1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/smp.h> 22 #include <linux/rcupdate.h> 23 #include <linux/percpu-refcount.h> 24 #include <linux/scatterlist.h> 25 #include <linux/blkzoned.h> 26 #include <linux/pm.h> 27 #include <linux/sbitmap.h> 28 29 struct module; 30 struct request_queue; 31 struct elevator_queue; 32 struct blk_trace; 33 struct request; 34 struct sg_io_hdr; 35 struct blkcg_gq; 36 struct blk_flush_queue; 37 struct pr_ops; 38 struct rq_qos; 39 struct blk_queue_stats; 40 struct blk_stat_callback; 41 struct blk_keyslot_manager; 42 43 #define BLKDEV_MIN_RQ 4 44 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 45 46 /* Must be consistent with blk_mq_poll_stats_bkt() */ 47 #define BLK_MQ_POLL_STATS_BKTS 16 48 49 /* Doing classic polling */ 50 #define BLK_MQ_POLL_CLASSIC -1 51 52 /* 53 * Maximum number of blkcg policies allowed to be registered concurrently. 54 * Defined here to simplify include dependency. 55 */ 56 #define BLKCG_MAX_POLS 5 57 58 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 59 60 /* 61 * request flags */ 62 typedef __u32 __bitwise req_flags_t; 63 64 /* drive already may have started this one */ 65 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 66 /* may not be passed by ioscheduler */ 67 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 68 /* request for flush sequence */ 69 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 70 /* merge of different types, fail separately */ 71 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 72 /* track inflight for MQ */ 73 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 74 /* don't call prep for this one */ 75 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 76 /* vaguely specified driver internal error. Ignored by the block layer */ 77 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 78 /* don't warn about errors */ 79 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 80 /* elevator private data attached */ 81 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 82 /* account into disk and partition IO statistics */ 83 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 84 /* runtime pm request */ 85 #define RQF_PM ((__force req_flags_t)(1 << 15)) 86 /* on IO scheduler merge hash */ 87 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 88 /* track IO completion time */ 89 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 90 /* Look at ->special_vec for the actual data payload instead of the 91 bio chain. */ 92 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 93 /* The per-zone write lock is held for this request */ 94 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 95 /* already slept for hybrid poll */ 96 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 97 /* ->timeout has been called, don't expire again */ 98 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 99 100 /* flags that prevent us from merging requests: */ 101 #define RQF_NOMERGE_FLAGS \ 102 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 103 104 /* 105 * Request state for blk-mq. 106 */ 107 enum mq_rq_state { 108 MQ_RQ_IDLE = 0, 109 MQ_RQ_IN_FLIGHT = 1, 110 MQ_RQ_COMPLETE = 2, 111 }; 112 113 /* 114 * Try to put the fields that are referenced together in the same cacheline. 115 * 116 * If you modify this structure, make sure to update blk_rq_init() and 117 * especially blk_mq_rq_ctx_init() to take care of the added fields. 118 */ 119 struct request { 120 struct request_queue *q; 121 struct blk_mq_ctx *mq_ctx; 122 struct blk_mq_hw_ctx *mq_hctx; 123 124 unsigned int cmd_flags; /* op and common flags */ 125 req_flags_t rq_flags; 126 127 int tag; 128 int internal_tag; 129 130 /* the following two fields are internal, NEVER access directly */ 131 unsigned int __data_len; /* total data len */ 132 sector_t __sector; /* sector cursor */ 133 134 struct bio *bio; 135 struct bio *biotail; 136 137 struct list_head queuelist; 138 139 /* 140 * The hash is used inside the scheduler, and killed once the 141 * request reaches the dispatch list. The ipi_list is only used 142 * to queue the request for softirq completion, which is long 143 * after the request has been unhashed (and even removed from 144 * the dispatch list). 145 */ 146 union { 147 struct hlist_node hash; /* merge hash */ 148 struct llist_node ipi_list; 149 }; 150 151 /* 152 * The rb_node is only used inside the io scheduler, requests 153 * are pruned when moved to the dispatch queue. So let the 154 * completion_data share space with the rb_node. 155 */ 156 union { 157 struct rb_node rb_node; /* sort/lookup */ 158 struct bio_vec special_vec; 159 void *completion_data; 160 int error_count; /* for legacy drivers, don't use */ 161 }; 162 163 /* 164 * Three pointers are available for the IO schedulers, if they need 165 * more they have to dynamically allocate it. Flush requests are 166 * never put on the IO scheduler. So let the flush fields share 167 * space with the elevator data. 168 */ 169 union { 170 struct { 171 struct io_cq *icq; 172 void *priv[2]; 173 } elv; 174 175 struct { 176 unsigned int seq; 177 struct list_head list; 178 rq_end_io_fn *saved_end_io; 179 } flush; 180 }; 181 182 struct gendisk *rq_disk; 183 struct block_device *part; 184 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 185 /* Time that the first bio started allocating this request. */ 186 u64 alloc_time_ns; 187 #endif 188 /* Time that this request was allocated for this IO. */ 189 u64 start_time_ns; 190 /* Time that I/O was submitted to the device. */ 191 u64 io_start_time_ns; 192 193 #ifdef CONFIG_BLK_WBT 194 unsigned short wbt_flags; 195 #endif 196 /* 197 * rq sectors used for blk stats. It has the same value 198 * with blk_rq_sectors(rq), except that it never be zeroed 199 * by completion. 200 */ 201 unsigned short stats_sectors; 202 203 /* 204 * Number of scatter-gather DMA addr+len pairs after 205 * physical address coalescing is performed. 206 */ 207 unsigned short nr_phys_segments; 208 209 #if defined(CONFIG_BLK_DEV_INTEGRITY) 210 unsigned short nr_integrity_segments; 211 #endif 212 213 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 214 struct bio_crypt_ctx *crypt_ctx; 215 struct blk_ksm_keyslot *crypt_keyslot; 216 #endif 217 218 unsigned short write_hint; 219 unsigned short ioprio; 220 221 enum mq_rq_state state; 222 refcount_t ref; 223 224 unsigned int timeout; 225 unsigned long deadline; 226 227 union { 228 struct __call_single_data csd; 229 u64 fifo_time; 230 }; 231 232 /* 233 * completion callback. 234 */ 235 rq_end_io_fn *end_io; 236 void *end_io_data; 237 }; 238 239 static inline bool blk_op_is_passthrough(unsigned int op) 240 { 241 op &= REQ_OP_MASK; 242 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 243 } 244 245 static inline bool blk_rq_is_passthrough(struct request *rq) 246 { 247 return blk_op_is_passthrough(req_op(rq)); 248 } 249 250 static inline unsigned short req_get_ioprio(struct request *req) 251 { 252 return req->ioprio; 253 } 254 255 #include <linux/elevator.h> 256 257 struct blk_queue_ctx; 258 259 struct bio_vec; 260 261 enum blk_eh_timer_return { 262 BLK_EH_DONE, /* drivers has completed the command */ 263 BLK_EH_RESET_TIMER, /* reset timer and try again */ 264 }; 265 266 enum blk_queue_state { 267 Queue_down, 268 Queue_up, 269 }; 270 271 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 272 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 273 274 /* 275 * Zoned block device models (zoned limit). 276 * 277 * Note: This needs to be ordered from the least to the most severe 278 * restrictions for the inheritance in blk_stack_limits() to work. 279 */ 280 enum blk_zoned_model { 281 BLK_ZONED_NONE = 0, /* Regular block device */ 282 BLK_ZONED_HA, /* Host-aware zoned block device */ 283 BLK_ZONED_HM, /* Host-managed zoned block device */ 284 }; 285 286 /* 287 * BLK_BOUNCE_NONE: never bounce (default) 288 * BLK_BOUNCE_HIGH: bounce all highmem pages 289 */ 290 enum blk_bounce { 291 BLK_BOUNCE_NONE, 292 BLK_BOUNCE_HIGH, 293 }; 294 295 struct queue_limits { 296 enum blk_bounce bounce; 297 unsigned long seg_boundary_mask; 298 unsigned long virt_boundary_mask; 299 300 unsigned int max_hw_sectors; 301 unsigned int max_dev_sectors; 302 unsigned int chunk_sectors; 303 unsigned int max_sectors; 304 unsigned int max_segment_size; 305 unsigned int physical_block_size; 306 unsigned int logical_block_size; 307 unsigned int alignment_offset; 308 unsigned int io_min; 309 unsigned int io_opt; 310 unsigned int max_discard_sectors; 311 unsigned int max_hw_discard_sectors; 312 unsigned int max_write_same_sectors; 313 unsigned int max_write_zeroes_sectors; 314 unsigned int max_zone_append_sectors; 315 unsigned int discard_granularity; 316 unsigned int discard_alignment; 317 unsigned int zone_write_granularity; 318 319 unsigned short max_segments; 320 unsigned short max_integrity_segments; 321 unsigned short max_discard_segments; 322 323 unsigned char misaligned; 324 unsigned char discard_misaligned; 325 unsigned char raid_partial_stripes_expensive; 326 enum blk_zoned_model zoned; 327 }; 328 329 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 330 void *data); 331 332 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 333 334 #ifdef CONFIG_BLK_DEV_ZONED 335 336 #define BLK_ALL_ZONES ((unsigned int)-1) 337 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 338 unsigned int nr_zones, report_zones_cb cb, void *data); 339 unsigned int blkdev_nr_zones(struct gendisk *disk); 340 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 341 sector_t sectors, sector_t nr_sectors, 342 gfp_t gfp_mask); 343 int blk_revalidate_disk_zones(struct gendisk *disk, 344 void (*update_driver_data)(struct gendisk *disk)); 345 346 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 347 unsigned int cmd, unsigned long arg); 348 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 349 unsigned int cmd, unsigned long arg); 350 351 #else /* CONFIG_BLK_DEV_ZONED */ 352 353 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 354 { 355 return 0; 356 } 357 358 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 359 fmode_t mode, unsigned int cmd, 360 unsigned long arg) 361 { 362 return -ENOTTY; 363 } 364 365 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 366 fmode_t mode, unsigned int cmd, 367 unsigned long arg) 368 { 369 return -ENOTTY; 370 } 371 372 #endif /* CONFIG_BLK_DEV_ZONED */ 373 374 struct request_queue { 375 struct request *last_merge; 376 struct elevator_queue *elevator; 377 378 struct percpu_ref q_usage_counter; 379 380 struct blk_queue_stats *stats; 381 struct rq_qos *rq_qos; 382 383 const struct blk_mq_ops *mq_ops; 384 385 /* sw queues */ 386 struct blk_mq_ctx __percpu *queue_ctx; 387 388 unsigned int queue_depth; 389 390 /* hw dispatch queues */ 391 struct blk_mq_hw_ctx **queue_hw_ctx; 392 unsigned int nr_hw_queues; 393 394 struct backing_dev_info *backing_dev_info; 395 396 /* 397 * The queue owner gets to use this for whatever they like. 398 * ll_rw_blk doesn't touch it. 399 */ 400 void *queuedata; 401 402 /* 403 * various queue flags, see QUEUE_* below 404 */ 405 unsigned long queue_flags; 406 /* 407 * Number of contexts that have called blk_set_pm_only(). If this 408 * counter is above zero then only RQF_PM requests are processed. 409 */ 410 atomic_t pm_only; 411 412 /* 413 * ida allocated id for this queue. Used to index queues from 414 * ioctx. 415 */ 416 int id; 417 418 spinlock_t queue_lock; 419 420 /* 421 * queue kobject 422 */ 423 struct kobject kobj; 424 425 /* 426 * mq queue kobject 427 */ 428 struct kobject *mq_kobj; 429 430 #ifdef CONFIG_BLK_DEV_INTEGRITY 431 struct blk_integrity integrity; 432 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 433 434 #ifdef CONFIG_PM 435 struct device *dev; 436 enum rpm_status rpm_status; 437 #endif 438 439 /* 440 * queue settings 441 */ 442 unsigned long nr_requests; /* Max # of requests */ 443 444 unsigned int dma_pad_mask; 445 unsigned int dma_alignment; 446 447 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 448 /* Inline crypto capabilities */ 449 struct blk_keyslot_manager *ksm; 450 #endif 451 452 unsigned int rq_timeout; 453 int poll_nsec; 454 455 struct blk_stat_callback *poll_cb; 456 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 457 458 struct timer_list timeout; 459 struct work_struct timeout_work; 460 461 atomic_t nr_active_requests_shared_sbitmap; 462 463 struct sbitmap_queue sched_bitmap_tags; 464 struct sbitmap_queue sched_breserved_tags; 465 466 struct list_head icq_list; 467 #ifdef CONFIG_BLK_CGROUP 468 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 469 struct blkcg_gq *root_blkg; 470 struct list_head blkg_list; 471 #endif 472 473 struct queue_limits limits; 474 475 unsigned int required_elevator_features; 476 477 #ifdef CONFIG_BLK_DEV_ZONED 478 /* 479 * Zoned block device information for request dispatch control. 480 * nr_zones is the total number of zones of the device. This is always 481 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 482 * bits which indicates if a zone is conventional (bit set) or 483 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 484 * bits which indicates if a zone is write locked, that is, if a write 485 * request targeting the zone was dispatched. All three fields are 486 * initialized by the low level device driver (e.g. scsi/sd.c). 487 * Stacking drivers (device mappers) may or may not initialize 488 * these fields. 489 * 490 * Reads of this information must be protected with blk_queue_enter() / 491 * blk_queue_exit(). Modifying this information is only allowed while 492 * no requests are being processed. See also blk_mq_freeze_queue() and 493 * blk_mq_unfreeze_queue(). 494 */ 495 unsigned int nr_zones; 496 unsigned long *conv_zones_bitmap; 497 unsigned long *seq_zones_wlock; 498 unsigned int max_open_zones; 499 unsigned int max_active_zones; 500 #endif /* CONFIG_BLK_DEV_ZONED */ 501 502 int node; 503 struct mutex debugfs_mutex; 504 #ifdef CONFIG_BLK_DEV_IO_TRACE 505 struct blk_trace __rcu *blk_trace; 506 #endif 507 /* 508 * for flush operations 509 */ 510 struct blk_flush_queue *fq; 511 512 struct list_head requeue_list; 513 spinlock_t requeue_lock; 514 struct delayed_work requeue_work; 515 516 struct mutex sysfs_lock; 517 struct mutex sysfs_dir_lock; 518 519 /* 520 * for reusing dead hctx instance in case of updating 521 * nr_hw_queues 522 */ 523 struct list_head unused_hctx_list; 524 spinlock_t unused_hctx_lock; 525 526 int mq_freeze_depth; 527 528 #ifdef CONFIG_BLK_DEV_THROTTLING 529 /* Throttle data */ 530 struct throtl_data *td; 531 #endif 532 struct rcu_head rcu_head; 533 wait_queue_head_t mq_freeze_wq; 534 /* 535 * Protect concurrent access to q_usage_counter by 536 * percpu_ref_kill() and percpu_ref_reinit(). 537 */ 538 struct mutex mq_freeze_lock; 539 540 struct blk_mq_tag_set *tag_set; 541 struct list_head tag_set_list; 542 struct bio_set bio_split; 543 544 struct dentry *debugfs_dir; 545 546 #ifdef CONFIG_BLK_DEBUG_FS 547 struct dentry *sched_debugfs_dir; 548 struct dentry *rqos_debugfs_dir; 549 #endif 550 551 bool mq_sysfs_init_done; 552 553 size_t cmd_size; 554 555 #define BLK_MAX_WRITE_HINTS 5 556 u64 write_hints[BLK_MAX_WRITE_HINTS]; 557 }; 558 559 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 560 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 561 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 562 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 563 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 564 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 565 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 566 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 567 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 568 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 569 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 570 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 571 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 572 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 573 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 574 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 575 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 576 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 577 #define QUEUE_FLAG_WC 17 /* Write back caching */ 578 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 579 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 580 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 581 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 582 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 583 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 584 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 585 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 586 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 587 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 588 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 589 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 590 591 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 592 (1 << QUEUE_FLAG_SAME_COMP) | \ 593 (1 << QUEUE_FLAG_NOWAIT)) 594 595 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 596 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 597 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 598 599 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 600 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 601 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 602 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 603 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 604 #define blk_queue_noxmerges(q) \ 605 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 606 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 607 #define blk_queue_stable_writes(q) \ 608 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 609 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 610 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 611 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 612 #define blk_queue_zone_resetall(q) \ 613 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 614 #define blk_queue_secure_erase(q) \ 615 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 616 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 617 #define blk_queue_scsi_passthrough(q) \ 618 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 619 #define blk_queue_pci_p2pdma(q) \ 620 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 621 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 622 #define blk_queue_rq_alloc_time(q) \ 623 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 624 #else 625 #define blk_queue_rq_alloc_time(q) false 626 #endif 627 628 #define blk_noretry_request(rq) \ 629 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 630 REQ_FAILFAST_DRIVER)) 631 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 632 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 633 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 634 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 635 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 636 637 extern void blk_set_pm_only(struct request_queue *q); 638 extern void blk_clear_pm_only(struct request_queue *q); 639 640 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 641 642 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 643 644 #define rq_dma_dir(rq) \ 645 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 646 647 #define dma_map_bvec(dev, bv, dir, attrs) \ 648 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 649 (dir), (attrs)) 650 651 #define queue_to_disk(q) (dev_to_disk(kobj_to_dev((q)->kobj.parent))) 652 653 static inline bool queue_is_mq(struct request_queue *q) 654 { 655 return q->mq_ops; 656 } 657 658 #ifdef CONFIG_PM 659 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 660 { 661 return q->rpm_status; 662 } 663 #else 664 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 665 { 666 return RPM_ACTIVE; 667 } 668 #endif 669 670 static inline enum blk_zoned_model 671 blk_queue_zoned_model(struct request_queue *q) 672 { 673 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 674 return q->limits.zoned; 675 return BLK_ZONED_NONE; 676 } 677 678 static inline bool blk_queue_is_zoned(struct request_queue *q) 679 { 680 switch (blk_queue_zoned_model(q)) { 681 case BLK_ZONED_HA: 682 case BLK_ZONED_HM: 683 return true; 684 default: 685 return false; 686 } 687 } 688 689 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 690 { 691 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 692 } 693 694 #ifdef CONFIG_BLK_DEV_ZONED 695 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 696 { 697 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 698 } 699 700 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 701 sector_t sector) 702 { 703 if (!blk_queue_is_zoned(q)) 704 return 0; 705 return sector >> ilog2(q->limits.chunk_sectors); 706 } 707 708 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 709 sector_t sector) 710 { 711 if (!blk_queue_is_zoned(q)) 712 return false; 713 if (!q->conv_zones_bitmap) 714 return true; 715 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 716 } 717 718 static inline void blk_queue_max_open_zones(struct request_queue *q, 719 unsigned int max_open_zones) 720 { 721 q->max_open_zones = max_open_zones; 722 } 723 724 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 725 { 726 return q->max_open_zones; 727 } 728 729 static inline void blk_queue_max_active_zones(struct request_queue *q, 730 unsigned int max_active_zones) 731 { 732 q->max_active_zones = max_active_zones; 733 } 734 735 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 736 { 737 return q->max_active_zones; 738 } 739 #else /* CONFIG_BLK_DEV_ZONED */ 740 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 741 { 742 return 0; 743 } 744 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 745 sector_t sector) 746 { 747 return false; 748 } 749 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 750 sector_t sector) 751 { 752 return 0; 753 } 754 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 755 { 756 return 0; 757 } 758 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 759 { 760 return 0; 761 } 762 #endif /* CONFIG_BLK_DEV_ZONED */ 763 764 static inline bool rq_is_sync(struct request *rq) 765 { 766 return op_is_sync(rq->cmd_flags); 767 } 768 769 static inline bool rq_mergeable(struct request *rq) 770 { 771 if (blk_rq_is_passthrough(rq)) 772 return false; 773 774 if (req_op(rq) == REQ_OP_FLUSH) 775 return false; 776 777 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 778 return false; 779 780 if (req_op(rq) == REQ_OP_ZONE_APPEND) 781 return false; 782 783 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 784 return false; 785 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 786 return false; 787 788 return true; 789 } 790 791 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 792 { 793 if (bio_page(a) == bio_page(b) && 794 bio_offset(a) == bio_offset(b)) 795 return true; 796 797 return false; 798 } 799 800 static inline unsigned int blk_queue_depth(struct request_queue *q) 801 { 802 if (q->queue_depth) 803 return q->queue_depth; 804 805 return q->nr_requests; 806 } 807 808 /* 809 * default timeout for SG_IO if none specified 810 */ 811 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 812 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 813 814 struct rq_map_data { 815 struct page **pages; 816 int page_order; 817 int nr_entries; 818 unsigned long offset; 819 int null_mapped; 820 int from_user; 821 }; 822 823 struct req_iterator { 824 struct bvec_iter iter; 825 struct bio *bio; 826 }; 827 828 /* This should not be used directly - use rq_for_each_segment */ 829 #define for_each_bio(_bio) \ 830 for (; _bio; _bio = _bio->bi_next) 831 #define __rq_for_each_bio(_bio, rq) \ 832 if ((rq->bio)) \ 833 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 834 835 #define rq_for_each_segment(bvl, _rq, _iter) \ 836 __rq_for_each_bio(_iter.bio, _rq) \ 837 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 838 839 #define rq_for_each_bvec(bvl, _rq, _iter) \ 840 __rq_for_each_bio(_iter.bio, _rq) \ 841 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 842 843 #define rq_iter_last(bvec, _iter) \ 844 (_iter.bio->bi_next == NULL && \ 845 bio_iter_last(bvec, _iter.iter)) 846 847 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 848 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 849 #endif 850 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 851 extern void rq_flush_dcache_pages(struct request *rq); 852 #else 853 static inline void rq_flush_dcache_pages(struct request *rq) 854 { 855 } 856 #endif 857 858 extern int blk_register_queue(struct gendisk *disk); 859 extern void blk_unregister_queue(struct gendisk *disk); 860 blk_qc_t submit_bio_noacct(struct bio *bio); 861 extern void blk_rq_init(struct request_queue *q, struct request *rq); 862 extern void blk_put_request(struct request *); 863 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 864 blk_mq_req_flags_t flags); 865 extern int blk_lld_busy(struct request_queue *q); 866 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 867 struct bio_set *bs, gfp_t gfp_mask, 868 int (*bio_ctr)(struct bio *, struct bio *, void *), 869 void *data); 870 extern void blk_rq_unprep_clone(struct request *rq); 871 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 872 struct request *rq); 873 int blk_rq_append_bio(struct request *rq, struct bio *bio); 874 extern void blk_queue_split(struct bio **); 875 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 876 extern void blk_queue_exit(struct request_queue *q); 877 extern void blk_sync_queue(struct request_queue *q); 878 extern int blk_rq_map_user(struct request_queue *, struct request *, 879 struct rq_map_data *, void __user *, unsigned long, 880 gfp_t); 881 extern int blk_rq_unmap_user(struct bio *); 882 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 883 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 884 struct rq_map_data *, const struct iov_iter *, 885 gfp_t); 886 extern void blk_execute_rq_nowait(struct gendisk *, 887 struct request *, int, rq_end_io_fn *); 888 889 blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq, 890 int at_head); 891 892 /* Helper to convert REQ_OP_XXX to its string format XXX */ 893 extern const char *blk_op_str(unsigned int op); 894 895 int blk_status_to_errno(blk_status_t status); 896 blk_status_t errno_to_blk_status(int errno); 897 898 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 899 900 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 901 { 902 return bdev->bd_disk->queue; /* this is never NULL */ 903 } 904 905 /* 906 * The basic unit of block I/O is a sector. It is used in a number of contexts 907 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 908 * bytes. Variables of type sector_t represent an offset or size that is a 909 * multiple of 512 bytes. Hence these two constants. 910 */ 911 #ifndef SECTOR_SHIFT 912 #define SECTOR_SHIFT 9 913 #endif 914 #ifndef SECTOR_SIZE 915 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 916 #endif 917 918 /* 919 * blk_rq_pos() : the current sector 920 * blk_rq_bytes() : bytes left in the entire request 921 * blk_rq_cur_bytes() : bytes left in the current segment 922 * blk_rq_err_bytes() : bytes left till the next error boundary 923 * blk_rq_sectors() : sectors left in the entire request 924 * blk_rq_cur_sectors() : sectors left in the current segment 925 * blk_rq_stats_sectors() : sectors of the entire request used for stats 926 */ 927 static inline sector_t blk_rq_pos(const struct request *rq) 928 { 929 return rq->__sector; 930 } 931 932 static inline unsigned int blk_rq_bytes(const struct request *rq) 933 { 934 return rq->__data_len; 935 } 936 937 static inline int blk_rq_cur_bytes(const struct request *rq) 938 { 939 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 940 } 941 942 extern unsigned int blk_rq_err_bytes(const struct request *rq); 943 944 static inline unsigned int blk_rq_sectors(const struct request *rq) 945 { 946 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 947 } 948 949 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 950 { 951 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 952 } 953 954 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 955 { 956 return rq->stats_sectors; 957 } 958 959 #ifdef CONFIG_BLK_DEV_ZONED 960 961 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 962 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 963 964 static inline unsigned int bio_zone_no(struct bio *bio) 965 { 966 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 967 bio->bi_iter.bi_sector); 968 } 969 970 static inline unsigned int bio_zone_is_seq(struct bio *bio) 971 { 972 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 973 bio->bi_iter.bi_sector); 974 } 975 976 static inline unsigned int blk_rq_zone_no(struct request *rq) 977 { 978 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 979 } 980 981 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 982 { 983 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 984 } 985 #endif /* CONFIG_BLK_DEV_ZONED */ 986 987 /* 988 * Some commands like WRITE SAME have a payload or data transfer size which 989 * is different from the size of the request. Any driver that supports such 990 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 991 * calculate the data transfer size. 992 */ 993 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 994 { 995 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 996 return rq->special_vec.bv_len; 997 return blk_rq_bytes(rq); 998 } 999 1000 /* 1001 * Return the first full biovec in the request. The caller needs to check that 1002 * there are any bvecs before calling this helper. 1003 */ 1004 static inline struct bio_vec req_bvec(struct request *rq) 1005 { 1006 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1007 return rq->special_vec; 1008 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1009 } 1010 1011 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1012 int op) 1013 { 1014 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1015 return min(q->limits.max_discard_sectors, 1016 UINT_MAX >> SECTOR_SHIFT); 1017 1018 if (unlikely(op == REQ_OP_WRITE_SAME)) 1019 return q->limits.max_write_same_sectors; 1020 1021 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1022 return q->limits.max_write_zeroes_sectors; 1023 1024 return q->limits.max_sectors; 1025 } 1026 1027 /* 1028 * Return maximum size of a request at given offset. Only valid for 1029 * file system requests. 1030 */ 1031 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1032 sector_t offset, 1033 unsigned int chunk_sectors) 1034 { 1035 if (!chunk_sectors) { 1036 if (q->limits.chunk_sectors) 1037 chunk_sectors = q->limits.chunk_sectors; 1038 else 1039 return q->limits.max_sectors; 1040 } 1041 1042 if (likely(is_power_of_2(chunk_sectors))) 1043 chunk_sectors -= offset & (chunk_sectors - 1); 1044 else 1045 chunk_sectors -= sector_div(offset, chunk_sectors); 1046 1047 return min(q->limits.max_sectors, chunk_sectors); 1048 } 1049 1050 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1051 sector_t offset) 1052 { 1053 struct request_queue *q = rq->q; 1054 1055 if (blk_rq_is_passthrough(rq)) 1056 return q->limits.max_hw_sectors; 1057 1058 if (!q->limits.chunk_sectors || 1059 req_op(rq) == REQ_OP_DISCARD || 1060 req_op(rq) == REQ_OP_SECURE_ERASE) 1061 return blk_queue_get_max_sectors(q, req_op(rq)); 1062 1063 return min(blk_max_size_offset(q, offset, 0), 1064 blk_queue_get_max_sectors(q, req_op(rq))); 1065 } 1066 1067 static inline unsigned int blk_rq_count_bios(struct request *rq) 1068 { 1069 unsigned int nr_bios = 0; 1070 struct bio *bio; 1071 1072 __rq_for_each_bio(bio, rq) 1073 nr_bios++; 1074 1075 return nr_bios; 1076 } 1077 1078 void blk_steal_bios(struct bio_list *list, struct request *rq); 1079 1080 /* 1081 * Request completion related functions. 1082 * 1083 * blk_update_request() completes given number of bytes and updates 1084 * the request without completing it. 1085 */ 1086 extern bool blk_update_request(struct request *rq, blk_status_t error, 1087 unsigned int nr_bytes); 1088 1089 extern void blk_abort_request(struct request *); 1090 1091 /* 1092 * Access functions for manipulating queue properties 1093 */ 1094 extern void blk_cleanup_queue(struct request_queue *); 1095 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 1096 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1097 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1098 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1099 extern void blk_queue_max_discard_segments(struct request_queue *, 1100 unsigned short); 1101 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1102 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1103 unsigned int max_discard_sectors); 1104 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1105 unsigned int max_write_same_sectors); 1106 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1107 unsigned int max_write_same_sectors); 1108 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1109 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1110 unsigned int max_zone_append_sectors); 1111 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1112 void blk_queue_zone_write_granularity(struct request_queue *q, 1113 unsigned int size); 1114 extern void blk_queue_alignment_offset(struct request_queue *q, 1115 unsigned int alignment); 1116 void blk_queue_update_readahead(struct request_queue *q); 1117 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1118 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1119 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1120 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1121 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1122 extern void blk_set_default_limits(struct queue_limits *lim); 1123 extern void blk_set_stacking_limits(struct queue_limits *lim); 1124 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1125 sector_t offset); 1126 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1127 sector_t offset); 1128 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1129 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1130 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1131 extern void blk_queue_dma_alignment(struct request_queue *, int); 1132 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1133 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1134 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1135 extern void blk_queue_required_elevator_features(struct request_queue *q, 1136 unsigned int features); 1137 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1138 struct device *dev); 1139 1140 /* 1141 * Number of physical segments as sent to the device. 1142 * 1143 * Normally this is the number of discontiguous data segments sent by the 1144 * submitter. But for data-less command like discard we might have no 1145 * actual data segments submitted, but the driver might have to add it's 1146 * own special payload. In that case we still return 1 here so that this 1147 * special payload will be mapped. 1148 */ 1149 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1150 { 1151 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1152 return 1; 1153 return rq->nr_phys_segments; 1154 } 1155 1156 /* 1157 * Number of discard segments (or ranges) the driver needs to fill in. 1158 * Each discard bio merged into a request is counted as one segment. 1159 */ 1160 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1161 { 1162 return max_t(unsigned short, rq->nr_phys_segments, 1); 1163 } 1164 1165 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1166 struct scatterlist *sglist, struct scatterlist **last_sg); 1167 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1168 struct scatterlist *sglist) 1169 { 1170 struct scatterlist *last_sg = NULL; 1171 1172 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1173 } 1174 extern void blk_dump_rq_flags(struct request *, char *); 1175 1176 bool __must_check blk_get_queue(struct request_queue *); 1177 extern void blk_put_queue(struct request_queue *); 1178 extern void blk_set_queue_dying(struct request_queue *); 1179 1180 #ifdef CONFIG_BLOCK 1181 /* 1182 * blk_plug permits building a queue of related requests by holding the I/O 1183 * fragments for a short period. This allows merging of sequential requests 1184 * into single larger request. As the requests are moved from a per-task list to 1185 * the device's request_queue in a batch, this results in improved scalability 1186 * as the lock contention for request_queue lock is reduced. 1187 * 1188 * It is ok not to disable preemption when adding the request to the plug list 1189 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1190 * the plug list when the task sleeps by itself. For details, please see 1191 * schedule() where blk_schedule_flush_plug() is called. 1192 */ 1193 struct blk_plug { 1194 struct list_head mq_list; /* blk-mq requests */ 1195 struct list_head cb_list; /* md requires an unplug callback */ 1196 unsigned short rq_count; 1197 bool multiple_queues; 1198 bool nowait; 1199 }; 1200 #define BLK_MAX_REQUEST_COUNT 16 1201 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1202 1203 struct blk_plug_cb; 1204 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1205 struct blk_plug_cb { 1206 struct list_head list; 1207 blk_plug_cb_fn callback; 1208 void *data; 1209 }; 1210 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1211 void *data, int size); 1212 extern void blk_start_plug(struct blk_plug *); 1213 extern void blk_finish_plug(struct blk_plug *); 1214 extern void blk_flush_plug_list(struct blk_plug *, bool); 1215 1216 static inline void blk_flush_plug(struct task_struct *tsk) 1217 { 1218 struct blk_plug *plug = tsk->plug; 1219 1220 if (plug) 1221 blk_flush_plug_list(plug, false); 1222 } 1223 1224 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1225 { 1226 struct blk_plug *plug = tsk->plug; 1227 1228 if (plug) 1229 blk_flush_plug_list(plug, true); 1230 } 1231 1232 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1233 { 1234 struct blk_plug *plug = tsk->plug; 1235 1236 return plug && 1237 (!list_empty(&plug->mq_list) || 1238 !list_empty(&plug->cb_list)); 1239 } 1240 1241 int blkdev_issue_flush(struct block_device *bdev); 1242 long nr_blockdev_pages(void); 1243 #else /* CONFIG_BLOCK */ 1244 struct blk_plug { 1245 }; 1246 1247 static inline void blk_start_plug(struct blk_plug *plug) 1248 { 1249 } 1250 1251 static inline void blk_finish_plug(struct blk_plug *plug) 1252 { 1253 } 1254 1255 static inline void blk_flush_plug(struct task_struct *task) 1256 { 1257 } 1258 1259 static inline void blk_schedule_flush_plug(struct task_struct *task) 1260 { 1261 } 1262 1263 1264 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1265 { 1266 return false; 1267 } 1268 1269 static inline int blkdev_issue_flush(struct block_device *bdev) 1270 { 1271 return 0; 1272 } 1273 1274 static inline long nr_blockdev_pages(void) 1275 { 1276 return 0; 1277 } 1278 #endif /* CONFIG_BLOCK */ 1279 1280 extern void blk_io_schedule(void); 1281 1282 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1283 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1284 1285 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1286 1287 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1288 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1289 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1290 sector_t nr_sects, gfp_t gfp_mask, int flags, 1291 struct bio **biop); 1292 1293 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1294 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1295 1296 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1297 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1298 unsigned flags); 1299 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1300 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1301 1302 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1303 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1304 { 1305 return blkdev_issue_discard(sb->s_bdev, 1306 block << (sb->s_blocksize_bits - 1307 SECTOR_SHIFT), 1308 nr_blocks << (sb->s_blocksize_bits - 1309 SECTOR_SHIFT), 1310 gfp_mask, flags); 1311 } 1312 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1313 sector_t nr_blocks, gfp_t gfp_mask) 1314 { 1315 return blkdev_issue_zeroout(sb->s_bdev, 1316 block << (sb->s_blocksize_bits - 1317 SECTOR_SHIFT), 1318 nr_blocks << (sb->s_blocksize_bits - 1319 SECTOR_SHIFT), 1320 gfp_mask, 0); 1321 } 1322 1323 static inline bool bdev_is_partition(struct block_device *bdev) 1324 { 1325 return bdev->bd_partno; 1326 } 1327 1328 enum blk_default_limits { 1329 BLK_MAX_SEGMENTS = 128, 1330 BLK_SAFE_MAX_SECTORS = 255, 1331 BLK_DEF_MAX_SECTORS = 2560, 1332 BLK_MAX_SEGMENT_SIZE = 65536, 1333 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1334 }; 1335 1336 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1337 { 1338 return q->limits.seg_boundary_mask; 1339 } 1340 1341 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1342 { 1343 return q->limits.virt_boundary_mask; 1344 } 1345 1346 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1347 { 1348 return q->limits.max_sectors; 1349 } 1350 1351 static inline unsigned int queue_max_bytes(struct request_queue *q) 1352 { 1353 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1354 } 1355 1356 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1357 { 1358 return q->limits.max_hw_sectors; 1359 } 1360 1361 static inline unsigned short queue_max_segments(const struct request_queue *q) 1362 { 1363 return q->limits.max_segments; 1364 } 1365 1366 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1367 { 1368 return q->limits.max_discard_segments; 1369 } 1370 1371 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1372 { 1373 return q->limits.max_segment_size; 1374 } 1375 1376 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1377 { 1378 1379 const struct queue_limits *l = &q->limits; 1380 1381 return min(l->max_zone_append_sectors, l->max_sectors); 1382 } 1383 1384 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1385 { 1386 int retval = 512; 1387 1388 if (q && q->limits.logical_block_size) 1389 retval = q->limits.logical_block_size; 1390 1391 return retval; 1392 } 1393 1394 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1395 { 1396 return queue_logical_block_size(bdev_get_queue(bdev)); 1397 } 1398 1399 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1400 { 1401 return q->limits.physical_block_size; 1402 } 1403 1404 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1405 { 1406 return queue_physical_block_size(bdev_get_queue(bdev)); 1407 } 1408 1409 static inline unsigned int queue_io_min(const struct request_queue *q) 1410 { 1411 return q->limits.io_min; 1412 } 1413 1414 static inline int bdev_io_min(struct block_device *bdev) 1415 { 1416 return queue_io_min(bdev_get_queue(bdev)); 1417 } 1418 1419 static inline unsigned int queue_io_opt(const struct request_queue *q) 1420 { 1421 return q->limits.io_opt; 1422 } 1423 1424 static inline int bdev_io_opt(struct block_device *bdev) 1425 { 1426 return queue_io_opt(bdev_get_queue(bdev)); 1427 } 1428 1429 static inline unsigned int 1430 queue_zone_write_granularity(const struct request_queue *q) 1431 { 1432 return q->limits.zone_write_granularity; 1433 } 1434 1435 static inline unsigned int 1436 bdev_zone_write_granularity(struct block_device *bdev) 1437 { 1438 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1439 } 1440 1441 static inline int queue_alignment_offset(const struct request_queue *q) 1442 { 1443 if (q->limits.misaligned) 1444 return -1; 1445 1446 return q->limits.alignment_offset; 1447 } 1448 1449 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1450 { 1451 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1452 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1453 << SECTOR_SHIFT; 1454 1455 return (granularity + lim->alignment_offset - alignment) % granularity; 1456 } 1457 1458 static inline int bdev_alignment_offset(struct block_device *bdev) 1459 { 1460 struct request_queue *q = bdev_get_queue(bdev); 1461 1462 if (q->limits.misaligned) 1463 return -1; 1464 if (bdev_is_partition(bdev)) 1465 return queue_limit_alignment_offset(&q->limits, 1466 bdev->bd_start_sect); 1467 return q->limits.alignment_offset; 1468 } 1469 1470 static inline int queue_discard_alignment(const struct request_queue *q) 1471 { 1472 if (q->limits.discard_misaligned) 1473 return -1; 1474 1475 return q->limits.discard_alignment; 1476 } 1477 1478 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1479 { 1480 unsigned int alignment, granularity, offset; 1481 1482 if (!lim->max_discard_sectors) 1483 return 0; 1484 1485 /* Why are these in bytes, not sectors? */ 1486 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1487 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1488 if (!granularity) 1489 return 0; 1490 1491 /* Offset of the partition start in 'granularity' sectors */ 1492 offset = sector_div(sector, granularity); 1493 1494 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1495 offset = (granularity + alignment - offset) % granularity; 1496 1497 /* Turn it back into bytes, gaah */ 1498 return offset << SECTOR_SHIFT; 1499 } 1500 1501 static inline int bdev_discard_alignment(struct block_device *bdev) 1502 { 1503 struct request_queue *q = bdev_get_queue(bdev); 1504 1505 if (bdev_is_partition(bdev)) 1506 return queue_limit_discard_alignment(&q->limits, 1507 bdev->bd_start_sect); 1508 return q->limits.discard_alignment; 1509 } 1510 1511 static inline unsigned int bdev_write_same(struct block_device *bdev) 1512 { 1513 struct request_queue *q = bdev_get_queue(bdev); 1514 1515 if (q) 1516 return q->limits.max_write_same_sectors; 1517 1518 return 0; 1519 } 1520 1521 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1522 { 1523 struct request_queue *q = bdev_get_queue(bdev); 1524 1525 if (q) 1526 return q->limits.max_write_zeroes_sectors; 1527 1528 return 0; 1529 } 1530 1531 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1532 { 1533 struct request_queue *q = bdev_get_queue(bdev); 1534 1535 if (q) 1536 return blk_queue_zoned_model(q); 1537 1538 return BLK_ZONED_NONE; 1539 } 1540 1541 static inline bool bdev_is_zoned(struct block_device *bdev) 1542 { 1543 struct request_queue *q = bdev_get_queue(bdev); 1544 1545 if (q) 1546 return blk_queue_is_zoned(q); 1547 1548 return false; 1549 } 1550 1551 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1552 { 1553 struct request_queue *q = bdev_get_queue(bdev); 1554 1555 if (q) 1556 return blk_queue_zone_sectors(q); 1557 return 0; 1558 } 1559 1560 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1561 { 1562 struct request_queue *q = bdev_get_queue(bdev); 1563 1564 if (q) 1565 return queue_max_open_zones(q); 1566 return 0; 1567 } 1568 1569 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1570 { 1571 struct request_queue *q = bdev_get_queue(bdev); 1572 1573 if (q) 1574 return queue_max_active_zones(q); 1575 return 0; 1576 } 1577 1578 static inline int queue_dma_alignment(const struct request_queue *q) 1579 { 1580 return q ? q->dma_alignment : 511; 1581 } 1582 1583 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1584 unsigned int len) 1585 { 1586 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1587 return !(addr & alignment) && !(len & alignment); 1588 } 1589 1590 /* assumes size > 256 */ 1591 static inline unsigned int blksize_bits(unsigned int size) 1592 { 1593 unsigned int bits = 8; 1594 do { 1595 bits++; 1596 size >>= 1; 1597 } while (size > 256); 1598 return bits; 1599 } 1600 1601 static inline unsigned int block_size(struct block_device *bdev) 1602 { 1603 return 1 << bdev->bd_inode->i_blkbits; 1604 } 1605 1606 int kblockd_schedule_work(struct work_struct *work); 1607 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1608 1609 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1610 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1611 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1612 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1613 1614 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1615 1616 enum blk_integrity_flags { 1617 BLK_INTEGRITY_VERIFY = 1 << 0, 1618 BLK_INTEGRITY_GENERATE = 1 << 1, 1619 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1620 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1621 }; 1622 1623 struct blk_integrity_iter { 1624 void *prot_buf; 1625 void *data_buf; 1626 sector_t seed; 1627 unsigned int data_size; 1628 unsigned short interval; 1629 const char *disk_name; 1630 }; 1631 1632 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1633 typedef void (integrity_prepare_fn) (struct request *); 1634 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1635 1636 struct blk_integrity_profile { 1637 integrity_processing_fn *generate_fn; 1638 integrity_processing_fn *verify_fn; 1639 integrity_prepare_fn *prepare_fn; 1640 integrity_complete_fn *complete_fn; 1641 const char *name; 1642 }; 1643 1644 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1645 extern void blk_integrity_unregister(struct gendisk *); 1646 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1647 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1648 struct scatterlist *); 1649 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1650 1651 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1652 { 1653 struct blk_integrity *bi = &disk->queue->integrity; 1654 1655 if (!bi->profile) 1656 return NULL; 1657 1658 return bi; 1659 } 1660 1661 static inline 1662 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1663 { 1664 return blk_get_integrity(bdev->bd_disk); 1665 } 1666 1667 static inline bool 1668 blk_integrity_queue_supports_integrity(struct request_queue *q) 1669 { 1670 return q->integrity.profile; 1671 } 1672 1673 static inline bool blk_integrity_rq(struct request *rq) 1674 { 1675 return rq->cmd_flags & REQ_INTEGRITY; 1676 } 1677 1678 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1679 unsigned int segs) 1680 { 1681 q->limits.max_integrity_segments = segs; 1682 } 1683 1684 static inline unsigned short 1685 queue_max_integrity_segments(const struct request_queue *q) 1686 { 1687 return q->limits.max_integrity_segments; 1688 } 1689 1690 /** 1691 * bio_integrity_intervals - Return number of integrity intervals for a bio 1692 * @bi: blk_integrity profile for device 1693 * @sectors: Size of the bio in 512-byte sectors 1694 * 1695 * Description: The block layer calculates everything in 512 byte 1696 * sectors but integrity metadata is done in terms of the data integrity 1697 * interval size of the storage device. Convert the block layer sectors 1698 * to the appropriate number of integrity intervals. 1699 */ 1700 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1701 unsigned int sectors) 1702 { 1703 return sectors >> (bi->interval_exp - 9); 1704 } 1705 1706 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1707 unsigned int sectors) 1708 { 1709 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1710 } 1711 1712 /* 1713 * Return the first bvec that contains integrity data. Only drivers that are 1714 * limited to a single integrity segment should use this helper. 1715 */ 1716 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1717 { 1718 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1719 return NULL; 1720 return rq->bio->bi_integrity->bip_vec; 1721 } 1722 1723 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1724 1725 struct bio; 1726 struct block_device; 1727 struct gendisk; 1728 struct blk_integrity; 1729 1730 static inline int blk_integrity_rq(struct request *rq) 1731 { 1732 return 0; 1733 } 1734 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1735 struct bio *b) 1736 { 1737 return 0; 1738 } 1739 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1740 struct bio *b, 1741 struct scatterlist *s) 1742 { 1743 return 0; 1744 } 1745 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1746 { 1747 return NULL; 1748 } 1749 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1750 { 1751 return NULL; 1752 } 1753 static inline bool 1754 blk_integrity_queue_supports_integrity(struct request_queue *q) 1755 { 1756 return false; 1757 } 1758 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1759 { 1760 return 0; 1761 } 1762 static inline void blk_integrity_register(struct gendisk *d, 1763 struct blk_integrity *b) 1764 { 1765 } 1766 static inline void blk_integrity_unregister(struct gendisk *d) 1767 { 1768 } 1769 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1770 unsigned int segs) 1771 { 1772 } 1773 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1774 { 1775 return 0; 1776 } 1777 1778 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1779 unsigned int sectors) 1780 { 1781 return 0; 1782 } 1783 1784 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1785 unsigned int sectors) 1786 { 1787 return 0; 1788 } 1789 1790 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1791 { 1792 return NULL; 1793 } 1794 1795 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1796 1797 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1798 1799 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1800 1801 void blk_ksm_unregister(struct request_queue *q); 1802 1803 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1804 1805 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1806 struct request_queue *q) 1807 { 1808 return true; 1809 } 1810 1811 static inline void blk_ksm_unregister(struct request_queue *q) { } 1812 1813 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1814 1815 1816 struct block_device_operations { 1817 blk_qc_t (*submit_bio) (struct bio *bio); 1818 int (*open) (struct block_device *, fmode_t); 1819 void (*release) (struct gendisk *, fmode_t); 1820 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1821 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1822 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1823 unsigned int (*check_events) (struct gendisk *disk, 1824 unsigned int clearing); 1825 void (*unlock_native_capacity) (struct gendisk *); 1826 int (*getgeo)(struct block_device *, struct hd_geometry *); 1827 int (*set_read_only)(struct block_device *bdev, bool ro); 1828 /* this callback is with swap_lock and sometimes page table lock held */ 1829 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1830 int (*report_zones)(struct gendisk *, sector_t sector, 1831 unsigned int nr_zones, report_zones_cb cb, void *data); 1832 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1833 struct module *owner; 1834 const struct pr_ops *pr_ops; 1835 }; 1836 1837 #ifdef CONFIG_COMPAT 1838 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1839 unsigned int, unsigned long); 1840 #else 1841 #define blkdev_compat_ptr_ioctl NULL 1842 #endif 1843 1844 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1845 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1846 struct writeback_control *); 1847 1848 #ifdef CONFIG_BLK_DEV_ZONED 1849 bool blk_req_needs_zone_write_lock(struct request *rq); 1850 bool blk_req_zone_write_trylock(struct request *rq); 1851 void __blk_req_zone_write_lock(struct request *rq); 1852 void __blk_req_zone_write_unlock(struct request *rq); 1853 1854 static inline void blk_req_zone_write_lock(struct request *rq) 1855 { 1856 if (blk_req_needs_zone_write_lock(rq)) 1857 __blk_req_zone_write_lock(rq); 1858 } 1859 1860 static inline void blk_req_zone_write_unlock(struct request *rq) 1861 { 1862 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1863 __blk_req_zone_write_unlock(rq); 1864 } 1865 1866 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1867 { 1868 return rq->q->seq_zones_wlock && 1869 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1870 } 1871 1872 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1873 { 1874 if (!blk_req_needs_zone_write_lock(rq)) 1875 return true; 1876 return !blk_req_zone_is_write_locked(rq); 1877 } 1878 #else 1879 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1880 { 1881 return false; 1882 } 1883 1884 static inline void blk_req_zone_write_lock(struct request *rq) 1885 { 1886 } 1887 1888 static inline void blk_req_zone_write_unlock(struct request *rq) 1889 { 1890 } 1891 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1892 { 1893 return false; 1894 } 1895 1896 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1897 { 1898 return true; 1899 } 1900 #endif /* CONFIG_BLK_DEV_ZONED */ 1901 1902 static inline void blk_wake_io_task(struct task_struct *waiter) 1903 { 1904 /* 1905 * If we're polling, the task itself is doing the completions. For 1906 * that case, we don't need to signal a wakeup, it's enough to just 1907 * mark us as RUNNING. 1908 */ 1909 if (waiter == current) 1910 __set_current_state(TASK_RUNNING); 1911 else 1912 wake_up_process(waiter); 1913 } 1914 1915 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1916 unsigned int op); 1917 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1918 unsigned long start_time); 1919 1920 unsigned long bio_start_io_acct(struct bio *bio); 1921 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1922 struct block_device *orig_bdev); 1923 1924 /** 1925 * bio_end_io_acct - end I/O accounting for bio based drivers 1926 * @bio: bio to end account for 1927 * @start: start time returned by bio_start_io_acct() 1928 */ 1929 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1930 { 1931 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1932 } 1933 1934 int bdev_read_only(struct block_device *bdev); 1935 int set_blocksize(struct block_device *bdev, int size); 1936 1937 const char *bdevname(struct block_device *bdev, char *buffer); 1938 int lookup_bdev(const char *pathname, dev_t *dev); 1939 1940 void blkdev_show(struct seq_file *seqf, off_t offset); 1941 1942 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1943 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1944 #ifdef CONFIG_BLOCK 1945 #define BLKDEV_MAJOR_MAX 512 1946 #else 1947 #define BLKDEV_MAJOR_MAX 0 1948 #endif 1949 1950 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1951 void *holder); 1952 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1953 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1954 void bd_abort_claiming(struct block_device *bdev, void *holder); 1955 void blkdev_put(struct block_device *bdev, fmode_t mode); 1956 1957 /* just for blk-cgroup, don't use elsewhere */ 1958 struct block_device *blkdev_get_no_open(dev_t dev); 1959 void blkdev_put_no_open(struct block_device *bdev); 1960 1961 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1962 void bdev_add(struct block_device *bdev, dev_t dev); 1963 struct block_device *I_BDEV(struct inode *inode); 1964 struct block_device *bdgrab(struct block_device *bdev); 1965 void bdput(struct block_device *); 1966 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1967 loff_t lend); 1968 1969 #ifdef CONFIG_BLOCK 1970 void invalidate_bdev(struct block_device *bdev); 1971 int sync_blockdev(struct block_device *bdev); 1972 #else 1973 static inline void invalidate_bdev(struct block_device *bdev) 1974 { 1975 } 1976 static inline int sync_blockdev(struct block_device *bdev) 1977 { 1978 return 0; 1979 } 1980 #endif 1981 int fsync_bdev(struct block_device *bdev); 1982 1983 int freeze_bdev(struct block_device *bdev); 1984 int thaw_bdev(struct block_device *bdev); 1985 1986 #endif /* _LINUX_BLKDEV_H */ 1987