xref: /linux-6.15/include/linux/blkdev.h (revision 509edd95)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/timer.h>
12 #include <linux/workqueue.h>
13 #include <linux/pagemap.h>
14 #include <linux/backing-dev-defs.h>
15 #include <linux/wait.h>
16 #include <linux/mempool.h>
17 #include <linux/pfn.h>
18 #include <linux/bio.h>
19 #include <linux/stringify.h>
20 #include <linux/gfp.h>
21 #include <linux/bsg.h>
22 #include <linux/smp.h>
23 #include <linux/rcupdate.h>
24 #include <linux/percpu-refcount.h>
25 #include <linux/scatterlist.h>
26 #include <linux/blkzoned.h>
27 
28 struct module;
29 struct scsi_ioctl_command;
30 
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct bsg_job;
37 struct blkcg_gq;
38 struct blk_flush_queue;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_keyslot_manager;
44 
45 #define BLKDEV_MIN_RQ	4
46 #define BLKDEV_MAX_RQ	128	/* Default maximum */
47 
48 /* Must be consistent with blk_mq_poll_stats_bkt() */
49 #define BLK_MQ_POLL_STATS_BKTS 16
50 
51 /* Doing classic polling */
52 #define BLK_MQ_POLL_CLASSIC -1
53 
54 /*
55  * Maximum number of blkcg policies allowed to be registered concurrently.
56  * Defined here to simplify include dependency.
57  */
58 #define BLKCG_MAX_POLS		5
59 
60 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
61 
62 /*
63  * request flags */
64 typedef __u32 __bitwise req_flags_t;
65 
66 /* elevator knows about this request */
67 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
68 /* drive already may have started this one */
69 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
70 /* may not be passed by ioscheduler */
71 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
72 /* request for flush sequence */
73 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
74 /* merge of different types, fail separately */
75 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
76 /* track inflight for MQ */
77 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
78 /* don't call prep for this one */
79 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
80 /* set for "ide_preempt" requests and also for requests for which the SCSI
81    "quiesce" state must be ignored. */
82 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
83 /* vaguely specified driver internal error.  Ignored by the block layer */
84 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
85 /* don't warn about errors */
86 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
87 /* elevator private data attached */
88 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
89 /* account into disk and partition IO statistics */
90 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
91 /* request came from our alloc pool */
92 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
93 /* runtime pm request */
94 #define RQF_PM			((__force req_flags_t)(1 << 15))
95 /* on IO scheduler merge hash */
96 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
97 /* track IO completion time */
98 #define RQF_STATS		((__force req_flags_t)(1 << 17))
99 /* Look at ->special_vec for the actual data payload instead of the
100    bio chain. */
101 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
102 /* The per-zone write lock is held for this request */
103 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
104 /* already slept for hybrid poll */
105 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
106 /* ->timeout has been called, don't expire again */
107 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
108 
109 /* flags that prevent us from merging requests: */
110 #define RQF_NOMERGE_FLAGS \
111 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
112 
113 /*
114  * Request state for blk-mq.
115  */
116 enum mq_rq_state {
117 	MQ_RQ_IDLE		= 0,
118 	MQ_RQ_IN_FLIGHT		= 1,
119 	MQ_RQ_COMPLETE		= 2,
120 };
121 
122 /*
123  * Try to put the fields that are referenced together in the same cacheline.
124  *
125  * If you modify this structure, make sure to update blk_rq_init() and
126  * especially blk_mq_rq_ctx_init() to take care of the added fields.
127  */
128 struct request {
129 	struct request_queue *q;
130 	struct blk_mq_ctx *mq_ctx;
131 	struct blk_mq_hw_ctx *mq_hctx;
132 
133 	unsigned int cmd_flags;		/* op and common flags */
134 	req_flags_t rq_flags;
135 
136 	int tag;
137 	int internal_tag;
138 
139 	/* the following two fields are internal, NEVER access directly */
140 	unsigned int __data_len;	/* total data len */
141 	sector_t __sector;		/* sector cursor */
142 
143 	struct bio *bio;
144 	struct bio *biotail;
145 
146 	struct list_head queuelist;
147 
148 	/*
149 	 * The hash is used inside the scheduler, and killed once the
150 	 * request reaches the dispatch list. The ipi_list is only used
151 	 * to queue the request for softirq completion, which is long
152 	 * after the request has been unhashed (and even removed from
153 	 * the dispatch list).
154 	 */
155 	union {
156 		struct hlist_node hash;	/* merge hash */
157 		struct list_head ipi_list;
158 	};
159 
160 	/*
161 	 * The rb_node is only used inside the io scheduler, requests
162 	 * are pruned when moved to the dispatch queue. So let the
163 	 * completion_data share space with the rb_node.
164 	 */
165 	union {
166 		struct rb_node rb_node;	/* sort/lookup */
167 		struct bio_vec special_vec;
168 		void *completion_data;
169 		int error_count; /* for legacy drivers, don't use */
170 	};
171 
172 	/*
173 	 * Three pointers are available for the IO schedulers, if they need
174 	 * more they have to dynamically allocate it.  Flush requests are
175 	 * never put on the IO scheduler. So let the flush fields share
176 	 * space with the elevator data.
177 	 */
178 	union {
179 		struct {
180 			struct io_cq		*icq;
181 			void			*priv[2];
182 		} elv;
183 
184 		struct {
185 			unsigned int		seq;
186 			struct list_head	list;
187 			rq_end_io_fn		*saved_end_io;
188 		} flush;
189 	};
190 
191 	struct gendisk *rq_disk;
192 	struct hd_struct *part;
193 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
194 	/* Time that the first bio started allocating this request. */
195 	u64 alloc_time_ns;
196 #endif
197 	/* Time that this request was allocated for this IO. */
198 	u64 start_time_ns;
199 	/* Time that I/O was submitted to the device. */
200 	u64 io_start_time_ns;
201 
202 #ifdef CONFIG_BLK_WBT
203 	unsigned short wbt_flags;
204 #endif
205 	/*
206 	 * rq sectors used for blk stats. It has the same value
207 	 * with blk_rq_sectors(rq), except that it never be zeroed
208 	 * by completion.
209 	 */
210 	unsigned short stats_sectors;
211 
212 	/*
213 	 * Number of scatter-gather DMA addr+len pairs after
214 	 * physical address coalescing is performed.
215 	 */
216 	unsigned short nr_phys_segments;
217 
218 #if defined(CONFIG_BLK_DEV_INTEGRITY)
219 	unsigned short nr_integrity_segments;
220 #endif
221 
222 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
223 	struct bio_crypt_ctx *crypt_ctx;
224 	struct blk_ksm_keyslot *crypt_keyslot;
225 #endif
226 
227 	unsigned short write_hint;
228 	unsigned short ioprio;
229 
230 	enum mq_rq_state state;
231 	refcount_t ref;
232 
233 	unsigned int timeout;
234 	unsigned long deadline;
235 
236 	union {
237 		struct __call_single_data csd;
238 		u64 fifo_time;
239 	};
240 
241 	/*
242 	 * completion callback.
243 	 */
244 	rq_end_io_fn *end_io;
245 	void *end_io_data;
246 };
247 
248 static inline bool blk_op_is_scsi(unsigned int op)
249 {
250 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
251 }
252 
253 static inline bool blk_op_is_private(unsigned int op)
254 {
255 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
256 }
257 
258 static inline bool blk_rq_is_scsi(struct request *rq)
259 {
260 	return blk_op_is_scsi(req_op(rq));
261 }
262 
263 static inline bool blk_rq_is_private(struct request *rq)
264 {
265 	return blk_op_is_private(req_op(rq));
266 }
267 
268 static inline bool blk_rq_is_passthrough(struct request *rq)
269 {
270 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
271 }
272 
273 static inline bool bio_is_passthrough(struct bio *bio)
274 {
275 	unsigned op = bio_op(bio);
276 
277 	return blk_op_is_scsi(op) || blk_op_is_private(op);
278 }
279 
280 static inline unsigned short req_get_ioprio(struct request *req)
281 {
282 	return req->ioprio;
283 }
284 
285 #include <linux/elevator.h>
286 
287 struct blk_queue_ctx;
288 
289 struct bio_vec;
290 
291 enum blk_eh_timer_return {
292 	BLK_EH_DONE,		/* drivers has completed the command */
293 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
294 };
295 
296 enum blk_queue_state {
297 	Queue_down,
298 	Queue_up,
299 };
300 
301 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
302 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
303 
304 #define BLK_SCSI_MAX_CMDS	(256)
305 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
306 
307 /*
308  * Zoned block device models (zoned limit).
309  *
310  * Note: This needs to be ordered from the least to the most severe
311  * restrictions for the inheritance in blk_stack_limits() to work.
312  */
313 enum blk_zoned_model {
314 	BLK_ZONED_NONE = 0,	/* Regular block device */
315 	BLK_ZONED_HA,		/* Host-aware zoned block device */
316 	BLK_ZONED_HM,		/* Host-managed zoned block device */
317 };
318 
319 struct queue_limits {
320 	unsigned long		bounce_pfn;
321 	unsigned long		seg_boundary_mask;
322 	unsigned long		virt_boundary_mask;
323 
324 	unsigned int		max_hw_sectors;
325 	unsigned int		max_dev_sectors;
326 	unsigned int		chunk_sectors;
327 	unsigned int		max_sectors;
328 	unsigned int		max_segment_size;
329 	unsigned int		physical_block_size;
330 	unsigned int		logical_block_size;
331 	unsigned int		alignment_offset;
332 	unsigned int		io_min;
333 	unsigned int		io_opt;
334 	unsigned int		max_discard_sectors;
335 	unsigned int		max_hw_discard_sectors;
336 	unsigned int		max_write_same_sectors;
337 	unsigned int		max_write_zeroes_sectors;
338 	unsigned int		max_zone_append_sectors;
339 	unsigned int		discard_granularity;
340 	unsigned int		discard_alignment;
341 
342 	unsigned short		max_segments;
343 	unsigned short		max_integrity_segments;
344 	unsigned short		max_discard_segments;
345 
346 	unsigned char		misaligned;
347 	unsigned char		discard_misaligned;
348 	unsigned char		raid_partial_stripes_expensive;
349 	enum blk_zoned_model	zoned;
350 };
351 
352 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
353 			       void *data);
354 
355 #ifdef CONFIG_BLK_DEV_ZONED
356 
357 #define BLK_ALL_ZONES  ((unsigned int)-1)
358 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
359 			unsigned int nr_zones, report_zones_cb cb, void *data);
360 unsigned int blkdev_nr_zones(struct gendisk *disk);
361 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
362 			    sector_t sectors, sector_t nr_sectors,
363 			    gfp_t gfp_mask);
364 int blk_revalidate_disk_zones(struct gendisk *disk,
365 			      void (*update_driver_data)(struct gendisk *disk));
366 
367 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
368 				     unsigned int cmd, unsigned long arg);
369 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
370 				  unsigned int cmd, unsigned long arg);
371 
372 #else /* CONFIG_BLK_DEV_ZONED */
373 
374 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
375 {
376 	return 0;
377 }
378 
379 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
380 					    fmode_t mode, unsigned int cmd,
381 					    unsigned long arg)
382 {
383 	return -ENOTTY;
384 }
385 
386 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
387 					 fmode_t mode, unsigned int cmd,
388 					 unsigned long arg)
389 {
390 	return -ENOTTY;
391 }
392 
393 #endif /* CONFIG_BLK_DEV_ZONED */
394 
395 struct request_queue {
396 	struct request		*last_merge;
397 	struct elevator_queue	*elevator;
398 
399 	struct blk_queue_stats	*stats;
400 	struct rq_qos		*rq_qos;
401 
402 	const struct blk_mq_ops	*mq_ops;
403 
404 	/* sw queues */
405 	struct blk_mq_ctx __percpu	*queue_ctx;
406 
407 	unsigned int		queue_depth;
408 
409 	/* hw dispatch queues */
410 	struct blk_mq_hw_ctx	**queue_hw_ctx;
411 	unsigned int		nr_hw_queues;
412 
413 	struct backing_dev_info	*backing_dev_info;
414 
415 	/*
416 	 * The queue owner gets to use this for whatever they like.
417 	 * ll_rw_blk doesn't touch it.
418 	 */
419 	void			*queuedata;
420 
421 	/*
422 	 * various queue flags, see QUEUE_* below
423 	 */
424 	unsigned long		queue_flags;
425 	/*
426 	 * Number of contexts that have called blk_set_pm_only(). If this
427 	 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
428 	 * processed.
429 	 */
430 	atomic_t		pm_only;
431 
432 	/*
433 	 * ida allocated id for this queue.  Used to index queues from
434 	 * ioctx.
435 	 */
436 	int			id;
437 
438 	/*
439 	 * queue needs bounce pages for pages above this limit
440 	 */
441 	gfp_t			bounce_gfp;
442 
443 	spinlock_t		queue_lock;
444 
445 	/*
446 	 * queue kobject
447 	 */
448 	struct kobject kobj;
449 
450 	/*
451 	 * mq queue kobject
452 	 */
453 	struct kobject *mq_kobj;
454 
455 #ifdef  CONFIG_BLK_DEV_INTEGRITY
456 	struct blk_integrity integrity;
457 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
458 
459 #ifdef CONFIG_PM
460 	struct device		*dev;
461 	int			rpm_status;
462 	unsigned int		nr_pending;
463 #endif
464 
465 	/*
466 	 * queue settings
467 	 */
468 	unsigned long		nr_requests;	/* Max # of requests */
469 
470 	unsigned int		dma_pad_mask;
471 	unsigned int		dma_alignment;
472 
473 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
474 	/* Inline crypto capabilities */
475 	struct blk_keyslot_manager *ksm;
476 #endif
477 
478 	unsigned int		rq_timeout;
479 	int			poll_nsec;
480 
481 	struct blk_stat_callback	*poll_cb;
482 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
483 
484 	struct timer_list	timeout;
485 	struct work_struct	timeout_work;
486 
487 	struct list_head	icq_list;
488 #ifdef CONFIG_BLK_CGROUP
489 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
490 	struct blkcg_gq		*root_blkg;
491 	struct list_head	blkg_list;
492 #endif
493 
494 	struct queue_limits	limits;
495 
496 	unsigned int		required_elevator_features;
497 
498 #ifdef CONFIG_BLK_DEV_ZONED
499 	/*
500 	 * Zoned block device information for request dispatch control.
501 	 * nr_zones is the total number of zones of the device. This is always
502 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
503 	 * bits which indicates if a zone is conventional (bit set) or
504 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
505 	 * bits which indicates if a zone is write locked, that is, if a write
506 	 * request targeting the zone was dispatched. All three fields are
507 	 * initialized by the low level device driver (e.g. scsi/sd.c).
508 	 * Stacking drivers (device mappers) may or may not initialize
509 	 * these fields.
510 	 *
511 	 * Reads of this information must be protected with blk_queue_enter() /
512 	 * blk_queue_exit(). Modifying this information is only allowed while
513 	 * no requests are being processed. See also blk_mq_freeze_queue() and
514 	 * blk_mq_unfreeze_queue().
515 	 */
516 	unsigned int		nr_zones;
517 	unsigned long		*conv_zones_bitmap;
518 	unsigned long		*seq_zones_wlock;
519 	unsigned int		max_open_zones;
520 	unsigned int		max_active_zones;
521 #endif /* CONFIG_BLK_DEV_ZONED */
522 
523 	/*
524 	 * sg stuff
525 	 */
526 	unsigned int		sg_timeout;
527 	unsigned int		sg_reserved_size;
528 	int			node;
529 	struct mutex		debugfs_mutex;
530 #ifdef CONFIG_BLK_DEV_IO_TRACE
531 	struct blk_trace __rcu	*blk_trace;
532 #endif
533 	/*
534 	 * for flush operations
535 	 */
536 	struct blk_flush_queue	*fq;
537 
538 	struct list_head	requeue_list;
539 	spinlock_t		requeue_lock;
540 	struct delayed_work	requeue_work;
541 
542 	struct mutex		sysfs_lock;
543 	struct mutex		sysfs_dir_lock;
544 
545 	/*
546 	 * for reusing dead hctx instance in case of updating
547 	 * nr_hw_queues
548 	 */
549 	struct list_head	unused_hctx_list;
550 	spinlock_t		unused_hctx_lock;
551 
552 	int			mq_freeze_depth;
553 
554 #if defined(CONFIG_BLK_DEV_BSG)
555 	struct bsg_class_device bsg_dev;
556 #endif
557 
558 #ifdef CONFIG_BLK_DEV_THROTTLING
559 	/* Throttle data */
560 	struct throtl_data *td;
561 #endif
562 	struct rcu_head		rcu_head;
563 	wait_queue_head_t	mq_freeze_wq;
564 	/*
565 	 * Protect concurrent access to q_usage_counter by
566 	 * percpu_ref_kill() and percpu_ref_reinit().
567 	 */
568 	struct mutex		mq_freeze_lock;
569 	struct percpu_ref	q_usage_counter;
570 
571 	struct blk_mq_tag_set	*tag_set;
572 	struct list_head	tag_set_list;
573 	struct bio_set		bio_split;
574 
575 	struct dentry		*debugfs_dir;
576 
577 #ifdef CONFIG_BLK_DEBUG_FS
578 	struct dentry		*sched_debugfs_dir;
579 	struct dentry		*rqos_debugfs_dir;
580 #endif
581 
582 	bool			mq_sysfs_init_done;
583 
584 	size_t			cmd_size;
585 
586 #define BLK_MAX_WRITE_HINTS	5
587 	u64			write_hints[BLK_MAX_WRITE_HINTS];
588 };
589 
590 /* Keep blk_queue_flag_name[] in sync with the definitions below */
591 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
592 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
593 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
594 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
595 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
596 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
597 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
598 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
599 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
600 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
601 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
602 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
603 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
604 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
605 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
606 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
607 #define QUEUE_FLAG_WC		17	/* Write back caching */
608 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
609 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
610 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
611 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
612 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
613 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
614 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
615 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
616 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
617 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
618 
619 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
620 				 (1 << QUEUE_FLAG_SAME_COMP))
621 
622 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
623 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
624 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
625 
626 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
627 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
628 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
629 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
630 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
631 #define blk_queue_noxmerges(q)	\
632 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
633 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
634 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
635 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
636 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
637 #define blk_queue_zone_resetall(q)	\
638 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
639 #define blk_queue_secure_erase(q) \
640 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
641 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
642 #define blk_queue_scsi_passthrough(q)	\
643 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
644 #define blk_queue_pci_p2pdma(q)	\
645 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
646 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
647 #define blk_queue_rq_alloc_time(q)	\
648 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
649 #else
650 #define blk_queue_rq_alloc_time(q)	false
651 #endif
652 
653 #define blk_noretry_request(rq) \
654 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
655 			     REQ_FAILFAST_DRIVER))
656 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
657 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
658 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
659 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
660 
661 extern void blk_set_pm_only(struct request_queue *q);
662 extern void blk_clear_pm_only(struct request_queue *q);
663 
664 static inline bool blk_account_rq(struct request *rq)
665 {
666 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
667 }
668 
669 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
670 
671 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
672 
673 #define rq_dma_dir(rq) \
674 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
675 
676 #define dma_map_bvec(dev, bv, dir, attrs) \
677 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
678 	(dir), (attrs))
679 
680 static inline bool queue_is_mq(struct request_queue *q)
681 {
682 	return q->mq_ops;
683 }
684 
685 static inline enum blk_zoned_model
686 blk_queue_zoned_model(struct request_queue *q)
687 {
688 	return q->limits.zoned;
689 }
690 
691 static inline bool blk_queue_is_zoned(struct request_queue *q)
692 {
693 	switch (blk_queue_zoned_model(q)) {
694 	case BLK_ZONED_HA:
695 	case BLK_ZONED_HM:
696 		return true;
697 	default:
698 		return false;
699 	}
700 }
701 
702 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
703 {
704 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
705 }
706 
707 #ifdef CONFIG_BLK_DEV_ZONED
708 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
709 {
710 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
711 }
712 
713 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
714 					     sector_t sector)
715 {
716 	if (!blk_queue_is_zoned(q))
717 		return 0;
718 	return sector >> ilog2(q->limits.chunk_sectors);
719 }
720 
721 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
722 					 sector_t sector)
723 {
724 	if (!blk_queue_is_zoned(q))
725 		return false;
726 	if (!q->conv_zones_bitmap)
727 		return true;
728 	return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
729 }
730 
731 static inline void blk_queue_max_open_zones(struct request_queue *q,
732 		unsigned int max_open_zones)
733 {
734 	q->max_open_zones = max_open_zones;
735 }
736 
737 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
738 {
739 	return q->max_open_zones;
740 }
741 
742 static inline void blk_queue_max_active_zones(struct request_queue *q,
743 		unsigned int max_active_zones)
744 {
745 	q->max_active_zones = max_active_zones;
746 }
747 
748 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
749 {
750 	return q->max_active_zones;
751 }
752 #else /* CONFIG_BLK_DEV_ZONED */
753 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
754 {
755 	return 0;
756 }
757 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
758 					 sector_t sector)
759 {
760 	return false;
761 }
762 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
763 					     sector_t sector)
764 {
765 	return 0;
766 }
767 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
768 {
769 	return 0;
770 }
771 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
772 {
773 	return 0;
774 }
775 #endif /* CONFIG_BLK_DEV_ZONED */
776 
777 static inline bool rq_is_sync(struct request *rq)
778 {
779 	return op_is_sync(rq->cmd_flags);
780 }
781 
782 static inline bool rq_mergeable(struct request *rq)
783 {
784 	if (blk_rq_is_passthrough(rq))
785 		return false;
786 
787 	if (req_op(rq) == REQ_OP_FLUSH)
788 		return false;
789 
790 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
791 		return false;
792 
793 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
794 		return false;
795 
796 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
797 		return false;
798 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
799 		return false;
800 
801 	return true;
802 }
803 
804 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
805 {
806 	if (bio_page(a) == bio_page(b) &&
807 	    bio_offset(a) == bio_offset(b))
808 		return true;
809 
810 	return false;
811 }
812 
813 static inline unsigned int blk_queue_depth(struct request_queue *q)
814 {
815 	if (q->queue_depth)
816 		return q->queue_depth;
817 
818 	return q->nr_requests;
819 }
820 
821 extern unsigned long blk_max_low_pfn, blk_max_pfn;
822 
823 /*
824  * standard bounce addresses:
825  *
826  * BLK_BOUNCE_HIGH	: bounce all highmem pages
827  * BLK_BOUNCE_ANY	: don't bounce anything
828  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
829  */
830 
831 #if BITS_PER_LONG == 32
832 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
833 #else
834 #define BLK_BOUNCE_HIGH		-1ULL
835 #endif
836 #define BLK_BOUNCE_ANY		(-1ULL)
837 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
838 
839 /*
840  * default timeout for SG_IO if none specified
841  */
842 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
843 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
844 
845 struct rq_map_data {
846 	struct page **pages;
847 	int page_order;
848 	int nr_entries;
849 	unsigned long offset;
850 	int null_mapped;
851 	int from_user;
852 };
853 
854 struct req_iterator {
855 	struct bvec_iter iter;
856 	struct bio *bio;
857 };
858 
859 /* This should not be used directly - use rq_for_each_segment */
860 #define for_each_bio(_bio)		\
861 	for (; _bio; _bio = _bio->bi_next)
862 #define __rq_for_each_bio(_bio, rq)	\
863 	if ((rq->bio))			\
864 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
865 
866 #define rq_for_each_segment(bvl, _rq, _iter)			\
867 	__rq_for_each_bio(_iter.bio, _rq)			\
868 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
869 
870 #define rq_for_each_bvec(bvl, _rq, _iter)			\
871 	__rq_for_each_bio(_iter.bio, _rq)			\
872 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
873 
874 #define rq_iter_last(bvec, _iter)				\
875 		(_iter.bio->bi_next == NULL &&			\
876 		 bio_iter_last(bvec, _iter.iter))
877 
878 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
879 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
880 #endif
881 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
882 extern void rq_flush_dcache_pages(struct request *rq);
883 #else
884 static inline void rq_flush_dcache_pages(struct request *rq)
885 {
886 }
887 #endif
888 
889 extern int blk_register_queue(struct gendisk *disk);
890 extern void blk_unregister_queue(struct gendisk *disk);
891 blk_qc_t submit_bio_noacct(struct bio *bio);
892 extern void blk_rq_init(struct request_queue *q, struct request *rq);
893 extern void blk_put_request(struct request *);
894 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
895 				       blk_mq_req_flags_t flags);
896 extern int blk_lld_busy(struct request_queue *q);
897 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
898 			     struct bio_set *bs, gfp_t gfp_mask,
899 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
900 			     void *data);
901 extern void blk_rq_unprep_clone(struct request *rq);
902 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
903 				     struct request *rq);
904 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
905 extern void blk_queue_split(struct bio **);
906 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
907 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
908 			      unsigned int, void __user *);
909 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
910 			  unsigned int, void __user *);
911 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
912 			 struct scsi_ioctl_command __user *);
913 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
914 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
915 
916 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
917 extern void blk_queue_exit(struct request_queue *q);
918 extern void blk_sync_queue(struct request_queue *q);
919 extern int blk_rq_map_user(struct request_queue *, struct request *,
920 			   struct rq_map_data *, void __user *, unsigned long,
921 			   gfp_t);
922 extern int blk_rq_unmap_user(struct bio *);
923 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
924 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
925 			       struct rq_map_data *, const struct iov_iter *,
926 			       gfp_t);
927 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
928 			  struct request *, int);
929 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
930 				  struct request *, int, rq_end_io_fn *);
931 
932 /* Helper to convert REQ_OP_XXX to its string format XXX */
933 extern const char *blk_op_str(unsigned int op);
934 
935 int blk_status_to_errno(blk_status_t status);
936 blk_status_t errno_to_blk_status(int errno);
937 
938 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
939 
940 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
941 {
942 	return bdev->bd_disk->queue;	/* this is never NULL */
943 }
944 
945 /*
946  * The basic unit of block I/O is a sector. It is used in a number of contexts
947  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
948  * bytes. Variables of type sector_t represent an offset or size that is a
949  * multiple of 512 bytes. Hence these two constants.
950  */
951 #ifndef SECTOR_SHIFT
952 #define SECTOR_SHIFT 9
953 #endif
954 #ifndef SECTOR_SIZE
955 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
956 #endif
957 
958 /*
959  * blk_rq_pos()			: the current sector
960  * blk_rq_bytes()		: bytes left in the entire request
961  * blk_rq_cur_bytes()		: bytes left in the current segment
962  * blk_rq_err_bytes()		: bytes left till the next error boundary
963  * blk_rq_sectors()		: sectors left in the entire request
964  * blk_rq_cur_sectors()		: sectors left in the current segment
965  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
966  */
967 static inline sector_t blk_rq_pos(const struct request *rq)
968 {
969 	return rq->__sector;
970 }
971 
972 static inline unsigned int blk_rq_bytes(const struct request *rq)
973 {
974 	return rq->__data_len;
975 }
976 
977 static inline int blk_rq_cur_bytes(const struct request *rq)
978 {
979 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
980 }
981 
982 extern unsigned int blk_rq_err_bytes(const struct request *rq);
983 
984 static inline unsigned int blk_rq_sectors(const struct request *rq)
985 {
986 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
987 }
988 
989 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
990 {
991 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
992 }
993 
994 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
995 {
996 	return rq->stats_sectors;
997 }
998 
999 #ifdef CONFIG_BLK_DEV_ZONED
1000 
1001 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1002 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1003 
1004 static inline unsigned int blk_rq_zone_no(struct request *rq)
1005 {
1006 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1007 }
1008 
1009 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1010 {
1011 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1012 }
1013 #endif /* CONFIG_BLK_DEV_ZONED */
1014 
1015 /*
1016  * Some commands like WRITE SAME have a payload or data transfer size which
1017  * is different from the size of the request.  Any driver that supports such
1018  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1019  * calculate the data transfer size.
1020  */
1021 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1022 {
1023 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1024 		return rq->special_vec.bv_len;
1025 	return blk_rq_bytes(rq);
1026 }
1027 
1028 /*
1029  * Return the first full biovec in the request.  The caller needs to check that
1030  * there are any bvecs before calling this helper.
1031  */
1032 static inline struct bio_vec req_bvec(struct request *rq)
1033 {
1034 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1035 		return rq->special_vec;
1036 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1037 }
1038 
1039 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1040 						     int op)
1041 {
1042 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1043 		return min(q->limits.max_discard_sectors,
1044 			   UINT_MAX >> SECTOR_SHIFT);
1045 
1046 	if (unlikely(op == REQ_OP_WRITE_SAME))
1047 		return q->limits.max_write_same_sectors;
1048 
1049 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1050 		return q->limits.max_write_zeroes_sectors;
1051 
1052 	return q->limits.max_sectors;
1053 }
1054 
1055 /*
1056  * Return maximum size of a request at given offset. Only valid for
1057  * file system requests.
1058  */
1059 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1060 					       sector_t offset)
1061 {
1062 	if (!q->limits.chunk_sectors)
1063 		return q->limits.max_sectors;
1064 
1065 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1066 			(offset & (q->limits.chunk_sectors - 1))));
1067 }
1068 
1069 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1070 						  sector_t offset)
1071 {
1072 	struct request_queue *q = rq->q;
1073 
1074 	if (blk_rq_is_passthrough(rq))
1075 		return q->limits.max_hw_sectors;
1076 
1077 	if (!q->limits.chunk_sectors ||
1078 	    req_op(rq) == REQ_OP_DISCARD ||
1079 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1080 		return blk_queue_get_max_sectors(q, req_op(rq));
1081 
1082 	return min(blk_max_size_offset(q, offset),
1083 			blk_queue_get_max_sectors(q, req_op(rq)));
1084 }
1085 
1086 static inline unsigned int blk_rq_count_bios(struct request *rq)
1087 {
1088 	unsigned int nr_bios = 0;
1089 	struct bio *bio;
1090 
1091 	__rq_for_each_bio(bio, rq)
1092 		nr_bios++;
1093 
1094 	return nr_bios;
1095 }
1096 
1097 void blk_steal_bios(struct bio_list *list, struct request *rq);
1098 
1099 /*
1100  * Request completion related functions.
1101  *
1102  * blk_update_request() completes given number of bytes and updates
1103  * the request without completing it.
1104  */
1105 extern bool blk_update_request(struct request *rq, blk_status_t error,
1106 			       unsigned int nr_bytes);
1107 
1108 extern void blk_abort_request(struct request *);
1109 
1110 /*
1111  * Access functions for manipulating queue properties
1112  */
1113 extern void blk_cleanup_queue(struct request_queue *);
1114 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1115 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1116 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1117 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1118 extern void blk_queue_max_discard_segments(struct request_queue *,
1119 		unsigned short);
1120 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1121 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1122 		unsigned int max_discard_sectors);
1123 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1124 		unsigned int max_write_same_sectors);
1125 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1126 		unsigned int max_write_same_sectors);
1127 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1128 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1129 		unsigned int max_zone_append_sectors);
1130 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1131 extern void blk_queue_alignment_offset(struct request_queue *q,
1132 				       unsigned int alignment);
1133 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1134 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1135 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1136 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1137 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1138 extern void blk_set_default_limits(struct queue_limits *lim);
1139 extern void blk_set_stacking_limits(struct queue_limits *lim);
1140 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1141 			    sector_t offset);
1142 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1143 			      sector_t offset);
1144 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1145 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1146 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1147 extern void blk_queue_dma_alignment(struct request_queue *, int);
1148 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1149 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1150 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1151 extern void blk_queue_required_elevator_features(struct request_queue *q,
1152 						 unsigned int features);
1153 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1154 					      struct device *dev);
1155 
1156 /*
1157  * Number of physical segments as sent to the device.
1158  *
1159  * Normally this is the number of discontiguous data segments sent by the
1160  * submitter.  But for data-less command like discard we might have no
1161  * actual data segments submitted, but the driver might have to add it's
1162  * own special payload.  In that case we still return 1 here so that this
1163  * special payload will be mapped.
1164  */
1165 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1166 {
1167 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1168 		return 1;
1169 	return rq->nr_phys_segments;
1170 }
1171 
1172 /*
1173  * Number of discard segments (or ranges) the driver needs to fill in.
1174  * Each discard bio merged into a request is counted as one segment.
1175  */
1176 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1177 {
1178 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1179 }
1180 
1181 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1182 		struct scatterlist *sglist, struct scatterlist **last_sg);
1183 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1184 		struct scatterlist *sglist)
1185 {
1186 	struct scatterlist *last_sg = NULL;
1187 
1188 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1189 }
1190 extern void blk_dump_rq_flags(struct request *, char *);
1191 
1192 bool __must_check blk_get_queue(struct request_queue *);
1193 struct request_queue *blk_alloc_queue(int node_id);
1194 extern void blk_put_queue(struct request_queue *);
1195 extern void blk_set_queue_dying(struct request_queue *);
1196 
1197 #ifdef CONFIG_BLOCK
1198 /*
1199  * blk_plug permits building a queue of related requests by holding the I/O
1200  * fragments for a short period. This allows merging of sequential requests
1201  * into single larger request. As the requests are moved from a per-task list to
1202  * the device's request_queue in a batch, this results in improved scalability
1203  * as the lock contention for request_queue lock is reduced.
1204  *
1205  * It is ok not to disable preemption when adding the request to the plug list
1206  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1207  * the plug list when the task sleeps by itself. For details, please see
1208  * schedule() where blk_schedule_flush_plug() is called.
1209  */
1210 struct blk_plug {
1211 	struct list_head mq_list; /* blk-mq requests */
1212 	struct list_head cb_list; /* md requires an unplug callback */
1213 	unsigned short rq_count;
1214 	bool multiple_queues;
1215 	bool nowait;
1216 };
1217 #define BLK_MAX_REQUEST_COUNT 16
1218 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1219 
1220 struct blk_plug_cb;
1221 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1222 struct blk_plug_cb {
1223 	struct list_head list;
1224 	blk_plug_cb_fn callback;
1225 	void *data;
1226 };
1227 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1228 					     void *data, int size);
1229 extern void blk_start_plug(struct blk_plug *);
1230 extern void blk_finish_plug(struct blk_plug *);
1231 extern void blk_flush_plug_list(struct blk_plug *, bool);
1232 
1233 static inline void blk_flush_plug(struct task_struct *tsk)
1234 {
1235 	struct blk_plug *plug = tsk->plug;
1236 
1237 	if (plug)
1238 		blk_flush_plug_list(plug, false);
1239 }
1240 
1241 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1242 {
1243 	struct blk_plug *plug = tsk->plug;
1244 
1245 	if (plug)
1246 		blk_flush_plug_list(plug, true);
1247 }
1248 
1249 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1250 {
1251 	struct blk_plug *plug = tsk->plug;
1252 
1253 	return plug &&
1254 		 (!list_empty(&plug->mq_list) ||
1255 		 !list_empty(&plug->cb_list));
1256 }
1257 
1258 int blkdev_issue_flush(struct block_device *, gfp_t);
1259 long nr_blockdev_pages(void);
1260 #else /* CONFIG_BLOCK */
1261 struct blk_plug {
1262 };
1263 
1264 static inline void blk_start_plug(struct blk_plug *plug)
1265 {
1266 }
1267 
1268 static inline void blk_finish_plug(struct blk_plug *plug)
1269 {
1270 }
1271 
1272 static inline void blk_flush_plug(struct task_struct *task)
1273 {
1274 }
1275 
1276 static inline void blk_schedule_flush_plug(struct task_struct *task)
1277 {
1278 }
1279 
1280 
1281 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1282 {
1283 	return false;
1284 }
1285 
1286 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
1287 {
1288 	return 0;
1289 }
1290 
1291 static inline long nr_blockdev_pages(void)
1292 {
1293 	return 0;
1294 }
1295 #endif /* CONFIG_BLOCK */
1296 
1297 extern void blk_io_schedule(void);
1298 
1299 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1300 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1301 
1302 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1303 
1304 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1305 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1306 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1307 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1308 		struct bio **biop);
1309 
1310 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1311 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1312 
1313 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1314 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1315 		unsigned flags);
1316 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1317 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1318 
1319 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1320 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1321 {
1322 	return blkdev_issue_discard(sb->s_bdev,
1323 				    block << (sb->s_blocksize_bits -
1324 					      SECTOR_SHIFT),
1325 				    nr_blocks << (sb->s_blocksize_bits -
1326 						  SECTOR_SHIFT),
1327 				    gfp_mask, flags);
1328 }
1329 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1330 		sector_t nr_blocks, gfp_t gfp_mask)
1331 {
1332 	return blkdev_issue_zeroout(sb->s_bdev,
1333 				    block << (sb->s_blocksize_bits -
1334 					      SECTOR_SHIFT),
1335 				    nr_blocks << (sb->s_blocksize_bits -
1336 						  SECTOR_SHIFT),
1337 				    gfp_mask, 0);
1338 }
1339 
1340 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1341 
1342 enum blk_default_limits {
1343 	BLK_MAX_SEGMENTS	= 128,
1344 	BLK_SAFE_MAX_SECTORS	= 255,
1345 	BLK_DEF_MAX_SECTORS	= 2560,
1346 	BLK_MAX_SEGMENT_SIZE	= 65536,
1347 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1348 };
1349 
1350 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1351 {
1352 	return q->limits.seg_boundary_mask;
1353 }
1354 
1355 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1356 {
1357 	return q->limits.virt_boundary_mask;
1358 }
1359 
1360 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1361 {
1362 	return q->limits.max_sectors;
1363 }
1364 
1365 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1366 {
1367 	return q->limits.max_hw_sectors;
1368 }
1369 
1370 static inline unsigned short queue_max_segments(const struct request_queue *q)
1371 {
1372 	return q->limits.max_segments;
1373 }
1374 
1375 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1376 {
1377 	return q->limits.max_discard_segments;
1378 }
1379 
1380 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1381 {
1382 	return q->limits.max_segment_size;
1383 }
1384 
1385 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1386 {
1387 	return q->limits.max_zone_append_sectors;
1388 }
1389 
1390 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1391 {
1392 	int retval = 512;
1393 
1394 	if (q && q->limits.logical_block_size)
1395 		retval = q->limits.logical_block_size;
1396 
1397 	return retval;
1398 }
1399 
1400 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1401 {
1402 	return queue_logical_block_size(bdev_get_queue(bdev));
1403 }
1404 
1405 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1406 {
1407 	return q->limits.physical_block_size;
1408 }
1409 
1410 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1411 {
1412 	return queue_physical_block_size(bdev_get_queue(bdev));
1413 }
1414 
1415 static inline unsigned int queue_io_min(const struct request_queue *q)
1416 {
1417 	return q->limits.io_min;
1418 }
1419 
1420 static inline int bdev_io_min(struct block_device *bdev)
1421 {
1422 	return queue_io_min(bdev_get_queue(bdev));
1423 }
1424 
1425 static inline unsigned int queue_io_opt(const struct request_queue *q)
1426 {
1427 	return q->limits.io_opt;
1428 }
1429 
1430 static inline int bdev_io_opt(struct block_device *bdev)
1431 {
1432 	return queue_io_opt(bdev_get_queue(bdev));
1433 }
1434 
1435 static inline int queue_alignment_offset(const struct request_queue *q)
1436 {
1437 	if (q->limits.misaligned)
1438 		return -1;
1439 
1440 	return q->limits.alignment_offset;
1441 }
1442 
1443 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1444 {
1445 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1446 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1447 		<< SECTOR_SHIFT;
1448 
1449 	return (granularity + lim->alignment_offset - alignment) % granularity;
1450 }
1451 
1452 static inline int bdev_alignment_offset(struct block_device *bdev)
1453 {
1454 	struct request_queue *q = bdev_get_queue(bdev);
1455 
1456 	if (q->limits.misaligned)
1457 		return -1;
1458 
1459 	if (bdev != bdev->bd_contains)
1460 		return bdev->bd_part->alignment_offset;
1461 
1462 	return q->limits.alignment_offset;
1463 }
1464 
1465 static inline int queue_discard_alignment(const struct request_queue *q)
1466 {
1467 	if (q->limits.discard_misaligned)
1468 		return -1;
1469 
1470 	return q->limits.discard_alignment;
1471 }
1472 
1473 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1474 {
1475 	unsigned int alignment, granularity, offset;
1476 
1477 	if (!lim->max_discard_sectors)
1478 		return 0;
1479 
1480 	/* Why are these in bytes, not sectors? */
1481 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1482 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1483 	if (!granularity)
1484 		return 0;
1485 
1486 	/* Offset of the partition start in 'granularity' sectors */
1487 	offset = sector_div(sector, granularity);
1488 
1489 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1490 	offset = (granularity + alignment - offset) % granularity;
1491 
1492 	/* Turn it back into bytes, gaah */
1493 	return offset << SECTOR_SHIFT;
1494 }
1495 
1496 static inline int bdev_discard_alignment(struct block_device *bdev)
1497 {
1498 	struct request_queue *q = bdev_get_queue(bdev);
1499 
1500 	if (bdev != bdev->bd_contains)
1501 		return bdev->bd_part->discard_alignment;
1502 
1503 	return q->limits.discard_alignment;
1504 }
1505 
1506 static inline unsigned int bdev_write_same(struct block_device *bdev)
1507 {
1508 	struct request_queue *q = bdev_get_queue(bdev);
1509 
1510 	if (q)
1511 		return q->limits.max_write_same_sectors;
1512 
1513 	return 0;
1514 }
1515 
1516 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1517 {
1518 	struct request_queue *q = bdev_get_queue(bdev);
1519 
1520 	if (q)
1521 		return q->limits.max_write_zeroes_sectors;
1522 
1523 	return 0;
1524 }
1525 
1526 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1527 {
1528 	struct request_queue *q = bdev_get_queue(bdev);
1529 
1530 	if (q)
1531 		return blk_queue_zoned_model(q);
1532 
1533 	return BLK_ZONED_NONE;
1534 }
1535 
1536 static inline bool bdev_is_zoned(struct block_device *bdev)
1537 {
1538 	struct request_queue *q = bdev_get_queue(bdev);
1539 
1540 	if (q)
1541 		return blk_queue_is_zoned(q);
1542 
1543 	return false;
1544 }
1545 
1546 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1547 {
1548 	struct request_queue *q = bdev_get_queue(bdev);
1549 
1550 	if (q)
1551 		return blk_queue_zone_sectors(q);
1552 	return 0;
1553 }
1554 
1555 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1556 {
1557 	struct request_queue *q = bdev_get_queue(bdev);
1558 
1559 	if (q)
1560 		return queue_max_open_zones(q);
1561 	return 0;
1562 }
1563 
1564 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1565 {
1566 	struct request_queue *q = bdev_get_queue(bdev);
1567 
1568 	if (q)
1569 		return queue_max_active_zones(q);
1570 	return 0;
1571 }
1572 
1573 static inline int queue_dma_alignment(const struct request_queue *q)
1574 {
1575 	return q ? q->dma_alignment : 511;
1576 }
1577 
1578 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1579 				 unsigned int len)
1580 {
1581 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1582 	return !(addr & alignment) && !(len & alignment);
1583 }
1584 
1585 /* assumes size > 256 */
1586 static inline unsigned int blksize_bits(unsigned int size)
1587 {
1588 	unsigned int bits = 8;
1589 	do {
1590 		bits++;
1591 		size >>= 1;
1592 	} while (size > 256);
1593 	return bits;
1594 }
1595 
1596 static inline unsigned int block_size(struct block_device *bdev)
1597 {
1598 	return 1 << bdev->bd_inode->i_blkbits;
1599 }
1600 
1601 int kblockd_schedule_work(struct work_struct *work);
1602 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1603 
1604 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1605 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1606 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1607 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1608 
1609 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1610 
1611 enum blk_integrity_flags {
1612 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1613 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1614 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1615 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1616 };
1617 
1618 struct blk_integrity_iter {
1619 	void			*prot_buf;
1620 	void			*data_buf;
1621 	sector_t		seed;
1622 	unsigned int		data_size;
1623 	unsigned short		interval;
1624 	const char		*disk_name;
1625 };
1626 
1627 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1628 typedef void (integrity_prepare_fn) (struct request *);
1629 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1630 
1631 struct blk_integrity_profile {
1632 	integrity_processing_fn		*generate_fn;
1633 	integrity_processing_fn		*verify_fn;
1634 	integrity_prepare_fn		*prepare_fn;
1635 	integrity_complete_fn		*complete_fn;
1636 	const char			*name;
1637 };
1638 
1639 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1640 extern void blk_integrity_unregister(struct gendisk *);
1641 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1642 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1643 				   struct scatterlist *);
1644 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1645 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1646 				   struct request *);
1647 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1648 				    struct bio *);
1649 
1650 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1651 {
1652 	struct blk_integrity *bi = &disk->queue->integrity;
1653 
1654 	if (!bi->profile)
1655 		return NULL;
1656 
1657 	return bi;
1658 }
1659 
1660 static inline
1661 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1662 {
1663 	return blk_get_integrity(bdev->bd_disk);
1664 }
1665 
1666 static inline bool
1667 blk_integrity_queue_supports_integrity(struct request_queue *q)
1668 {
1669 	return q->integrity.profile;
1670 }
1671 
1672 static inline bool blk_integrity_rq(struct request *rq)
1673 {
1674 	return rq->cmd_flags & REQ_INTEGRITY;
1675 }
1676 
1677 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1678 						    unsigned int segs)
1679 {
1680 	q->limits.max_integrity_segments = segs;
1681 }
1682 
1683 static inline unsigned short
1684 queue_max_integrity_segments(const struct request_queue *q)
1685 {
1686 	return q->limits.max_integrity_segments;
1687 }
1688 
1689 /**
1690  * bio_integrity_intervals - Return number of integrity intervals for a bio
1691  * @bi:		blk_integrity profile for device
1692  * @sectors:	Size of the bio in 512-byte sectors
1693  *
1694  * Description: The block layer calculates everything in 512 byte
1695  * sectors but integrity metadata is done in terms of the data integrity
1696  * interval size of the storage device.  Convert the block layer sectors
1697  * to the appropriate number of integrity intervals.
1698  */
1699 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1700 						   unsigned int sectors)
1701 {
1702 	return sectors >> (bi->interval_exp - 9);
1703 }
1704 
1705 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1706 					       unsigned int sectors)
1707 {
1708 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1709 }
1710 
1711 /*
1712  * Return the first bvec that contains integrity data.  Only drivers that are
1713  * limited to a single integrity segment should use this helper.
1714  */
1715 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1716 {
1717 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1718 		return NULL;
1719 	return rq->bio->bi_integrity->bip_vec;
1720 }
1721 
1722 #else /* CONFIG_BLK_DEV_INTEGRITY */
1723 
1724 struct bio;
1725 struct block_device;
1726 struct gendisk;
1727 struct blk_integrity;
1728 
1729 static inline int blk_integrity_rq(struct request *rq)
1730 {
1731 	return 0;
1732 }
1733 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1734 					    struct bio *b)
1735 {
1736 	return 0;
1737 }
1738 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1739 					  struct bio *b,
1740 					  struct scatterlist *s)
1741 {
1742 	return 0;
1743 }
1744 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1745 {
1746 	return NULL;
1747 }
1748 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1749 {
1750 	return NULL;
1751 }
1752 static inline bool
1753 blk_integrity_queue_supports_integrity(struct request_queue *q)
1754 {
1755 	return false;
1756 }
1757 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1758 {
1759 	return 0;
1760 }
1761 static inline void blk_integrity_register(struct gendisk *d,
1762 					 struct blk_integrity *b)
1763 {
1764 }
1765 static inline void blk_integrity_unregister(struct gendisk *d)
1766 {
1767 }
1768 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1769 						    unsigned int segs)
1770 {
1771 }
1772 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1773 {
1774 	return 0;
1775 }
1776 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1777 					  struct request *r1,
1778 					  struct request *r2)
1779 {
1780 	return true;
1781 }
1782 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1783 					   struct request *r,
1784 					   struct bio *b)
1785 {
1786 	return true;
1787 }
1788 
1789 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1790 						   unsigned int sectors)
1791 {
1792 	return 0;
1793 }
1794 
1795 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1796 					       unsigned int sectors)
1797 {
1798 	return 0;
1799 }
1800 
1801 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1802 {
1803 	return NULL;
1804 }
1805 
1806 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1807 
1808 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1809 
1810 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1811 
1812 void blk_ksm_unregister(struct request_queue *q);
1813 
1814 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1815 
1816 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1817 				    struct request_queue *q)
1818 {
1819 	return true;
1820 }
1821 
1822 static inline void blk_ksm_unregister(struct request_queue *q) { }
1823 
1824 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1825 
1826 
1827 struct block_device_operations {
1828 	blk_qc_t (*submit_bio) (struct bio *bio);
1829 	int (*open) (struct block_device *, fmode_t);
1830 	void (*release) (struct gendisk *, fmode_t);
1831 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1832 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1833 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1834 	unsigned int (*check_events) (struct gendisk *disk,
1835 				      unsigned int clearing);
1836 	void (*unlock_native_capacity) (struct gendisk *);
1837 	int (*revalidate_disk) (struct gendisk *);
1838 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1839 	/* this callback is with swap_lock and sometimes page table lock held */
1840 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1841 	int (*report_zones)(struct gendisk *, sector_t sector,
1842 			unsigned int nr_zones, report_zones_cb cb, void *data);
1843 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1844 	struct module *owner;
1845 	const struct pr_ops *pr_ops;
1846 };
1847 
1848 #ifdef CONFIG_COMPAT
1849 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1850 				      unsigned int, unsigned long);
1851 #else
1852 #define blkdev_compat_ptr_ioctl NULL
1853 #endif
1854 
1855 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1856 				 unsigned long);
1857 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1858 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1859 						struct writeback_control *);
1860 
1861 #ifdef CONFIG_BLK_DEV_ZONED
1862 bool blk_req_needs_zone_write_lock(struct request *rq);
1863 bool blk_req_zone_write_trylock(struct request *rq);
1864 void __blk_req_zone_write_lock(struct request *rq);
1865 void __blk_req_zone_write_unlock(struct request *rq);
1866 
1867 static inline void blk_req_zone_write_lock(struct request *rq)
1868 {
1869 	if (blk_req_needs_zone_write_lock(rq))
1870 		__blk_req_zone_write_lock(rq);
1871 }
1872 
1873 static inline void blk_req_zone_write_unlock(struct request *rq)
1874 {
1875 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1876 		__blk_req_zone_write_unlock(rq);
1877 }
1878 
1879 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1880 {
1881 	return rq->q->seq_zones_wlock &&
1882 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1883 }
1884 
1885 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1886 {
1887 	if (!blk_req_needs_zone_write_lock(rq))
1888 		return true;
1889 	return !blk_req_zone_is_write_locked(rq);
1890 }
1891 #else
1892 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1893 {
1894 	return false;
1895 }
1896 
1897 static inline void blk_req_zone_write_lock(struct request *rq)
1898 {
1899 }
1900 
1901 static inline void blk_req_zone_write_unlock(struct request *rq)
1902 {
1903 }
1904 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1905 {
1906 	return false;
1907 }
1908 
1909 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1910 {
1911 	return true;
1912 }
1913 #endif /* CONFIG_BLK_DEV_ZONED */
1914 
1915 static inline void blk_wake_io_task(struct task_struct *waiter)
1916 {
1917 	/*
1918 	 * If we're polling, the task itself is doing the completions. For
1919 	 * that case, we don't need to signal a wakeup, it's enough to just
1920 	 * mark us as RUNNING.
1921 	 */
1922 	if (waiter == current)
1923 		__set_current_state(TASK_RUNNING);
1924 	else
1925 		wake_up_process(waiter);
1926 }
1927 
1928 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1929 		unsigned int op);
1930 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1931 		unsigned long start_time);
1932 
1933 /**
1934  * bio_start_io_acct - start I/O accounting for bio based drivers
1935  * @bio:	bio to start account for
1936  *
1937  * Returns the start time that should be passed back to bio_end_io_acct().
1938  */
1939 static inline unsigned long bio_start_io_acct(struct bio *bio)
1940 {
1941 	return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio));
1942 }
1943 
1944 /**
1945  * bio_end_io_acct - end I/O accounting for bio based drivers
1946  * @bio:	bio to end account for
1947  * @start:	start time returned by bio_start_io_acct()
1948  */
1949 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1950 {
1951 	return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time);
1952 }
1953 
1954 int bdev_read_only(struct block_device *bdev);
1955 int set_blocksize(struct block_device *bdev, int size);
1956 
1957 const char *bdevname(struct block_device *bdev, char *buffer);
1958 struct block_device *lookup_bdev(const char *);
1959 
1960 void blkdev_show(struct seq_file *seqf, off_t offset);
1961 
1962 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1963 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1964 #ifdef CONFIG_BLOCK
1965 #define BLKDEV_MAJOR_MAX	512
1966 #else
1967 #define BLKDEV_MAJOR_MAX	0
1968 #endif
1969 
1970 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder);
1971 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1972 		void *holder);
1973 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1974 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
1975 		void *holder);
1976 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1977 		void *holder);
1978 void blkdev_put(struct block_device *bdev, fmode_t mode);
1979 
1980 struct block_device *I_BDEV(struct inode *inode);
1981 struct block_device *bdget(dev_t);
1982 struct block_device *bdgrab(struct block_device *bdev);
1983 void bdput(struct block_device *);
1984 
1985 #ifdef CONFIG_BLOCK
1986 void invalidate_bdev(struct block_device *bdev);
1987 int sync_blockdev(struct block_device *bdev);
1988 #else
1989 static inline void invalidate_bdev(struct block_device *bdev)
1990 {
1991 }
1992 static inline int sync_blockdev(struct block_device *bdev)
1993 {
1994 	return 0;
1995 }
1996 #endif
1997 int fsync_bdev(struct block_device *bdev);
1998 
1999 struct super_block *freeze_bdev(struct block_device *bdev);
2000 int thaw_bdev(struct block_device *bdev, struct super_block *sb);
2001 
2002 #endif /* _LINUX_BLKDEV_H */
2003