads_over_limit 0 1958 1959 static inline long nr_blockdev_pages(void) 1960 { 1961 return 0; 1962 } 1963 1964 struct blk_plug { 1965 }; 1966 1967 static inline void blk_start_plug(struct blk_plug *plug) 1968 { 1969 } 1970 1971 static inline void blk_finish_plug(struct blk_plug *plug) 1972 { 1973 } 1974 1975 static inline void blk_flush_plug(struct task_struct *task) 1976 { 1977 } 1978 1979 static inline void blk_schedule_flush_plug(struct task_struct *task) 1980 { 1981 } 1982 1983 1984 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1985 { 1986 return false; 1987 } 1988 1989 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1990 sector_t *error_sector) 1991 { 1992 return 0; 1993 } 1994 1995 #endif /* CONFIG_BLOCK */ 1996 1997 #endif 1998