1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/timer.h> 12 #include <linux/workqueue.h> 13 #include <linux/pagemap.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/bsg.h> 22 #include <linux/smp.h> 23 #include <linux/rcupdate.h> 24 #include <linux/percpu-refcount.h> 25 #include <linux/scatterlist.h> 26 #include <linux/blkzoned.h> 27 28 struct module; 29 struct scsi_ioctl_command; 30 31 struct request_queue; 32 struct elevator_queue; 33 struct blk_trace; 34 struct request; 35 struct sg_io_hdr; 36 struct bsg_job; 37 struct blkcg_gq; 38 struct blk_flush_queue; 39 struct pr_ops; 40 struct rq_qos; 41 struct blk_queue_stats; 42 struct blk_stat_callback; 43 struct blk_keyslot_manager; 44 45 #define BLKDEV_MIN_RQ 4 46 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 47 48 /* Must be consistent with blk_mq_poll_stats_bkt() */ 49 #define BLK_MQ_POLL_STATS_BKTS 16 50 51 /* Doing classic polling */ 52 #define BLK_MQ_POLL_CLASSIC -1 53 54 /* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58 #define BLKCG_MAX_POLS 5 59 60 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 61 62 /* 63 * request flags */ 64 typedef __u32 __bitwise req_flags_t; 65 66 /* elevator knows about this request */ 67 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 68 /* drive already may have started this one */ 69 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 70 /* may not be passed by ioscheduler */ 71 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 72 /* request for flush sequence */ 73 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 74 /* merge of different types, fail separately */ 75 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 76 /* track inflight for MQ */ 77 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 78 /* don't call prep for this one */ 79 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 80 /* set for "ide_preempt" requests and also for requests for which the SCSI 81 "quiesce" state must be ignored. */ 82 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 83 /* vaguely specified driver internal error. Ignored by the block layer */ 84 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 85 /* don't warn about errors */ 86 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 87 /* elevator private data attached */ 88 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 89 /* account into disk and partition IO statistics */ 90 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 91 /* request came from our alloc pool */ 92 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 93 /* runtime pm request */ 94 #define RQF_PM ((__force req_flags_t)(1 << 15)) 95 /* on IO scheduler merge hash */ 96 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 97 /* track IO completion time */ 98 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 99 /* Look at ->special_vec for the actual data payload instead of the 100 bio chain. */ 101 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 102 /* The per-zone write lock is held for this request */ 103 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 104 /* already slept for hybrid poll */ 105 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 106 /* ->timeout has been called, don't expire again */ 107 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 108 109 /* flags that prevent us from merging requests: */ 110 #define RQF_NOMERGE_FLAGS \ 111 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 112 113 /* 114 * Request state for blk-mq. 115 */ 116 enum mq_rq_state { 117 MQ_RQ_IDLE = 0, 118 MQ_RQ_IN_FLIGHT = 1, 119 MQ_RQ_COMPLETE = 2, 120 }; 121 122 /* 123 * Try to put the fields that are referenced together in the same cacheline. 124 * 125 * If you modify this structure, make sure to update blk_rq_init() and 126 * especially blk_mq_rq_ctx_init() to take care of the added fields. 127 */ 128 struct request { 129 struct request_queue *q; 130 struct blk_mq_ctx *mq_ctx; 131 struct blk_mq_hw_ctx *mq_hctx; 132 133 unsigned int cmd_flags; /* op and common flags */ 134 req_flags_t rq_flags; 135 136 int tag; 137 int internal_tag; 138 139 /* the following two fields are internal, NEVER access directly */ 140 unsigned int __data_len; /* total data len */ 141 sector_t __sector; /* sector cursor */ 142 143 struct bio *bio; 144 struct bio *biotail; 145 146 struct list_head queuelist; 147 148 /* 149 * The hash is used inside the scheduler, and killed once the 150 * request reaches the dispatch list. The ipi_list is only used 151 * to queue the request for softirq completion, which is long 152 * after the request has been unhashed (and even removed from 153 * the dispatch list). 154 */ 155 union { 156 struct hlist_node hash; /* merge hash */ 157 struct list_head ipi_list; 158 }; 159 160 /* 161 * The rb_node is only used inside the io scheduler, requests 162 * are pruned when moved to the dispatch queue. So let the 163 * completion_data share space with the rb_node. 164 */ 165 union { 166 struct rb_node rb_node; /* sort/lookup */ 167 struct bio_vec special_vec; 168 void *completion_data; 169 int error_count; /* for legacy drivers, don't use */ 170 }; 171 172 /* 173 * Three pointers are available for the IO schedulers, if they need 174 * more they have to dynamically allocate it. Flush requests are 175 * never put on the IO scheduler. So let the flush fields share 176 * space with the elevator data. 177 */ 178 union { 179 struct { 180 struct io_cq *icq; 181 void *priv[2]; 182 } elv; 183 184 struct { 185 unsigned int seq; 186 struct list_head list; 187 rq_end_io_fn *saved_end_io; 188 } flush; 189 }; 190 191 struct gendisk *rq_disk; 192 struct hd_struct *part; 193 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 194 /* Time that the first bio started allocating this request. */ 195 u64 alloc_time_ns; 196 #endif 197 /* Time that this request was allocated for this IO. */ 198 u64 start_time_ns; 199 /* Time that I/O was submitted to the device. */ 200 u64 io_start_time_ns; 201 202 #ifdef CONFIG_BLK_WBT 203 unsigned short wbt_flags; 204 #endif 205 /* 206 * rq sectors used for blk stats. It has the same value 207 * with blk_rq_sectors(rq), except that it never be zeroed 208 * by completion. 209 */ 210 unsigned short stats_sectors; 211 212 /* 213 * Number of scatter-gather DMA addr+len pairs after 214 * physical address coalescing is performed. 215 */ 216 unsigned short nr_phys_segments; 217 218 #if defined(CONFIG_BLK_DEV_INTEGRITY) 219 unsigned short nr_integrity_segments; 220 #endif 221 222 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 223 struct bio_crypt_ctx *crypt_ctx; 224 struct blk_ksm_keyslot *crypt_keyslot; 225 #endif 226 227 unsigned short write_hint; 228 unsigned short ioprio; 229 230 enum mq_rq_state state; 231 refcount_t ref; 232 233 unsigned int timeout; 234 unsigned long deadline; 235 236 union { 237 struct __call_single_data csd; 238 u64 fifo_time; 239 }; 240 241 /* 242 * completion callback. 243 */ 244 rq_end_io_fn *end_io; 245 void *end_io_data; 246 }; 247 248 static inline bool blk_op_is_scsi(unsigned int op) 249 { 250 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 251 } 252 253 static inline bool blk_op_is_private(unsigned int op) 254 { 255 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 256 } 257 258 static inline bool blk_rq_is_scsi(struct request *rq) 259 { 260 return blk_op_is_scsi(req_op(rq)); 261 } 262 263 static inline bool blk_rq_is_private(struct request *rq) 264 { 265 return blk_op_is_private(req_op(rq)); 266 } 267 268 static inline bool blk_rq_is_passthrough(struct request *rq) 269 { 270 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 271 } 272 273 static inline bool bio_is_passthrough(struct bio *bio) 274 { 275 unsigned op = bio_op(bio); 276 277 return blk_op_is_scsi(op) || blk_op_is_private(op); 278 } 279 280 static inline unsigned short req_get_ioprio(struct request *req) 281 { 282 return req->ioprio; 283 } 284 285 #include <linux/elevator.h> 286 287 struct blk_queue_ctx; 288 289 struct bio_vec; 290 291 enum blk_eh_timer_return { 292 BLK_EH_DONE, /* drivers has completed the command */ 293 BLK_EH_RESET_TIMER, /* reset timer and try again */ 294 }; 295 296 enum blk_queue_state { 297 Queue_down, 298 Queue_up, 299 }; 300 301 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 302 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 303 304 #define BLK_SCSI_MAX_CMDS (256) 305 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 306 307 /* 308 * Zoned block device models (zoned limit). 309 */ 310 enum blk_zoned_model { 311 BLK_ZONED_NONE, /* Regular block device */ 312 BLK_ZONED_HA, /* Host-aware zoned block device */ 313 BLK_ZONED_HM, /* Host-managed zoned block device */ 314 }; 315 316 struct queue_limits { 317 unsigned long bounce_pfn; 318 unsigned long seg_boundary_mask; 319 unsigned long virt_boundary_mask; 320 321 unsigned int max_hw_sectors; 322 unsigned int max_dev_sectors; 323 unsigned int chunk_sectors; 324 unsigned int max_sectors; 325 unsigned int max_segment_size; 326 unsigned int physical_block_size; 327 unsigned int logical_block_size; 328 unsigned int alignment_offset; 329 unsigned int io_min; 330 unsigned int io_opt; 331 unsigned int max_discard_sectors; 332 unsigned int max_hw_discard_sectors; 333 unsigned int max_write_same_sectors; 334 unsigned int max_write_zeroes_sectors; 335 unsigned int max_zone_append_sectors; 336 unsigned int discard_granularity; 337 unsigned int discard_alignment; 338 339 unsigned short max_segments; 340 unsigned short max_integrity_segments; 341 unsigned short max_discard_segments; 342 343 unsigned char misaligned; 344 unsigned char discard_misaligned; 345 unsigned char raid_partial_stripes_expensive; 346 enum blk_zoned_model zoned; 347 }; 348 349 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 350 void *data); 351 352 #ifdef CONFIG_BLK_DEV_ZONED 353 354 #define BLK_ALL_ZONES ((unsigned int)-1) 355 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 356 unsigned int nr_zones, report_zones_cb cb, void *data); 357 unsigned int blkdev_nr_zones(struct gendisk *disk); 358 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 359 sector_t sectors, sector_t nr_sectors, 360 gfp_t gfp_mask); 361 int blk_revalidate_disk_zones(struct gendisk *disk, 362 void (*update_driver_data)(struct gendisk *disk)); 363 364 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 365 unsigned int cmd, unsigned long arg); 366 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 367 unsigned int cmd, unsigned long arg); 368 369 #else /* CONFIG_BLK_DEV_ZONED */ 370 371 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 372 { 373 return 0; 374 } 375 376 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 377 fmode_t mode, unsigned int cmd, 378 unsigned long arg) 379 { 380 return -ENOTTY; 381 } 382 383 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 384 fmode_t mode, unsigned int cmd, 385 unsigned long arg) 386 { 387 return -ENOTTY; 388 } 389 390 #endif /* CONFIG_BLK_DEV_ZONED */ 391 392 struct request_queue { 393 struct request *last_merge; 394 struct elevator_queue *elevator; 395 396 struct blk_queue_stats *stats; 397 struct rq_qos *rq_qos; 398 399 const struct blk_mq_ops *mq_ops; 400 401 /* sw queues */ 402 struct blk_mq_ctx __percpu *queue_ctx; 403 404 unsigned int queue_depth; 405 406 /* hw dispatch queues */ 407 struct blk_mq_hw_ctx **queue_hw_ctx; 408 unsigned int nr_hw_queues; 409 410 struct backing_dev_info *backing_dev_info; 411 412 /* 413 * The queue owner gets to use this for whatever they like. 414 * ll_rw_blk doesn't touch it. 415 */ 416 void *queuedata; 417 418 /* 419 * various queue flags, see QUEUE_* below 420 */ 421 unsigned long queue_flags; 422 /* 423 * Number of contexts that have called blk_set_pm_only(). If this 424 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 425 * processed. 426 */ 427 atomic_t pm_only; 428 429 /* 430 * ida allocated id for this queue. Used to index queues from 431 * ioctx. 432 */ 433 int id; 434 435 /* 436 * queue needs bounce pages for pages above this limit 437 */ 438 gfp_t bounce_gfp; 439 440 spinlock_t queue_lock; 441 442 /* 443 * queue kobject 444 */ 445 struct kobject kobj; 446 447 /* 448 * mq queue kobject 449 */ 450 struct kobject *mq_kobj; 451 452 #ifdef CONFIG_BLK_DEV_INTEGRITY 453 struct blk_integrity integrity; 454 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 455 456 #ifdef CONFIG_PM 457 struct device *dev; 458 int rpm_status; 459 unsigned int nr_pending; 460 #endif 461 462 /* 463 * queue settings 464 */ 465 unsigned long nr_requests; /* Max # of requests */ 466 467 unsigned int dma_pad_mask; 468 unsigned int dma_alignment; 469 470 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 471 /* Inline crypto capabilities */ 472 struct blk_keyslot_manager *ksm; 473 #endif 474 475 unsigned int rq_timeout; 476 int poll_nsec; 477 478 struct blk_stat_callback *poll_cb; 479 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 480 481 struct timer_list timeout; 482 struct work_struct timeout_work; 483 484 struct list_head icq_list; 485 #ifdef CONFIG_BLK_CGROUP 486 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 487 struct blkcg_gq *root_blkg; 488 struct list_head blkg_list; 489 #endif 490 491 struct queue_limits limits; 492 493 unsigned int required_elevator_features; 494 495 #ifdef CONFIG_BLK_DEV_ZONED 496 /* 497 * Zoned block device information for request dispatch control. 498 * nr_zones is the total number of zones of the device. This is always 499 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 500 * bits which indicates if a zone is conventional (bit set) or 501 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 502 * bits which indicates if a zone is write locked, that is, if a write 503 * request targeting the zone was dispatched. All three fields are 504 * initialized by the low level device driver (e.g. scsi/sd.c). 505 * Stacking drivers (device mappers) may or may not initialize 506 * these fields. 507 * 508 * Reads of this information must be protected with blk_queue_enter() / 509 * blk_queue_exit(). Modifying this information is only allowed while 510 * no requests are being processed. See also blk_mq_freeze_queue() and 511 * blk_mq_unfreeze_queue(). 512 */ 513 unsigned int nr_zones; 514 unsigned long *conv_zones_bitmap; 515 unsigned long *seq_zones_wlock; 516 #endif /* CONFIG_BLK_DEV_ZONED */ 517 518 /* 519 * sg stuff 520 */ 521 unsigned int sg_timeout; 522 unsigned int sg_reserved_size; 523 int node; 524 struct mutex debugfs_mutex; 525 #ifdef CONFIG_BLK_DEV_IO_TRACE 526 struct blk_trace __rcu *blk_trace; 527 #endif 528 /* 529 * for flush operations 530 */ 531 struct blk_flush_queue *fq; 532 533 struct list_head requeue_list; 534 spinlock_t requeue_lock; 535 struct delayed_work requeue_work; 536 537 struct mutex sysfs_lock; 538 struct mutex sysfs_dir_lock; 539 540 /* 541 * for reusing dead hctx instance in case of updating 542 * nr_hw_queues 543 */ 544 struct list_head unused_hctx_list; 545 spinlock_t unused_hctx_lock; 546 547 int mq_freeze_depth; 548 549 #if defined(CONFIG_BLK_DEV_BSG) 550 struct bsg_class_device bsg_dev; 551 #endif 552 553 #ifdef CONFIG_BLK_DEV_THROTTLING 554 /* Throttle data */ 555 struct throtl_data *td; 556 #endif 557 struct rcu_head rcu_head; 558 wait_queue_head_t mq_freeze_wq; 559 /* 560 * Protect concurrent access to q_usage_counter by 561 * percpu_ref_kill() and percpu_ref_reinit(). 562 */ 563 struct mutex mq_freeze_lock; 564 struct percpu_ref q_usage_counter; 565 566 struct blk_mq_tag_set *tag_set; 567 struct list_head tag_set_list; 568 struct bio_set bio_split; 569 570 struct dentry *debugfs_dir; 571 572 #ifdef CONFIG_BLK_DEBUG_FS 573 struct dentry *sched_debugfs_dir; 574 struct dentry *rqos_debugfs_dir; 575 #endif 576 577 bool mq_sysfs_init_done; 578 579 size_t cmd_size; 580 581 #define BLK_MAX_WRITE_HINTS 5 582 u64 write_hints[BLK_MAX_WRITE_HINTS]; 583 }; 584 585 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 586 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 587 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 588 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 589 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 590 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 591 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 592 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 593 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 594 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 595 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 596 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 597 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 598 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 599 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 600 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 601 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 602 #define QUEUE_FLAG_WC 17 /* Write back caching */ 603 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 604 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 605 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 606 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 607 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 608 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 609 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 610 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 611 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 612 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 613 614 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 615 (1 << QUEUE_FLAG_SAME_COMP)) 616 617 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 618 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 619 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 620 621 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 622 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 623 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 624 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 625 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 626 #define blk_queue_noxmerges(q) \ 627 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 628 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 629 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 630 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 631 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 632 #define blk_queue_zone_resetall(q) \ 633 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 634 #define blk_queue_secure_erase(q) \ 635 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 636 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 637 #define blk_queue_scsi_passthrough(q) \ 638 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 639 #define blk_queue_pci_p2pdma(q) \ 640 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 641 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 642 #define blk_queue_rq_alloc_time(q) \ 643 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 644 #else 645 #define blk_queue_rq_alloc_time(q) false 646 #endif 647 648 #define blk_noretry_request(rq) \ 649 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 650 REQ_FAILFAST_DRIVER)) 651 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 652 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 653 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 654 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 655 656 extern void blk_set_pm_only(struct request_queue *q); 657 extern void blk_clear_pm_only(struct request_queue *q); 658 659 static inline bool blk_account_rq(struct request *rq) 660 { 661 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 662 } 663 664 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 665 666 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 667 668 #define rq_dma_dir(rq) \ 669 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 670 671 #define dma_map_bvec(dev, bv, dir, attrs) \ 672 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 673 (dir), (attrs)) 674 675 static inline bool queue_is_mq(struct request_queue *q) 676 { 677 return q->mq_ops; 678 } 679 680 static inline enum blk_zoned_model 681 blk_queue_zoned_model(struct request_queue *q) 682 { 683 return q->limits.zoned; 684 } 685 686 static inline bool blk_queue_is_zoned(struct request_queue *q) 687 { 688 switch (blk_queue_zoned_model(q)) { 689 case BLK_ZONED_HA: 690 case BLK_ZONED_HM: 691 return true; 692 default: 693 return false; 694 } 695 } 696 697 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 698 { 699 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 700 } 701 702 #ifdef CONFIG_BLK_DEV_ZONED 703 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 704 { 705 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 706 } 707 708 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 709 sector_t sector) 710 { 711 if (!blk_queue_is_zoned(q)) 712 return 0; 713 return sector >> ilog2(q->limits.chunk_sectors); 714 } 715 716 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 717 sector_t sector) 718 { 719 if (!blk_queue_is_zoned(q)) 720 return false; 721 if (!q->conv_zones_bitmap) 722 return true; 723 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 724 } 725 #else /* CONFIG_BLK_DEV_ZONED */ 726 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 727 { 728 return 0; 729 } 730 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 731 sector_t sector) 732 { 733 return false; 734 } 735 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 736 sector_t sector) 737 { 738 return 0; 739 } 740 #endif /* CONFIG_BLK_DEV_ZONED */ 741 742 static inline bool rq_is_sync(struct request *rq) 743 { 744 return op_is_sync(rq->cmd_flags); 745 } 746 747 static inline bool rq_mergeable(struct request *rq) 748 { 749 if (blk_rq_is_passthrough(rq)) 750 return false; 751 752 if (req_op(rq) == REQ_OP_FLUSH) 753 return false; 754 755 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 756 return false; 757 758 if (req_op(rq) == REQ_OP_ZONE_APPEND) 759 return false; 760 761 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 762 return false; 763 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 764 return false; 765 766 return true; 767 } 768 769 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 770 { 771 if (bio_page(a) == bio_page(b) && 772 bio_offset(a) == bio_offset(b)) 773 return true; 774 775 return false; 776 } 777 778 static inline unsigned int blk_queue_depth(struct request_queue *q) 779 { 780 if (q->queue_depth) 781 return q->queue_depth; 782 783 return q->nr_requests; 784 } 785 786 extern unsigned long blk_max_low_pfn, blk_max_pfn; 787 788 /* 789 * standard bounce addresses: 790 * 791 * BLK_BOUNCE_HIGH : bounce all highmem pages 792 * BLK_BOUNCE_ANY : don't bounce anything 793 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 794 */ 795 796 #if BITS_PER_LONG == 32 797 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 798 #else 799 #define BLK_BOUNCE_HIGH -1ULL 800 #endif 801 #define BLK_BOUNCE_ANY (-1ULL) 802 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 803 804 /* 805 * default timeout for SG_IO if none specified 806 */ 807 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 808 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 809 810 struct rq_map_data { 811 struct page **pages; 812 int page_order; 813 int nr_entries; 814 unsigned long offset; 815 int null_mapped; 816 int from_user; 817 }; 818 819 struct req_iterator { 820 struct bvec_iter iter; 821 struct bio *bio; 822 }; 823 824 /* This should not be used directly - use rq_for_each_segment */ 825 #define for_each_bio(_bio) \ 826 for (; _bio; _bio = _bio->bi_next) 827 #define __rq_for_each_bio(_bio, rq) \ 828 if ((rq->bio)) \ 829 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 830 831 #define rq_for_each_segment(bvl, _rq, _iter) \ 832 __rq_for_each_bio(_iter.bio, _rq) \ 833 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 834 835 #define rq_for_each_bvec(bvl, _rq, _iter) \ 836 __rq_for_each_bio(_iter.bio, _rq) \ 837 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 838 839 #define rq_iter_last(bvec, _iter) \ 840 (_iter.bio->bi_next == NULL && \ 841 bio_iter_last(bvec, _iter.iter)) 842 843 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 844 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 845 #endif 846 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 847 extern void rq_flush_dcache_pages(struct request *rq); 848 #else 849 static inline void rq_flush_dcache_pages(struct request *rq) 850 { 851 } 852 #endif 853 854 extern int blk_register_queue(struct gendisk *disk); 855 extern void blk_unregister_queue(struct gendisk *disk); 856 blk_qc_t submit_bio_noacct(struct bio *bio); 857 extern void blk_rq_init(struct request_queue *q, struct request *rq); 858 extern void blk_put_request(struct request *); 859 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 860 blk_mq_req_flags_t flags); 861 extern int blk_lld_busy(struct request_queue *q); 862 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 863 struct bio_set *bs, gfp_t gfp_mask, 864 int (*bio_ctr)(struct bio *, struct bio *, void *), 865 void *data); 866 extern void blk_rq_unprep_clone(struct request *rq); 867 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 868 struct request *rq); 869 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 870 extern void blk_queue_split(struct bio **); 871 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 872 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 873 unsigned int, void __user *); 874 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 875 unsigned int, void __user *); 876 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 877 struct scsi_ioctl_command __user *); 878 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 879 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 880 881 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 882 extern void blk_queue_exit(struct request_queue *q); 883 extern void blk_sync_queue(struct request_queue *q); 884 extern int blk_rq_map_user(struct request_queue *, struct request *, 885 struct rq_map_data *, void __user *, unsigned long, 886 gfp_t); 887 extern int blk_rq_unmap_user(struct bio *); 888 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 889 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 890 struct rq_map_data *, const struct iov_iter *, 891 gfp_t); 892 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 893 struct request *, int); 894 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 895 struct request *, int, rq_end_io_fn *); 896 897 /* Helper to convert REQ_OP_XXX to its string format XXX */ 898 extern const char *blk_op_str(unsigned int op); 899 900 int blk_status_to_errno(blk_status_t status); 901 blk_status_t errno_to_blk_status(int errno); 902 903 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 904 905 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 906 { 907 return bdev->bd_disk->queue; /* this is never NULL */ 908 } 909 910 /* 911 * The basic unit of block I/O is a sector. It is used in a number of contexts 912 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 913 * bytes. Variables of type sector_t represent an offset or size that is a 914 * multiple of 512 bytes. Hence these two constants. 915 */ 916 #ifndef SECTOR_SHIFT 917 #define SECTOR_SHIFT 9 918 #endif 919 #ifndef SECTOR_SIZE 920 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 921 #endif 922 923 /* 924 * blk_rq_pos() : the current sector 925 * blk_rq_bytes() : bytes left in the entire request 926 * blk_rq_cur_bytes() : bytes left in the current segment 927 * blk_rq_err_bytes() : bytes left till the next error boundary 928 * blk_rq_sectors() : sectors left in the entire request 929 * blk_rq_cur_sectors() : sectors left in the current segment 930 * blk_rq_stats_sectors() : sectors of the entire request used for stats 931 */ 932 static inline sector_t blk_rq_pos(const struct request *rq) 933 { 934 return rq->__sector; 935 } 936 937 static inline unsigned int blk_rq_bytes(const struct request *rq) 938 { 939 return rq->__data_len; 940 } 941 942 static inline int blk_rq_cur_bytes(const struct request *rq) 943 { 944 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 945 } 946 947 extern unsigned int blk_rq_err_bytes(const struct request *rq); 948 949 static inline unsigned int blk_rq_sectors(const struct request *rq) 950 { 951 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 952 } 953 954 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 955 { 956 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 957 } 958 959 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 960 { 961 return rq->stats_sectors; 962 } 963 964 #ifdef CONFIG_BLK_DEV_ZONED 965 966 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 967 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 968 969 static inline unsigned int blk_rq_zone_no(struct request *rq) 970 { 971 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 972 } 973 974 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 975 { 976 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 977 } 978 #endif /* CONFIG_BLK_DEV_ZONED */ 979 980 /* 981 * Some commands like WRITE SAME have a payload or data transfer size which 982 * is different from the size of the request. Any driver that supports such 983 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 984 * calculate the data transfer size. 985 */ 986 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 987 { 988 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 989 return rq->special_vec.bv_len; 990 return blk_rq_bytes(rq); 991 } 992 993 /* 994 * Return the first full biovec in the request. The caller needs to check that 995 * there are any bvecs before calling this helper. 996 */ 997 static inline struct bio_vec req_bvec(struct request *rq) 998 { 999 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1000 return rq->special_vec; 1001 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1002 } 1003 1004 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1005 int op) 1006 { 1007 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1008 return min(q->limits.max_discard_sectors, 1009 UINT_MAX >> SECTOR_SHIFT); 1010 1011 if (unlikely(op == REQ_OP_WRITE_SAME)) 1012 return q->limits.max_write_same_sectors; 1013 1014 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1015 return q->limits.max_write_zeroes_sectors; 1016 1017 return q->limits.max_sectors; 1018 } 1019 1020 /* 1021 * Return maximum size of a request at given offset. Only valid for 1022 * file system requests. 1023 */ 1024 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1025 sector_t offset) 1026 { 1027 if (!q->limits.chunk_sectors) 1028 return q->limits.max_sectors; 1029 1030 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1031 (offset & (q->limits.chunk_sectors - 1)))); 1032 } 1033 1034 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1035 sector_t offset) 1036 { 1037 struct request_queue *q = rq->q; 1038 1039 if (blk_rq_is_passthrough(rq)) 1040 return q->limits.max_hw_sectors; 1041 1042 if (!q->limits.chunk_sectors || 1043 req_op(rq) == REQ_OP_DISCARD || 1044 req_op(rq) == REQ_OP_SECURE_ERASE) 1045 return blk_queue_get_max_sectors(q, req_op(rq)); 1046 1047 return min(blk_max_size_offset(q, offset), 1048 blk_queue_get_max_sectors(q, req_op(rq))); 1049 } 1050 1051 static inline unsigned int blk_rq_count_bios(struct request *rq) 1052 { 1053 unsigned int nr_bios = 0; 1054 struct bio *bio; 1055 1056 __rq_for_each_bio(bio, rq) 1057 nr_bios++; 1058 1059 return nr_bios; 1060 } 1061 1062 void blk_steal_bios(struct bio_list *list, struct request *rq); 1063 1064 /* 1065 * Request completion related functions. 1066 * 1067 * blk_update_request() completes given number of bytes and updates 1068 * the request without completing it. 1069 */ 1070 extern bool blk_update_request(struct request *rq, blk_status_t error, 1071 unsigned int nr_bytes); 1072 1073 extern void blk_abort_request(struct request *); 1074 1075 /* 1076 * Access functions for manipulating queue properties 1077 */ 1078 extern void blk_cleanup_queue(struct request_queue *); 1079 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1080 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1081 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1082 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1083 extern void blk_queue_max_discard_segments(struct request_queue *, 1084 unsigned short); 1085 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1086 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1087 unsigned int max_discard_sectors); 1088 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1089 unsigned int max_write_same_sectors); 1090 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1091 unsigned int max_write_same_sectors); 1092 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1093 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1094 unsigned int max_zone_append_sectors); 1095 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1096 extern void blk_queue_alignment_offset(struct request_queue *q, 1097 unsigned int alignment); 1098 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1099 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1100 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1101 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1102 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1103 extern void blk_set_default_limits(struct queue_limits *lim); 1104 extern void blk_set_stacking_limits(struct queue_limits *lim); 1105 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1106 sector_t offset); 1107 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1108 sector_t offset); 1109 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1110 sector_t offset); 1111 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1112 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1113 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1114 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1115 extern void blk_queue_dma_alignment(struct request_queue *, int); 1116 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1117 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1118 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1119 extern void blk_queue_required_elevator_features(struct request_queue *q, 1120 unsigned int features); 1121 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1122 struct device *dev); 1123 1124 /* 1125 * Number of physical segments as sent to the device. 1126 * 1127 * Normally this is the number of discontiguous data segments sent by the 1128 * submitter. But for data-less command like discard we might have no 1129 * actual data segments submitted, but the driver might have to add it's 1130 * own special payload. In that case we still return 1 here so that this 1131 * special payload will be mapped. 1132 */ 1133 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1134 { 1135 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1136 return 1; 1137 return rq->nr_phys_segments; 1138 } 1139 1140 /* 1141 * Number of discard segments (or ranges) the driver needs to fill in. 1142 * Each discard bio merged into a request is counted as one segment. 1143 */ 1144 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1145 { 1146 return max_t(unsigned short, rq->nr_phys_segments, 1); 1147 } 1148 1149 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1150 struct scatterlist *sglist, struct scatterlist **last_sg); 1151 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1152 struct scatterlist *sglist) 1153 { 1154 struct scatterlist *last_sg = NULL; 1155 1156 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1157 } 1158 extern void blk_dump_rq_flags(struct request *, char *); 1159 1160 bool __must_check blk_get_queue(struct request_queue *); 1161 struct request_queue *blk_alloc_queue(int node_id); 1162 extern void blk_put_queue(struct request_queue *); 1163 extern void blk_set_queue_dying(struct request_queue *); 1164 1165 #ifdef CONFIG_BLOCK 1166 /* 1167 * blk_plug permits building a queue of related requests by holding the I/O 1168 * fragments for a short period. This allows merging of sequential requests 1169 * into single larger request. As the requests are moved from a per-task list to 1170 * the device's request_queue in a batch, this results in improved scalability 1171 * as the lock contention for request_queue lock is reduced. 1172 * 1173 * It is ok not to disable preemption when adding the request to the plug list 1174 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1175 * the plug list when the task sleeps by itself. For details, please see 1176 * schedule() where blk_schedule_flush_plug() is called. 1177 */ 1178 struct blk_plug { 1179 struct list_head mq_list; /* blk-mq requests */ 1180 struct list_head cb_list; /* md requires an unplug callback */ 1181 unsigned short rq_count; 1182 bool multiple_queues; 1183 bool nowait; 1184 }; 1185 #define BLK_MAX_REQUEST_COUNT 16 1186 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1187 1188 struct blk_plug_cb; 1189 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1190 struct blk_plug_cb { 1191 struct list_head list; 1192 blk_plug_cb_fn callback; 1193 void *data; 1194 }; 1195 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1196 void *data, int size); 1197 extern void blk_start_plug(struct blk_plug *); 1198 extern void blk_finish_plug(struct blk_plug *); 1199 extern void blk_flush_plug_list(struct blk_plug *, bool); 1200 1201 static inline void blk_flush_plug(struct task_struct *tsk) 1202 { 1203 struct blk_plug *plug = tsk->plug; 1204 1205 if (plug) 1206 blk_flush_plug_list(plug, false); 1207 } 1208 1209 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1210 { 1211 struct blk_plug *plug = tsk->plug; 1212 1213 if (plug) 1214 blk_flush_plug_list(plug, true); 1215 } 1216 1217 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1218 { 1219 struct blk_plug *plug = tsk->plug; 1220 1221 return plug && 1222 (!list_empty(&plug->mq_list) || 1223 !list_empty(&plug->cb_list)); 1224 } 1225 1226 int blkdev_issue_flush(struct block_device *, gfp_t); 1227 long nr_blockdev_pages(void); 1228 #else /* CONFIG_BLOCK */ 1229 struct blk_plug { 1230 }; 1231 1232 static inline void blk_start_plug(struct blk_plug *plug) 1233 { 1234 } 1235 1236 static inline void blk_finish_plug(struct blk_plug *plug) 1237 { 1238 } 1239 1240 static inline void blk_flush_plug(struct task_struct *task) 1241 { 1242 } 1243 1244 static inline void blk_schedule_flush_plug(struct task_struct *task) 1245 { 1246 } 1247 1248 1249 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1250 { 1251 return false; 1252 } 1253 1254 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1255 { 1256 return 0; 1257 } 1258 1259 static inline long nr_blockdev_pages(void) 1260 { 1261 return 0; 1262 } 1263 #endif /* CONFIG_BLOCK */ 1264 1265 extern void blk_io_schedule(void); 1266 1267 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1268 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1269 1270 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1271 1272 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1273 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1274 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1275 sector_t nr_sects, gfp_t gfp_mask, int flags, 1276 struct bio **biop); 1277 1278 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1279 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1280 1281 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1282 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1283 unsigned flags); 1284 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1285 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1286 1287 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1288 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1289 { 1290 return blkdev_issue_discard(sb->s_bdev, 1291 block << (sb->s_blocksize_bits - 1292 SECTOR_SHIFT), 1293 nr_blocks << (sb->s_blocksize_bits - 1294 SECTOR_SHIFT), 1295 gfp_mask, flags); 1296 } 1297 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1298 sector_t nr_blocks, gfp_t gfp_mask) 1299 { 1300 return blkdev_issue_zeroout(sb->s_bdev, 1301 block << (sb->s_blocksize_bits - 1302 SECTOR_SHIFT), 1303 nr_blocks << (sb->s_blocksize_bits - 1304 SECTOR_SHIFT), 1305 gfp_mask, 0); 1306 } 1307 1308 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1309 1310 enum blk_default_limits { 1311 BLK_MAX_SEGMENTS = 128, 1312 BLK_SAFE_MAX_SECTORS = 255, 1313 BLK_DEF_MAX_SECTORS = 2560, 1314 BLK_MAX_SEGMENT_SIZE = 65536, 1315 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1316 }; 1317 1318 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1319 { 1320 return q->limits.seg_boundary_mask; 1321 } 1322 1323 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1324 { 1325 return q->limits.virt_boundary_mask; 1326 } 1327 1328 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1329 { 1330 return q->limits.max_sectors; 1331 } 1332 1333 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1334 { 1335 return q->limits.max_hw_sectors; 1336 } 1337 1338 static inline unsigned short queue_max_segments(const struct request_queue *q) 1339 { 1340 return q->limits.max_segments; 1341 } 1342 1343 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1344 { 1345 return q->limits.max_discard_segments; 1346 } 1347 1348 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1349 { 1350 return q->limits.max_segment_size; 1351 } 1352 1353 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1354 { 1355 return q->limits.max_zone_append_sectors; 1356 } 1357 1358 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1359 { 1360 int retval = 512; 1361 1362 if (q && q->limits.logical_block_size) 1363 retval = q->limits.logical_block_size; 1364 1365 return retval; 1366 } 1367 1368 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1369 { 1370 return queue_logical_block_size(bdev_get_queue(bdev)); 1371 } 1372 1373 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1374 { 1375 return q->limits.physical_block_size; 1376 } 1377 1378 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1379 { 1380 return queue_physical_block_size(bdev_get_queue(bdev)); 1381 } 1382 1383 static inline unsigned int queue_io_min(const struct request_queue *q) 1384 { 1385 return q->limits.io_min; 1386 } 1387 1388 static inline int bdev_io_min(struct block_device *bdev) 1389 { 1390 return queue_io_min(bdev_get_queue(bdev)); 1391 } 1392 1393 static inline unsigned int queue_io_opt(const struct request_queue *q) 1394 { 1395 return q->limits.io_opt; 1396 } 1397 1398 static inline int bdev_io_opt(struct block_device *bdev) 1399 { 1400 return queue_io_opt(bdev_get_queue(bdev)); 1401 } 1402 1403 static inline int queue_alignment_offset(const struct request_queue *q) 1404 { 1405 if (q->limits.misaligned) 1406 return -1; 1407 1408 return q->limits.alignment_offset; 1409 } 1410 1411 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1412 { 1413 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1414 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1415 << SECTOR_SHIFT; 1416 1417 return (granularity + lim->alignment_offset - alignment) % granularity; 1418 } 1419 1420 static inline int bdev_alignment_offset(struct block_device *bdev) 1421 { 1422 struct request_queue *q = bdev_get_queue(bdev); 1423 1424 if (q->limits.misaligned) 1425 return -1; 1426 1427 if (bdev != bdev->bd_contains) 1428 return bdev->bd_part->alignment_offset; 1429 1430 return q->limits.alignment_offset; 1431 } 1432 1433 static inline int queue_discard_alignment(const struct request_queue *q) 1434 { 1435 if (q->limits.discard_misaligned) 1436 return -1; 1437 1438 return q->limits.discard_alignment; 1439 } 1440 1441 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1442 { 1443 unsigned int alignment, granularity, offset; 1444 1445 if (!lim->max_discard_sectors) 1446 return 0; 1447 1448 /* Why are these in bytes, not sectors? */ 1449 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1450 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1451 if (!granularity) 1452 return 0; 1453 1454 /* Offset of the partition start in 'granularity' sectors */ 1455 offset = sector_div(sector, granularity); 1456 1457 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1458 offset = (granularity + alignment - offset) % granularity; 1459 1460 /* Turn it back into bytes, gaah */ 1461 return offset << SECTOR_SHIFT; 1462 } 1463 1464 static inline int bdev_discard_alignment(struct block_device *bdev) 1465 { 1466 struct request_queue *q = bdev_get_queue(bdev); 1467 1468 if (bdev != bdev->bd_contains) 1469 return bdev->bd_part->discard_alignment; 1470 1471 return q->limits.discard_alignment; 1472 } 1473 1474 static inline unsigned int bdev_write_same(struct block_device *bdev) 1475 { 1476 struct request_queue *q = bdev_get_queue(bdev); 1477 1478 if (q) 1479 return q->limits.max_write_same_sectors; 1480 1481 return 0; 1482 } 1483 1484 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1485 { 1486 struct request_queue *q = bdev_get_queue(bdev); 1487 1488 if (q) 1489 return q->limits.max_write_zeroes_sectors; 1490 1491 return 0; 1492 } 1493 1494 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1495 { 1496 struct request_queue *q = bdev_get_queue(bdev); 1497 1498 if (q) 1499 return blk_queue_zoned_model(q); 1500 1501 return BLK_ZONED_NONE; 1502 } 1503 1504 static inline bool bdev_is_zoned(struct block_device *bdev) 1505 { 1506 struct request_queue *q = bdev_get_queue(bdev); 1507 1508 if (q) 1509 return blk_queue_is_zoned(q); 1510 1511 return false; 1512 } 1513 1514 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1515 { 1516 struct request_queue *q = bdev_get_queue(bdev); 1517 1518 if (q) 1519 return blk_queue_zone_sectors(q); 1520 return 0; 1521 } 1522 1523 static inline int queue_dma_alignment(const struct request_queue *q) 1524 { 1525 return q ? q->dma_alignment : 511; 1526 } 1527 1528 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1529 unsigned int len) 1530 { 1531 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1532 return !(addr & alignment) && !(len & alignment); 1533 } 1534 1535 /* assumes size > 256 */ 1536 static inline unsigned int blksize_bits(unsigned int size) 1537 { 1538 unsigned int bits = 8; 1539 do { 1540 bits++; 1541 size >>= 1; 1542 } while (size > 256); 1543 return bits; 1544 } 1545 1546 static inline unsigned int block_size(struct block_device *bdev) 1547 { 1548 return 1 << bdev->bd_inode->i_blkbits; 1549 } 1550 1551 int kblockd_schedule_work(struct work_struct *work); 1552 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1553 1554 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1555 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1556 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1557 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1558 1559 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1560 1561 enum blk_integrity_flags { 1562 BLK_INTEGRITY_VERIFY = 1 << 0, 1563 BLK_INTEGRITY_GENERATE = 1 << 1, 1564 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1565 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1566 }; 1567 1568 struct blk_integrity_iter { 1569 void *prot_buf; 1570 void *data_buf; 1571 sector_t seed; 1572 unsigned int data_size; 1573 unsigned short interval; 1574 const char *disk_name; 1575 }; 1576 1577 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1578 typedef void (integrity_prepare_fn) (struct request *); 1579 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1580 1581 struct blk_integrity_profile { 1582 integrity_processing_fn *generate_fn; 1583 integrity_processing_fn *verify_fn; 1584 integrity_prepare_fn *prepare_fn; 1585 integrity_complete_fn *complete_fn; 1586 const char *name; 1587 }; 1588 1589 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1590 extern void blk_integrity_unregister(struct gendisk *); 1591 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1592 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1593 struct scatterlist *); 1594 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1595 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1596 struct request *); 1597 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1598 struct bio *); 1599 1600 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1601 { 1602 struct blk_integrity *bi = &disk->queue->integrity; 1603 1604 if (!bi->profile) 1605 return NULL; 1606 1607 return bi; 1608 } 1609 1610 static inline 1611 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1612 { 1613 return blk_get_integrity(bdev->bd_disk); 1614 } 1615 1616 static inline bool 1617 blk_integrity_queue_supports_integrity(struct request_queue *q) 1618 { 1619 return q->integrity.profile; 1620 } 1621 1622 static inline bool blk_integrity_rq(struct request *rq) 1623 { 1624 return rq->cmd_flags & REQ_INTEGRITY; 1625 } 1626 1627 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1628 unsigned int segs) 1629 { 1630 q->limits.max_integrity_segments = segs; 1631 } 1632 1633 static inline unsigned short 1634 queue_max_integrity_segments(const struct request_queue *q) 1635 { 1636 return q->limits.max_integrity_segments; 1637 } 1638 1639 /** 1640 * bio_integrity_intervals - Return number of integrity intervals for a bio 1641 * @bi: blk_integrity profile for device 1642 * @sectors: Size of the bio in 512-byte sectors 1643 * 1644 * Description: The block layer calculates everything in 512 byte 1645 * sectors but integrity metadata is done in terms of the data integrity 1646 * interval size of the storage device. Convert the block layer sectors 1647 * to the appropriate number of integrity intervals. 1648 */ 1649 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1650 unsigned int sectors) 1651 { 1652 return sectors >> (bi->interval_exp - 9); 1653 } 1654 1655 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1656 unsigned int sectors) 1657 { 1658 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1659 } 1660 1661 /* 1662 * Return the first bvec that contains integrity data. Only drivers that are 1663 * limited to a single integrity segment should use this helper. 1664 */ 1665 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1666 { 1667 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1668 return NULL; 1669 return rq->bio->bi_integrity->bip_vec; 1670 } 1671 1672 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1673 1674 struct bio; 1675 struct block_device; 1676 struct gendisk; 1677 struct blk_integrity; 1678 1679 static inline int blk_integrity_rq(struct request *rq) 1680 { 1681 return 0; 1682 } 1683 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1684 struct bio *b) 1685 { 1686 return 0; 1687 } 1688 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1689 struct bio *b, 1690 struct scatterlist *s) 1691 { 1692 return 0; 1693 } 1694 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1695 { 1696 return NULL; 1697 } 1698 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1699 { 1700 return NULL; 1701 } 1702 static inline bool 1703 blk_integrity_queue_supports_integrity(struct request_queue *q) 1704 { 1705 return false; 1706 } 1707 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1708 { 1709 return 0; 1710 } 1711 static inline void blk_integrity_register(struct gendisk *d, 1712 struct blk_integrity *b) 1713 { 1714 } 1715 static inline void blk_integrity_unregister(struct gendisk *d) 1716 { 1717 } 1718 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1719 unsigned int segs) 1720 { 1721 } 1722 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1723 { 1724 return 0; 1725 } 1726 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1727 struct request *r1, 1728 struct request *r2) 1729 { 1730 return true; 1731 } 1732 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1733 struct request *r, 1734 struct bio *b) 1735 { 1736 return true; 1737 } 1738 1739 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1740 unsigned int sectors) 1741 { 1742 return 0; 1743 } 1744 1745 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1746 unsigned int sectors) 1747 { 1748 return 0; 1749 } 1750 1751 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1752 { 1753 return NULL; 1754 } 1755 1756 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1757 1758 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1759 1760 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1761 1762 void blk_ksm_unregister(struct request_queue *q); 1763 1764 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1765 1766 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1767 struct request_queue *q) 1768 { 1769 return true; 1770 } 1771 1772 static inline void blk_ksm_unregister(struct request_queue *q) { } 1773 1774 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1775 1776 1777 struct block_device_operations { 1778 blk_qc_t (*submit_bio) (struct bio *bio); 1779 int (*open) (struct block_device *, fmode_t); 1780 void (*release) (struct gendisk *, fmode_t); 1781 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1782 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1783 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1784 unsigned int (*check_events) (struct gendisk *disk, 1785 unsigned int clearing); 1786 void (*unlock_native_capacity) (struct gendisk *); 1787 int (*revalidate_disk) (struct gendisk *); 1788 int (*getgeo)(struct block_device *, struct hd_geometry *); 1789 /* this callback is with swap_lock and sometimes page table lock held */ 1790 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1791 int (*report_zones)(struct gendisk *, sector_t sector, 1792 unsigned int nr_zones, report_zones_cb cb, void *data); 1793 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1794 struct module *owner; 1795 const struct pr_ops *pr_ops; 1796 }; 1797 1798 #ifdef CONFIG_COMPAT 1799 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1800 unsigned int, unsigned long); 1801 #else 1802 #define blkdev_compat_ptr_ioctl NULL 1803 #endif 1804 1805 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1806 unsigned long); 1807 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1808 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1809 struct writeback_control *); 1810 1811 #ifdef CONFIG_BLK_DEV_ZONED 1812 bool blk_req_needs_zone_write_lock(struct request *rq); 1813 bool blk_req_zone_write_trylock(struct request *rq); 1814 void __blk_req_zone_write_lock(struct request *rq); 1815 void __blk_req_zone_write_unlock(struct request *rq); 1816 1817 static inline void blk_req_zone_write_lock(struct request *rq) 1818 { 1819 if (blk_req_needs_zone_write_lock(rq)) 1820 __blk_req_zone_write_lock(rq); 1821 } 1822 1823 static inline void blk_req_zone_write_unlock(struct request *rq) 1824 { 1825 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1826 __blk_req_zone_write_unlock(rq); 1827 } 1828 1829 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1830 { 1831 return rq->q->seq_zones_wlock && 1832 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1833 } 1834 1835 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1836 { 1837 if (!blk_req_needs_zone_write_lock(rq)) 1838 return true; 1839 return !blk_req_zone_is_write_locked(rq); 1840 } 1841 #else 1842 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1843 { 1844 return false; 1845 } 1846 1847 static inline void blk_req_zone_write_lock(struct request *rq) 1848 { 1849 } 1850 1851 static inline void blk_req_zone_write_unlock(struct request *rq) 1852 { 1853 } 1854 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1855 { 1856 return false; 1857 } 1858 1859 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1860 { 1861 return true; 1862 } 1863 #endif /* CONFIG_BLK_DEV_ZONED */ 1864 1865 static inline void blk_wake_io_task(struct task_struct *waiter) 1866 { 1867 /* 1868 * If we're polling, the task itself is doing the completions. For 1869 * that case, we don't need to signal a wakeup, it's enough to just 1870 * mark us as RUNNING. 1871 */ 1872 if (waiter == current) 1873 __set_current_state(TASK_RUNNING); 1874 else 1875 wake_up_process(waiter); 1876 } 1877 1878 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1879 unsigned int op); 1880 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1881 unsigned long start_time); 1882 1883 /** 1884 * bio_start_io_acct - start I/O accounting for bio based drivers 1885 * @bio: bio to start account for 1886 * 1887 * Returns the start time that should be passed back to bio_end_io_acct(). 1888 */ 1889 static inline unsigned long bio_start_io_acct(struct bio *bio) 1890 { 1891 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1892 } 1893 1894 /** 1895 * bio_end_io_acct - end I/O accounting for bio based drivers 1896 * @bio: bio to end account for 1897 * @start: start time returned by bio_start_io_acct() 1898 */ 1899 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1900 { 1901 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1902 } 1903 1904 int bdev_read_only(struct block_device *bdev); 1905 int set_blocksize(struct block_device *bdev, int size); 1906 1907 const char *bdevname(struct block_device *bdev, char *buffer); 1908 struct block_device *lookup_bdev(const char *); 1909 1910 void blkdev_show(struct seq_file *seqf, off_t offset); 1911 1912 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1913 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1914 #ifdef CONFIG_BLOCK 1915 #define BLKDEV_MAJOR_MAX 512 1916 #else 1917 #define BLKDEV_MAJOR_MAX 0 1918 #endif 1919 1920 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder); 1921 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1922 void *holder); 1923 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1924 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1925 void *holder); 1926 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1927 void *holder); 1928 void blkdev_put(struct block_device *bdev, fmode_t mode); 1929 1930 struct block_device *I_BDEV(struct inode *inode); 1931 struct block_device *bdget(dev_t); 1932 struct block_device *bdgrab(struct block_device *bdev); 1933 void bdput(struct block_device *); 1934 1935 #ifdef CONFIG_BLOCK 1936 void invalidate_bdev(struct block_device *bdev); 1937 int sync_blockdev(struct block_device *bdev); 1938 #else 1939 static inline void invalidate_bdev(struct block_device *bdev) 1940 { 1941 } 1942 static inline int sync_blockdev(struct block_device *bdev) 1943 { 1944 return 0; 1945 } 1946 #endif 1947 int fsync_bdev(struct block_device *bdev); 1948 1949 struct super_block *freeze_bdev(struct block_device *bdev); 1950 int thaw_bdev(struct block_device *bdev, struct super_block *sb); 1951 1952 #endif /* _LINUX_BLKDEV_H */ 1953