1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 31 struct module; 32 struct scsi_ioctl_command; 33 34 struct request_queue; 35 struct elevator_queue; 36 struct blk_trace; 37 struct request; 38 struct sg_io_hdr; 39 struct bsg_job; 40 struct blkcg_gq; 41 struct blk_flush_queue; 42 struct pr_ops; 43 struct rq_qos; 44 struct blk_queue_stats; 45 struct blk_stat_callback; 46 struct blk_keyslot_manager; 47 48 #define BLKDEV_MIN_RQ 4 49 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 50 51 /* Must be consistent with blk_mq_poll_stats_bkt() */ 52 #define BLK_MQ_POLL_STATS_BKTS 16 53 54 /* Doing classic polling */ 55 #define BLK_MQ_POLL_CLASSIC -1 56 57 /* 58 * Maximum number of blkcg policies allowed to be registered concurrently. 59 * Defined here to simplify include dependency. 60 */ 61 #define BLKCG_MAX_POLS 5 62 63 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 64 65 /* 66 * request flags */ 67 typedef __u32 __bitwise req_flags_t; 68 69 /* elevator knows about this request */ 70 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 71 /* drive already may have started this one */ 72 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 73 /* may not be passed by ioscheduler */ 74 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 75 /* request for flush sequence */ 76 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 77 /* merge of different types, fail separately */ 78 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 79 /* track inflight for MQ */ 80 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 81 /* don't call prep for this one */ 82 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 83 /* set for "ide_preempt" requests and also for requests for which the SCSI 84 "quiesce" state must be ignored. */ 85 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 86 /* vaguely specified driver internal error. Ignored by the block layer */ 87 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 88 /* don't warn about errors */ 89 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 90 /* elevator private data attached */ 91 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 92 /* account into disk and partition IO statistics */ 93 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 94 /* request came from our alloc pool */ 95 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 96 /* runtime pm request */ 97 #define RQF_PM ((__force req_flags_t)(1 << 15)) 98 /* on IO scheduler merge hash */ 99 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 100 /* track IO completion time */ 101 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 102 /* Look at ->special_vec for the actual data payload instead of the 103 bio chain. */ 104 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 105 /* The per-zone write lock is held for this request */ 106 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 107 /* already slept for hybrid poll */ 108 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 109 /* ->timeout has been called, don't expire again */ 110 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 111 112 /* flags that prevent us from merging requests: */ 113 #define RQF_NOMERGE_FLAGS \ 114 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 115 116 /* 117 * Request state for blk-mq. 118 */ 119 enum mq_rq_state { 120 MQ_RQ_IDLE = 0, 121 MQ_RQ_IN_FLIGHT = 1, 122 MQ_RQ_COMPLETE = 2, 123 }; 124 125 /* 126 * Try to put the fields that are referenced together in the same cacheline. 127 * 128 * If you modify this structure, make sure to update blk_rq_init() and 129 * especially blk_mq_rq_ctx_init() to take care of the added fields. 130 */ 131 struct request { 132 struct request_queue *q; 133 struct blk_mq_ctx *mq_ctx; 134 struct blk_mq_hw_ctx *mq_hctx; 135 136 unsigned int cmd_flags; /* op and common flags */ 137 req_flags_t rq_flags; 138 139 int tag; 140 int internal_tag; 141 142 /* the following two fields are internal, NEVER access directly */ 143 unsigned int __data_len; /* total data len */ 144 sector_t __sector; /* sector cursor */ 145 146 struct bio *bio; 147 struct bio *biotail; 148 149 struct list_head queuelist; 150 151 /* 152 * The hash is used inside the scheduler, and killed once the 153 * request reaches the dispatch list. The ipi_list is only used 154 * to queue the request for softirq completion, which is long 155 * after the request has been unhashed (and even removed from 156 * the dispatch list). 157 */ 158 union { 159 struct hlist_node hash; /* merge hash */ 160 struct list_head ipi_list; 161 }; 162 163 /* 164 * The rb_node is only used inside the io scheduler, requests 165 * are pruned when moved to the dispatch queue. So let the 166 * completion_data share space with the rb_node. 167 */ 168 union { 169 struct rb_node rb_node; /* sort/lookup */ 170 struct bio_vec special_vec; 171 void *completion_data; 172 int error_count; /* for legacy drivers, don't use */ 173 }; 174 175 /* 176 * Three pointers are available for the IO schedulers, if they need 177 * more they have to dynamically allocate it. Flush requests are 178 * never put on the IO scheduler. So let the flush fields share 179 * space with the elevator data. 180 */ 181 union { 182 struct { 183 struct io_cq *icq; 184 void *priv[2]; 185 } elv; 186 187 struct { 188 unsigned int seq; 189 struct list_head list; 190 rq_end_io_fn *saved_end_io; 191 } flush; 192 }; 193 194 struct gendisk *rq_disk; 195 struct hd_struct *part; 196 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 197 /* Time that the first bio started allocating this request. */ 198 u64 alloc_time_ns; 199 #endif 200 /* Time that this request was allocated for this IO. */ 201 u64 start_time_ns; 202 /* Time that I/O was submitted to the device. */ 203 u64 io_start_time_ns; 204 205 #ifdef CONFIG_BLK_WBT 206 unsigned short wbt_flags; 207 #endif 208 /* 209 * rq sectors used for blk stats. It has the same value 210 * with blk_rq_sectors(rq), except that it never be zeroed 211 * by completion. 212 */ 213 unsigned short stats_sectors; 214 215 /* 216 * Number of scatter-gather DMA addr+len pairs after 217 * physical address coalescing is performed. 218 */ 219 unsigned short nr_phys_segments; 220 221 #if defined(CONFIG_BLK_DEV_INTEGRITY) 222 unsigned short nr_integrity_segments; 223 #endif 224 225 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 226 struct bio_crypt_ctx *crypt_ctx; 227 struct blk_ksm_keyslot *crypt_keyslot; 228 #endif 229 230 unsigned short write_hint; 231 unsigned short ioprio; 232 233 enum mq_rq_state state; 234 refcount_t ref; 235 236 unsigned int timeout; 237 unsigned long deadline; 238 239 union { 240 struct __call_single_data csd; 241 u64 fifo_time; 242 }; 243 244 /* 245 * completion callback. 246 */ 247 rq_end_io_fn *end_io; 248 void *end_io_data; 249 }; 250 251 static inline bool blk_op_is_scsi(unsigned int op) 252 { 253 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 254 } 255 256 static inline bool blk_op_is_private(unsigned int op) 257 { 258 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 259 } 260 261 static inline bool blk_rq_is_scsi(struct request *rq) 262 { 263 return blk_op_is_scsi(req_op(rq)); 264 } 265 266 static inline bool blk_rq_is_private(struct request *rq) 267 { 268 return blk_op_is_private(req_op(rq)); 269 } 270 271 static inline bool blk_rq_is_passthrough(struct request *rq) 272 { 273 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 274 } 275 276 static inline bool bio_is_passthrough(struct bio *bio) 277 { 278 unsigned op = bio_op(bio); 279 280 return blk_op_is_scsi(op) || blk_op_is_private(op); 281 } 282 283 static inline unsigned short req_get_ioprio(struct request *req) 284 { 285 return req->ioprio; 286 } 287 288 #include <linux/elevator.h> 289 290 struct blk_queue_ctx; 291 292 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 293 294 struct bio_vec; 295 296 enum blk_eh_timer_return { 297 BLK_EH_DONE, /* drivers has completed the command */ 298 BLK_EH_RESET_TIMER, /* reset timer and try again */ 299 }; 300 301 enum blk_queue_state { 302 Queue_down, 303 Queue_up, 304 }; 305 306 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 307 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 308 309 #define BLK_SCSI_MAX_CMDS (256) 310 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 311 312 /* 313 * Zoned block device models (zoned limit). 314 */ 315 enum blk_zoned_model { 316 BLK_ZONED_NONE, /* Regular block device */ 317 BLK_ZONED_HA, /* Host-aware zoned block device */ 318 BLK_ZONED_HM, /* Host-managed zoned block device */ 319 }; 320 321 struct queue_limits { 322 unsigned long bounce_pfn; 323 unsigned long seg_boundary_mask; 324 unsigned long virt_boundary_mask; 325 326 unsigned int max_hw_sectors; 327 unsigned int max_dev_sectors; 328 unsigned int chunk_sectors; 329 unsigned int max_sectors; 330 unsigned int max_segment_size; 331 unsigned int physical_block_size; 332 unsigned int logical_block_size; 333 unsigned int alignment_offset; 334 unsigned int io_min; 335 unsigned int io_opt; 336 unsigned int max_discard_sectors; 337 unsigned int max_hw_discard_sectors; 338 unsigned int max_write_same_sectors; 339 unsigned int max_write_zeroes_sectors; 340 unsigned int max_zone_append_sectors; 341 unsigned int discard_granularity; 342 unsigned int discard_alignment; 343 344 unsigned short max_segments; 345 unsigned short max_integrity_segments; 346 unsigned short max_discard_segments; 347 348 unsigned char misaligned; 349 unsigned char discard_misaligned; 350 unsigned char raid_partial_stripes_expensive; 351 enum blk_zoned_model zoned; 352 }; 353 354 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 355 void *data); 356 357 #ifdef CONFIG_BLK_DEV_ZONED 358 359 #define BLK_ALL_ZONES ((unsigned int)-1) 360 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 361 unsigned int nr_zones, report_zones_cb cb, void *data); 362 unsigned int blkdev_nr_zones(struct gendisk *disk); 363 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 364 sector_t sectors, sector_t nr_sectors, 365 gfp_t gfp_mask); 366 int blk_revalidate_disk_zones(struct gendisk *disk, 367 void (*update_driver_data)(struct gendisk *disk)); 368 369 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 370 unsigned int cmd, unsigned long arg); 371 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 372 unsigned int cmd, unsigned long arg); 373 374 #else /* CONFIG_BLK_DEV_ZONED */ 375 376 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 377 { 378 return 0; 379 } 380 381 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 382 fmode_t mode, unsigned int cmd, 383 unsigned long arg) 384 { 385 return -ENOTTY; 386 } 387 388 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 389 fmode_t mode, unsigned int cmd, 390 unsigned long arg) 391 { 392 return -ENOTTY; 393 } 394 395 #endif /* CONFIG_BLK_DEV_ZONED */ 396 397 struct request_queue { 398 struct request *last_merge; 399 struct elevator_queue *elevator; 400 401 struct blk_queue_stats *stats; 402 struct rq_qos *rq_qos; 403 404 make_request_fn *make_request_fn; 405 406 const struct blk_mq_ops *mq_ops; 407 408 /* sw queues */ 409 struct blk_mq_ctx __percpu *queue_ctx; 410 411 unsigned int queue_depth; 412 413 /* hw dispatch queues */ 414 struct blk_mq_hw_ctx **queue_hw_ctx; 415 unsigned int nr_hw_queues; 416 417 struct backing_dev_info *backing_dev_info; 418 419 /* 420 * The queue owner gets to use this for whatever they like. 421 * ll_rw_blk doesn't touch it. 422 */ 423 void *queuedata; 424 425 /* 426 * various queue flags, see QUEUE_* below 427 */ 428 unsigned long queue_flags; 429 /* 430 * Number of contexts that have called blk_set_pm_only(). If this 431 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 432 * processed. 433 */ 434 atomic_t pm_only; 435 436 /* 437 * ida allocated id for this queue. Used to index queues from 438 * ioctx. 439 */ 440 int id; 441 442 /* 443 * queue needs bounce pages for pages above this limit 444 */ 445 gfp_t bounce_gfp; 446 447 spinlock_t queue_lock; 448 449 /* 450 * queue kobject 451 */ 452 struct kobject kobj; 453 454 /* 455 * mq queue kobject 456 */ 457 struct kobject *mq_kobj; 458 459 #ifdef CONFIG_BLK_DEV_INTEGRITY 460 struct blk_integrity integrity; 461 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 462 463 #ifdef CONFIG_PM 464 struct device *dev; 465 int rpm_status; 466 unsigned int nr_pending; 467 #endif 468 469 /* 470 * queue settings 471 */ 472 unsigned long nr_requests; /* Max # of requests */ 473 474 unsigned int dma_pad_mask; 475 unsigned int dma_alignment; 476 477 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 478 /* Inline crypto capabilities */ 479 struct blk_keyslot_manager *ksm; 480 #endif 481 482 unsigned int rq_timeout; 483 int poll_nsec; 484 485 struct blk_stat_callback *poll_cb; 486 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 487 488 struct timer_list timeout; 489 struct work_struct timeout_work; 490 491 struct list_head icq_list; 492 #ifdef CONFIG_BLK_CGROUP 493 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 494 struct blkcg_gq *root_blkg; 495 struct list_head blkg_list; 496 #endif 497 498 struct queue_limits limits; 499 500 unsigned int required_elevator_features; 501 502 #ifdef CONFIG_BLK_DEV_ZONED 503 /* 504 * Zoned block device information for request dispatch control. 505 * nr_zones is the total number of zones of the device. This is always 506 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 507 * bits which indicates if a zone is conventional (bit set) or 508 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 509 * bits which indicates if a zone is write locked, that is, if a write 510 * request targeting the zone was dispatched. All three fields are 511 * initialized by the low level device driver (e.g. scsi/sd.c). 512 * Stacking drivers (device mappers) may or may not initialize 513 * these fields. 514 * 515 * Reads of this information must be protected with blk_queue_enter() / 516 * blk_queue_exit(). Modifying this information is only allowed while 517 * no requests are being processed. See also blk_mq_freeze_queue() and 518 * blk_mq_unfreeze_queue(). 519 */ 520 unsigned int nr_zones; 521 unsigned long *conv_zones_bitmap; 522 unsigned long *seq_zones_wlock; 523 #endif /* CONFIG_BLK_DEV_ZONED */ 524 525 /* 526 * sg stuff 527 */ 528 unsigned int sg_timeout; 529 unsigned int sg_reserved_size; 530 int node; 531 #ifdef CONFIG_BLK_DEV_IO_TRACE 532 struct blk_trace __rcu *blk_trace; 533 struct mutex blk_trace_mutex; 534 #endif 535 /* 536 * for flush operations 537 */ 538 struct blk_flush_queue *fq; 539 540 struct list_head requeue_list; 541 spinlock_t requeue_lock; 542 struct delayed_work requeue_work; 543 544 struct mutex sysfs_lock; 545 struct mutex sysfs_dir_lock; 546 547 /* 548 * for reusing dead hctx instance in case of updating 549 * nr_hw_queues 550 */ 551 struct list_head unused_hctx_list; 552 spinlock_t unused_hctx_lock; 553 554 int mq_freeze_depth; 555 556 #if defined(CONFIG_BLK_DEV_BSG) 557 struct bsg_class_device bsg_dev; 558 #endif 559 560 #ifdef CONFIG_BLK_DEV_THROTTLING 561 /* Throttle data */ 562 struct throtl_data *td; 563 #endif 564 struct rcu_head rcu_head; 565 wait_queue_head_t mq_freeze_wq; 566 /* 567 * Protect concurrent access to q_usage_counter by 568 * percpu_ref_kill() and percpu_ref_reinit(). 569 */ 570 struct mutex mq_freeze_lock; 571 struct percpu_ref q_usage_counter; 572 573 struct blk_mq_tag_set *tag_set; 574 struct list_head tag_set_list; 575 struct bio_set bio_split; 576 577 #ifdef CONFIG_BLK_DEBUG_FS 578 struct dentry *debugfs_dir; 579 struct dentry *sched_debugfs_dir; 580 struct dentry *rqos_debugfs_dir; 581 #endif 582 583 bool mq_sysfs_init_done; 584 585 size_t cmd_size; 586 587 struct work_struct release_work; 588 589 #define BLK_MAX_WRITE_HINTS 5 590 u64 write_hints[BLK_MAX_WRITE_HINTS]; 591 }; 592 593 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 594 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 595 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 596 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 597 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 598 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 599 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 600 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 601 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 602 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 603 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 604 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 605 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 606 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 607 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 608 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 609 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 610 #define QUEUE_FLAG_WC 17 /* Write back caching */ 611 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 612 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 613 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 614 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 615 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 616 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 617 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 618 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 619 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 620 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 621 622 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 623 (1 << QUEUE_FLAG_SAME_COMP)) 624 625 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 626 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 627 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 628 629 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 630 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 631 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 632 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 633 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 634 #define blk_queue_noxmerges(q) \ 635 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 636 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 637 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 638 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 639 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 640 #define blk_queue_zone_resetall(q) \ 641 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 642 #define blk_queue_secure_erase(q) \ 643 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 644 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 645 #define blk_queue_scsi_passthrough(q) \ 646 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 647 #define blk_queue_pci_p2pdma(q) \ 648 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 649 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 650 #define blk_queue_rq_alloc_time(q) \ 651 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 652 #else 653 #define blk_queue_rq_alloc_time(q) false 654 #endif 655 656 #define blk_noretry_request(rq) \ 657 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 658 REQ_FAILFAST_DRIVER)) 659 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 660 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 661 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 662 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 663 664 extern void blk_set_pm_only(struct request_queue *q); 665 extern void blk_clear_pm_only(struct request_queue *q); 666 667 static inline bool blk_account_rq(struct request *rq) 668 { 669 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 670 } 671 672 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 673 674 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 675 676 #define rq_dma_dir(rq) \ 677 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 678 679 #define dma_map_bvec(dev, bv, dir, attrs) \ 680 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 681 (dir), (attrs)) 682 683 static inline bool queue_is_mq(struct request_queue *q) 684 { 685 return q->mq_ops; 686 } 687 688 static inline enum blk_zoned_model 689 blk_queue_zoned_model(struct request_queue *q) 690 { 691 return q->limits.zoned; 692 } 693 694 static inline bool blk_queue_is_zoned(struct request_queue *q) 695 { 696 switch (blk_queue_zoned_model(q)) { 697 case BLK_ZONED_HA: 698 case BLK_ZONED_HM: 699 return true; 700 default: 701 return false; 702 } 703 } 704 705 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 706 { 707 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 708 } 709 710 #ifdef CONFIG_BLK_DEV_ZONED 711 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 712 { 713 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 714 } 715 716 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 717 sector_t sector) 718 { 719 if (!blk_queue_is_zoned(q)) 720 return 0; 721 return sector >> ilog2(q->limits.chunk_sectors); 722 } 723 724 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 725 sector_t sector) 726 { 727 if (!blk_queue_is_zoned(q)) 728 return false; 729 if (!q->conv_zones_bitmap) 730 return true; 731 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 732 } 733 #else /* CONFIG_BLK_DEV_ZONED */ 734 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 735 { 736 return 0; 737 } 738 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 739 sector_t sector) 740 { 741 return false; 742 } 743 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 744 sector_t sector) 745 { 746 return 0; 747 } 748 #endif /* CONFIG_BLK_DEV_ZONED */ 749 750 static inline bool rq_is_sync(struct request *rq) 751 { 752 return op_is_sync(rq->cmd_flags); 753 } 754 755 static inline bool rq_mergeable(struct request *rq) 756 { 757 if (blk_rq_is_passthrough(rq)) 758 return false; 759 760 if (req_op(rq) == REQ_OP_FLUSH) 761 return false; 762 763 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 764 return false; 765 766 if (req_op(rq) == REQ_OP_ZONE_APPEND) 767 return false; 768 769 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 770 return false; 771 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 772 return false; 773 774 return true; 775 } 776 777 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 778 { 779 if (bio_page(a) == bio_page(b) && 780 bio_offset(a) == bio_offset(b)) 781 return true; 782 783 return false; 784 } 785 786 static inline unsigned int blk_queue_depth(struct request_queue *q) 787 { 788 if (q->queue_depth) 789 return q->queue_depth; 790 791 return q->nr_requests; 792 } 793 794 extern unsigned long blk_max_low_pfn, blk_max_pfn; 795 796 /* 797 * standard bounce addresses: 798 * 799 * BLK_BOUNCE_HIGH : bounce all highmem pages 800 * BLK_BOUNCE_ANY : don't bounce anything 801 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 802 */ 803 804 #if BITS_PER_LONG == 32 805 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 806 #else 807 #define BLK_BOUNCE_HIGH -1ULL 808 #endif 809 #define BLK_BOUNCE_ANY (-1ULL) 810 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 811 812 /* 813 * default timeout for SG_IO if none specified 814 */ 815 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 816 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 817 818 struct rq_map_data { 819 struct page **pages; 820 int page_order; 821 int nr_entries; 822 unsigned long offset; 823 int null_mapped; 824 int from_user; 825 }; 826 827 struct req_iterator { 828 struct bvec_iter iter; 829 struct bio *bio; 830 }; 831 832 /* This should not be used directly - use rq_for_each_segment */ 833 #define for_each_bio(_bio) \ 834 for (; _bio; _bio = _bio->bi_next) 835 #define __rq_for_each_bio(_bio, rq) \ 836 if ((rq->bio)) \ 837 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 838 839 #define rq_for_each_segment(bvl, _rq, _iter) \ 840 __rq_for_each_bio(_iter.bio, _rq) \ 841 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 842 843 #define rq_for_each_bvec(bvl, _rq, _iter) \ 844 __rq_for_each_bio(_iter.bio, _rq) \ 845 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 846 847 #define rq_iter_last(bvec, _iter) \ 848 (_iter.bio->bi_next == NULL && \ 849 bio_iter_last(bvec, _iter.iter)) 850 851 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 852 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 853 #endif 854 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 855 extern void rq_flush_dcache_pages(struct request *rq); 856 #else 857 static inline void rq_flush_dcache_pages(struct request *rq) 858 { 859 } 860 #endif 861 862 extern int blk_register_queue(struct gendisk *disk); 863 extern void blk_unregister_queue(struct gendisk *disk); 864 extern blk_qc_t generic_make_request(struct bio *bio); 865 extern blk_qc_t direct_make_request(struct bio *bio); 866 extern void blk_rq_init(struct request_queue *q, struct request *rq); 867 extern void blk_put_request(struct request *); 868 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 869 blk_mq_req_flags_t flags); 870 extern int blk_lld_busy(struct request_queue *q); 871 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 872 struct bio_set *bs, gfp_t gfp_mask, 873 int (*bio_ctr)(struct bio *, struct bio *, void *), 874 void *data); 875 extern void blk_rq_unprep_clone(struct request *rq); 876 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 877 struct request *rq); 878 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 879 extern void blk_queue_split(struct request_queue *, struct bio **); 880 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 881 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 882 unsigned int, void __user *); 883 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 884 unsigned int, void __user *); 885 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 886 struct scsi_ioctl_command __user *); 887 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 888 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 889 890 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 891 extern void blk_queue_exit(struct request_queue *q); 892 extern void blk_sync_queue(struct request_queue *q); 893 extern int blk_rq_map_user(struct request_queue *, struct request *, 894 struct rq_map_data *, void __user *, unsigned long, 895 gfp_t); 896 extern int blk_rq_unmap_user(struct bio *); 897 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 898 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 899 struct rq_map_data *, const struct iov_iter *, 900 gfp_t); 901 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 902 struct request *, int); 903 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 904 struct request *, int, rq_end_io_fn *); 905 906 /* Helper to convert REQ_OP_XXX to its string format XXX */ 907 extern const char *blk_op_str(unsigned int op); 908 909 int blk_status_to_errno(blk_status_t status); 910 blk_status_t errno_to_blk_status(int errno); 911 912 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 913 914 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 915 { 916 return bdev->bd_disk->queue; /* this is never NULL */ 917 } 918 919 /* 920 * The basic unit of block I/O is a sector. It is used in a number of contexts 921 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 922 * bytes. Variables of type sector_t represent an offset or size that is a 923 * multiple of 512 bytes. Hence these two constants. 924 */ 925 #ifndef SECTOR_SHIFT 926 #define SECTOR_SHIFT 9 927 #endif 928 #ifndef SECTOR_SIZE 929 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 930 #endif 931 932 /* 933 * blk_rq_pos() : the current sector 934 * blk_rq_bytes() : bytes left in the entire request 935 * blk_rq_cur_bytes() : bytes left in the current segment 936 * blk_rq_err_bytes() : bytes left till the next error boundary 937 * blk_rq_sectors() : sectors left in the entire request 938 * blk_rq_cur_sectors() : sectors left in the current segment 939 * blk_rq_stats_sectors() : sectors of the entire request used for stats 940 */ 941 static inline sector_t blk_rq_pos(const struct request *rq) 942 { 943 return rq->__sector; 944 } 945 946 static inline unsigned int blk_rq_bytes(const struct request *rq) 947 { 948 return rq->__data_len; 949 } 950 951 static inline int blk_rq_cur_bytes(const struct request *rq) 952 { 953 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 954 } 955 956 extern unsigned int blk_rq_err_bytes(const struct request *rq); 957 958 static inline unsigned int blk_rq_sectors(const struct request *rq) 959 { 960 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 961 } 962 963 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 964 { 965 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 966 } 967 968 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 969 { 970 return rq->stats_sectors; 971 } 972 973 #ifdef CONFIG_BLK_DEV_ZONED 974 975 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 976 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 977 978 static inline unsigned int blk_rq_zone_no(struct request *rq) 979 { 980 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 981 } 982 983 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 984 { 985 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 986 } 987 #endif /* CONFIG_BLK_DEV_ZONED */ 988 989 /* 990 * Some commands like WRITE SAME have a payload or data transfer size which 991 * is different from the size of the request. Any driver that supports such 992 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 993 * calculate the data transfer size. 994 */ 995 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 996 { 997 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 998 return rq->special_vec.bv_len; 999 return blk_rq_bytes(rq); 1000 } 1001 1002 /* 1003 * Return the first full biovec in the request. The caller needs to check that 1004 * there are any bvecs before calling this helper. 1005 */ 1006 static inline struct bio_vec req_bvec(struct request *rq) 1007 { 1008 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1009 return rq->special_vec; 1010 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1011 } 1012 1013 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1014 int op) 1015 { 1016 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1017 return min(q->limits.max_discard_sectors, 1018 UINT_MAX >> SECTOR_SHIFT); 1019 1020 if (unlikely(op == REQ_OP_WRITE_SAME)) 1021 return q->limits.max_write_same_sectors; 1022 1023 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1024 return q->limits.max_write_zeroes_sectors; 1025 1026 return q->limits.max_sectors; 1027 } 1028 1029 /* 1030 * Return maximum size of a request at given offset. Only valid for 1031 * file system requests. 1032 */ 1033 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1034 sector_t offset) 1035 { 1036 if (!q->limits.chunk_sectors) 1037 return q->limits.max_sectors; 1038 1039 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1040 (offset & (q->limits.chunk_sectors - 1)))); 1041 } 1042 1043 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1044 sector_t offset) 1045 { 1046 struct request_queue *q = rq->q; 1047 1048 if (blk_rq_is_passthrough(rq)) 1049 return q->limits.max_hw_sectors; 1050 1051 if (!q->limits.chunk_sectors || 1052 req_op(rq) == REQ_OP_DISCARD || 1053 req_op(rq) == REQ_OP_SECURE_ERASE) 1054 return blk_queue_get_max_sectors(q, req_op(rq)); 1055 1056 return min(blk_max_size_offset(q, offset), 1057 blk_queue_get_max_sectors(q, req_op(rq))); 1058 } 1059 1060 static inline unsigned int blk_rq_count_bios(struct request *rq) 1061 { 1062 unsigned int nr_bios = 0; 1063 struct bio *bio; 1064 1065 __rq_for_each_bio(bio, rq) 1066 nr_bios++; 1067 1068 return nr_bios; 1069 } 1070 1071 void blk_steal_bios(struct bio_list *list, struct request *rq); 1072 1073 /* 1074 * Request completion related functions. 1075 * 1076 * blk_update_request() completes given number of bytes and updates 1077 * the request without completing it. 1078 */ 1079 extern bool blk_update_request(struct request *rq, blk_status_t error, 1080 unsigned int nr_bytes); 1081 1082 extern void __blk_complete_request(struct request *); 1083 extern void blk_abort_request(struct request *); 1084 1085 /* 1086 * Access functions for manipulating queue properties 1087 */ 1088 extern void blk_cleanup_queue(struct request_queue *); 1089 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1090 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1091 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1092 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1093 extern void blk_queue_max_discard_segments(struct request_queue *, 1094 unsigned short); 1095 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1096 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1097 unsigned int max_discard_sectors); 1098 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1099 unsigned int max_write_same_sectors); 1100 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1101 unsigned int max_write_same_sectors); 1102 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1103 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1104 unsigned int max_zone_append_sectors); 1105 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1106 extern void blk_queue_alignment_offset(struct request_queue *q, 1107 unsigned int alignment); 1108 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1109 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1110 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1111 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1112 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1113 extern void blk_set_default_limits(struct queue_limits *lim); 1114 extern void blk_set_stacking_limits(struct queue_limits *lim); 1115 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1116 sector_t offset); 1117 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1118 sector_t offset); 1119 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1120 sector_t offset); 1121 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1122 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1123 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1124 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1125 extern void blk_queue_dma_alignment(struct request_queue *, int); 1126 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1127 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1128 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1129 extern void blk_queue_required_elevator_features(struct request_queue *q, 1130 unsigned int features); 1131 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1132 struct device *dev); 1133 1134 /* 1135 * Number of physical segments as sent to the device. 1136 * 1137 * Normally this is the number of discontiguous data segments sent by the 1138 * submitter. But for data-less command like discard we might have no 1139 * actual data segments submitted, but the driver might have to add it's 1140 * own special payload. In that case we still return 1 here so that this 1141 * special payload will be mapped. 1142 */ 1143 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1144 { 1145 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1146 return 1; 1147 return rq->nr_phys_segments; 1148 } 1149 1150 /* 1151 * Number of discard segments (or ranges) the driver needs to fill in. 1152 * Each discard bio merged into a request is counted as one segment. 1153 */ 1154 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1155 { 1156 return max_t(unsigned short, rq->nr_phys_segments, 1); 1157 } 1158 1159 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1160 struct scatterlist *sglist, struct scatterlist **last_sg); 1161 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1162 struct scatterlist *sglist) 1163 { 1164 struct scatterlist *last_sg = NULL; 1165 1166 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1167 } 1168 extern void blk_dump_rq_flags(struct request *, char *); 1169 extern long nr_blockdev_pages(void); 1170 1171 bool __must_check blk_get_queue(struct request_queue *); 1172 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id); 1173 extern void blk_put_queue(struct request_queue *); 1174 extern void blk_set_queue_dying(struct request_queue *); 1175 1176 /* 1177 * blk_plug permits building a queue of related requests by holding the I/O 1178 * fragments for a short period. This allows merging of sequential requests 1179 * into single larger request. As the requests are moved from a per-task list to 1180 * the device's request_queue in a batch, this results in improved scalability 1181 * as the lock contention for request_queue lock is reduced. 1182 * 1183 * It is ok not to disable preemption when adding the request to the plug list 1184 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1185 * the plug list when the task sleeps by itself. For details, please see 1186 * schedule() where blk_schedule_flush_plug() is called. 1187 */ 1188 struct blk_plug { 1189 struct list_head mq_list; /* blk-mq requests */ 1190 struct list_head cb_list; /* md requires an unplug callback */ 1191 unsigned short rq_count; 1192 bool multiple_queues; 1193 }; 1194 #define BLK_MAX_REQUEST_COUNT 16 1195 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1196 1197 struct blk_plug_cb; 1198 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1199 struct blk_plug_cb { 1200 struct list_head list; 1201 blk_plug_cb_fn callback; 1202 void *data; 1203 }; 1204 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1205 void *data, int size); 1206 extern void blk_start_plug(struct blk_plug *); 1207 extern void blk_finish_plug(struct blk_plug *); 1208 extern void blk_flush_plug_list(struct blk_plug *, bool); 1209 1210 static inline void blk_flush_plug(struct task_struct *tsk) 1211 { 1212 struct blk_plug *plug = tsk->plug; 1213 1214 if (plug) 1215 blk_flush_plug_list(plug, false); 1216 } 1217 1218 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1219 { 1220 struct blk_plug *plug = tsk->plug; 1221 1222 if (plug) 1223 blk_flush_plug_list(plug, true); 1224 } 1225 1226 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1227 { 1228 struct blk_plug *plug = tsk->plug; 1229 1230 return plug && 1231 (!list_empty(&plug->mq_list) || 1232 !list_empty(&plug->cb_list)); 1233 } 1234 1235 extern void blk_io_schedule(void); 1236 1237 int blkdev_issue_flush(struct block_device *, gfp_t); 1238 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1239 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1240 1241 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1242 1243 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1244 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1245 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1246 sector_t nr_sects, gfp_t gfp_mask, int flags, 1247 struct bio **biop); 1248 1249 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1250 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1251 1252 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1253 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1254 unsigned flags); 1255 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1256 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1257 1258 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1259 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1260 { 1261 return blkdev_issue_discard(sb->s_bdev, 1262 block << (sb->s_blocksize_bits - 1263 SECTOR_SHIFT), 1264 nr_blocks << (sb->s_blocksize_bits - 1265 SECTOR_SHIFT), 1266 gfp_mask, flags); 1267 } 1268 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1269 sector_t nr_blocks, gfp_t gfp_mask) 1270 { 1271 return blkdev_issue_zeroout(sb->s_bdev, 1272 block << (sb->s_blocksize_bits - 1273 SECTOR_SHIFT), 1274 nr_blocks << (sb->s_blocksize_bits - 1275 SECTOR_SHIFT), 1276 gfp_mask, 0); 1277 } 1278 1279 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1280 1281 enum blk_default_limits { 1282 BLK_MAX_SEGMENTS = 128, 1283 BLK_SAFE_MAX_SECTORS = 255, 1284 BLK_DEF_MAX_SECTORS = 2560, 1285 BLK_MAX_SEGMENT_SIZE = 65536, 1286 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1287 }; 1288 1289 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1290 { 1291 return q->limits.seg_boundary_mask; 1292 } 1293 1294 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1295 { 1296 return q->limits.virt_boundary_mask; 1297 } 1298 1299 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1300 { 1301 return q->limits.max_sectors; 1302 } 1303 1304 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1305 { 1306 return q->limits.max_hw_sectors; 1307 } 1308 1309 static inline unsigned short queue_max_segments(const struct request_queue *q) 1310 { 1311 return q->limits.max_segments; 1312 } 1313 1314 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1315 { 1316 return q->limits.max_discard_segments; 1317 } 1318 1319 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1320 { 1321 return q->limits.max_segment_size; 1322 } 1323 1324 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1325 { 1326 return q->limits.max_zone_append_sectors; 1327 } 1328 1329 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1330 { 1331 int retval = 512; 1332 1333 if (q && q->limits.logical_block_size) 1334 retval = q->limits.logical_block_size; 1335 1336 return retval; 1337 } 1338 1339 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1340 { 1341 return queue_logical_block_size(bdev_get_queue(bdev)); 1342 } 1343 1344 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1345 { 1346 return q->limits.physical_block_size; 1347 } 1348 1349 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1350 { 1351 return queue_physical_block_size(bdev_get_queue(bdev)); 1352 } 1353 1354 static inline unsigned int queue_io_min(const struct request_queue *q) 1355 { 1356 return q->limits.io_min; 1357 } 1358 1359 static inline int bdev_io_min(struct block_device *bdev) 1360 { 1361 return queue_io_min(bdev_get_queue(bdev)); 1362 } 1363 1364 static inline unsigned int queue_io_opt(const struct request_queue *q) 1365 { 1366 return q->limits.io_opt; 1367 } 1368 1369 static inline int bdev_io_opt(struct block_device *bdev) 1370 { 1371 return queue_io_opt(bdev_get_queue(bdev)); 1372 } 1373 1374 static inline int queue_alignment_offset(const struct request_queue *q) 1375 { 1376 if (q->limits.misaligned) 1377 return -1; 1378 1379 return q->limits.alignment_offset; 1380 } 1381 1382 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1383 { 1384 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1385 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1386 << SECTOR_SHIFT; 1387 1388 return (granularity + lim->alignment_offset - alignment) % granularity; 1389 } 1390 1391 static inline int bdev_alignment_offset(struct block_device *bdev) 1392 { 1393 struct request_queue *q = bdev_get_queue(bdev); 1394 1395 if (q->limits.misaligned) 1396 return -1; 1397 1398 if (bdev != bdev->bd_contains) 1399 return bdev->bd_part->alignment_offset; 1400 1401 return q->limits.alignment_offset; 1402 } 1403 1404 static inline int queue_discard_alignment(const struct request_queue *q) 1405 { 1406 if (q->limits.discard_misaligned) 1407 return -1; 1408 1409 return q->limits.discard_alignment; 1410 } 1411 1412 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1413 { 1414 unsigned int alignment, granularity, offset; 1415 1416 if (!lim->max_discard_sectors) 1417 return 0; 1418 1419 /* Why are these in bytes, not sectors? */ 1420 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1421 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1422 if (!granularity) 1423 return 0; 1424 1425 /* Offset of the partition start in 'granularity' sectors */ 1426 offset = sector_div(sector, granularity); 1427 1428 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1429 offset = (granularity + alignment - offset) % granularity; 1430 1431 /* Turn it back into bytes, gaah */ 1432 return offset << SECTOR_SHIFT; 1433 } 1434 1435 static inline int bdev_discard_alignment(struct block_device *bdev) 1436 { 1437 struct request_queue *q = bdev_get_queue(bdev); 1438 1439 if (bdev != bdev->bd_contains) 1440 return bdev->bd_part->discard_alignment; 1441 1442 return q->limits.discard_alignment; 1443 } 1444 1445 static inline unsigned int bdev_write_same(struct block_device *bdev) 1446 { 1447 struct request_queue *q = bdev_get_queue(bdev); 1448 1449 if (q) 1450 return q->limits.max_write_same_sectors; 1451 1452 return 0; 1453 } 1454 1455 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1456 { 1457 struct request_queue *q = bdev_get_queue(bdev); 1458 1459 if (q) 1460 return q->limits.max_write_zeroes_sectors; 1461 1462 return 0; 1463 } 1464 1465 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1466 { 1467 struct request_queue *q = bdev_get_queue(bdev); 1468 1469 if (q) 1470 return blk_queue_zoned_model(q); 1471 1472 return BLK_ZONED_NONE; 1473 } 1474 1475 static inline bool bdev_is_zoned(struct block_device *bdev) 1476 { 1477 struct request_queue *q = bdev_get_queue(bdev); 1478 1479 if (q) 1480 return blk_queue_is_zoned(q); 1481 1482 return false; 1483 } 1484 1485 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1486 { 1487 struct request_queue *q = bdev_get_queue(bdev); 1488 1489 if (q) 1490 return blk_queue_zone_sectors(q); 1491 return 0; 1492 } 1493 1494 static inline int queue_dma_alignment(const struct request_queue *q) 1495 { 1496 return q ? q->dma_alignment : 511; 1497 } 1498 1499 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1500 unsigned int len) 1501 { 1502 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1503 return !(addr & alignment) && !(len & alignment); 1504 } 1505 1506 /* assumes size > 256 */ 1507 static inline unsigned int blksize_bits(unsigned int size) 1508 { 1509 unsigned int bits = 8; 1510 do { 1511 bits++; 1512 size >>= 1; 1513 } while (size > 256); 1514 return bits; 1515 } 1516 1517 static inline unsigned int block_size(struct block_device *bdev) 1518 { 1519 return bdev->bd_block_size; 1520 } 1521 1522 int kblockd_schedule_work(struct work_struct *work); 1523 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1524 1525 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1526 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1527 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1528 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1529 1530 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1531 1532 enum blk_integrity_flags { 1533 BLK_INTEGRITY_VERIFY = 1 << 0, 1534 BLK_INTEGRITY_GENERATE = 1 << 1, 1535 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1536 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1537 }; 1538 1539 struct blk_integrity_iter { 1540 void *prot_buf; 1541 void *data_buf; 1542 sector_t seed; 1543 unsigned int data_size; 1544 unsigned short interval; 1545 const char *disk_name; 1546 }; 1547 1548 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1549 typedef void (integrity_prepare_fn) (struct request *); 1550 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1551 1552 struct blk_integrity_profile { 1553 integrity_processing_fn *generate_fn; 1554 integrity_processing_fn *verify_fn; 1555 integrity_prepare_fn *prepare_fn; 1556 integrity_complete_fn *complete_fn; 1557 const char *name; 1558 }; 1559 1560 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1561 extern void blk_integrity_unregister(struct gendisk *); 1562 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1563 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1564 struct scatterlist *); 1565 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1566 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1567 struct request *); 1568 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1569 struct bio *); 1570 1571 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1572 { 1573 struct blk_integrity *bi = &disk->queue->integrity; 1574 1575 if (!bi->profile) 1576 return NULL; 1577 1578 return bi; 1579 } 1580 1581 static inline 1582 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1583 { 1584 return blk_get_integrity(bdev->bd_disk); 1585 } 1586 1587 static inline bool 1588 blk_integrity_queue_supports_integrity(struct request_queue *q) 1589 { 1590 return q->integrity.profile; 1591 } 1592 1593 static inline bool blk_integrity_rq(struct request *rq) 1594 { 1595 return rq->cmd_flags & REQ_INTEGRITY; 1596 } 1597 1598 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1599 unsigned int segs) 1600 { 1601 q->limits.max_integrity_segments = segs; 1602 } 1603 1604 static inline unsigned short 1605 queue_max_integrity_segments(const struct request_queue *q) 1606 { 1607 return q->limits.max_integrity_segments; 1608 } 1609 1610 /** 1611 * bio_integrity_intervals - Return number of integrity intervals for a bio 1612 * @bi: blk_integrity profile for device 1613 * @sectors: Size of the bio in 512-byte sectors 1614 * 1615 * Description: The block layer calculates everything in 512 byte 1616 * sectors but integrity metadata is done in terms of the data integrity 1617 * interval size of the storage device. Convert the block layer sectors 1618 * to the appropriate number of integrity intervals. 1619 */ 1620 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1621 unsigned int sectors) 1622 { 1623 return sectors >> (bi->interval_exp - 9); 1624 } 1625 1626 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1627 unsigned int sectors) 1628 { 1629 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1630 } 1631 1632 /* 1633 * Return the first bvec that contains integrity data. Only drivers that are 1634 * limited to a single integrity segment should use this helper. 1635 */ 1636 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1637 { 1638 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1639 return NULL; 1640 return rq->bio->bi_integrity->bip_vec; 1641 } 1642 1643 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1644 1645 struct bio; 1646 struct block_device; 1647 struct gendisk; 1648 struct blk_integrity; 1649 1650 static inline int blk_integrity_rq(struct request *rq) 1651 { 1652 return 0; 1653 } 1654 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1655 struct bio *b) 1656 { 1657 return 0; 1658 } 1659 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1660 struct bio *b, 1661 struct scatterlist *s) 1662 { 1663 return 0; 1664 } 1665 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1666 { 1667 return NULL; 1668 } 1669 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1670 { 1671 return NULL; 1672 } 1673 static inline bool 1674 blk_integrity_queue_supports_integrity(struct request_queue *q) 1675 { 1676 return false; 1677 } 1678 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1679 { 1680 return 0; 1681 } 1682 static inline void blk_integrity_register(struct gendisk *d, 1683 struct blk_integrity *b) 1684 { 1685 } 1686 static inline void blk_integrity_unregister(struct gendisk *d) 1687 { 1688 } 1689 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1690 unsigned int segs) 1691 { 1692 } 1693 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1694 { 1695 return 0; 1696 } 1697 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1698 struct request *r1, 1699 struct request *r2) 1700 { 1701 return true; 1702 } 1703 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1704 struct request *r, 1705 struct bio *b) 1706 { 1707 return true; 1708 } 1709 1710 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1711 unsigned int sectors) 1712 { 1713 return 0; 1714 } 1715 1716 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1717 unsigned int sectors) 1718 { 1719 return 0; 1720 } 1721 1722 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1723 { 1724 return NULL; 1725 } 1726 1727 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1728 1729 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1730 1731 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1732 1733 void blk_ksm_unregister(struct request_queue *q); 1734 1735 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1736 1737 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1738 struct request_queue *q) 1739 { 1740 return true; 1741 } 1742 1743 static inline void blk_ksm_unregister(struct request_queue *q) { } 1744 1745 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1746 1747 1748 struct block_device_operations { 1749 int (*open) (struct block_device *, fmode_t); 1750 void (*release) (struct gendisk *, fmode_t); 1751 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1752 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1753 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1754 unsigned int (*check_events) (struct gendisk *disk, 1755 unsigned int clearing); 1756 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1757 int (*media_changed) (struct gendisk *); 1758 void (*unlock_native_capacity) (struct gendisk *); 1759 int (*revalidate_disk) (struct gendisk *); 1760 int (*getgeo)(struct block_device *, struct hd_geometry *); 1761 /* this callback is with swap_lock and sometimes page table lock held */ 1762 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1763 int (*report_zones)(struct gendisk *, sector_t sector, 1764 unsigned int nr_zones, report_zones_cb cb, void *data); 1765 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1766 struct module *owner; 1767 const struct pr_ops *pr_ops; 1768 }; 1769 1770 #ifdef CONFIG_COMPAT 1771 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1772 unsigned int, unsigned long); 1773 #else 1774 #define blkdev_compat_ptr_ioctl NULL 1775 #endif 1776 1777 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1778 unsigned long); 1779 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1780 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1781 struct writeback_control *); 1782 1783 #ifdef CONFIG_BLK_DEV_ZONED 1784 bool blk_req_needs_zone_write_lock(struct request *rq); 1785 bool blk_req_zone_write_trylock(struct request *rq); 1786 void __blk_req_zone_write_lock(struct request *rq); 1787 void __blk_req_zone_write_unlock(struct request *rq); 1788 1789 static inline void blk_req_zone_write_lock(struct request *rq) 1790 { 1791 if (blk_req_needs_zone_write_lock(rq)) 1792 __blk_req_zone_write_lock(rq); 1793 } 1794 1795 static inline void blk_req_zone_write_unlock(struct request *rq) 1796 { 1797 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1798 __blk_req_zone_write_unlock(rq); 1799 } 1800 1801 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1802 { 1803 return rq->q->seq_zones_wlock && 1804 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1805 } 1806 1807 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1808 { 1809 if (!blk_req_needs_zone_write_lock(rq)) 1810 return true; 1811 return !blk_req_zone_is_write_locked(rq); 1812 } 1813 #else 1814 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1815 { 1816 return false; 1817 } 1818 1819 static inline void blk_req_zone_write_lock(struct request *rq) 1820 { 1821 } 1822 1823 static inline void blk_req_zone_write_unlock(struct request *rq) 1824 { 1825 } 1826 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1827 { 1828 return false; 1829 } 1830 1831 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1832 { 1833 return true; 1834 } 1835 #endif /* CONFIG_BLK_DEV_ZONED */ 1836 1837 #else /* CONFIG_BLOCK */ 1838 1839 struct block_device; 1840 1841 /* 1842 * stubs for when the block layer is configured out 1843 */ 1844 #define buffer_heads_over_limit 0 1845 1846 static inline long nr_blockdev_pages(void) 1847 { 1848 return 0; 1849 } 1850 1851 struct blk_plug { 1852 }; 1853 1854 static inline void blk_start_plug(struct blk_plug *plug) 1855 { 1856 } 1857 1858 static inline void blk_finish_plug(struct blk_plug *plug) 1859 { 1860 } 1861 1862 static inline void blk_flush_plug(struct task_struct *task) 1863 { 1864 } 1865 1866 static inline void blk_schedule_flush_plug(struct task_struct *task) 1867 { 1868 } 1869 1870 1871 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1872 { 1873 return false; 1874 } 1875 1876 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1877 { 1878 return 0; 1879 } 1880 1881 #endif /* CONFIG_BLOCK */ 1882 1883 static inline void blk_wake_io_task(struct task_struct *waiter) 1884 { 1885 /* 1886 * If we're polling, the task itself is doing the completions. For 1887 * that case, we don't need to signal a wakeup, it's enough to just 1888 * mark us as RUNNING. 1889 */ 1890 if (waiter == current) 1891 __set_current_state(TASK_RUNNING); 1892 else 1893 wake_up_process(waiter); 1894 } 1895 1896 #ifdef CONFIG_BLOCK 1897 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1898 unsigned int op); 1899 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1900 unsigned long start_time); 1901 1902 /** 1903 * bio_start_io_acct - start I/O accounting for bio based drivers 1904 * @bio: bio to start account for 1905 * 1906 * Returns the start time that should be passed back to bio_end_io_acct(). 1907 */ 1908 static inline unsigned long bio_start_io_acct(struct bio *bio) 1909 { 1910 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1911 } 1912 1913 /** 1914 * bio_end_io_acct - end I/O accounting for bio based drivers 1915 * @bio: bio to end account for 1916 * @start: start time returned by bio_start_io_acct() 1917 */ 1918 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1919 { 1920 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1921 } 1922 #endif /* CONFIG_BLOCK */ 1923 1924 #endif 1925