1 #ifndef _LINUX_BLKDEV_H 2 #define _LINUX_BLKDEV_H 3 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 7 #ifdef CONFIG_BLOCK 8 9 #include <linux/major.h> 10 #include <linux/genhd.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/timer.h> 14 #include <linux/workqueue.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev-defs.h> 17 #include <linux/wait.h> 18 #include <linux/mempool.h> 19 #include <linux/pfn.h> 20 #include <linux/bio.h> 21 #include <linux/stringify.h> 22 #include <linux/gfp.h> 23 #include <linux/bsg.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate.h> 26 #include <linux/percpu-refcount.h> 27 #include <linux/scatterlist.h> 28 #include <linux/blkzoned.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_wb; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consisitent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* 53 * Maximum number of blkcg policies allowed to be registered concurrently. 54 * Defined here to simplify include dependency. 55 */ 56 #define BLKCG_MAX_POLS 3 57 58 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 59 60 #define BLK_RL_SYNCFULL (1U << 0) 61 #define BLK_RL_ASYNCFULL (1U << 1) 62 63 struct request_list { 64 struct request_queue *q; /* the queue this rl belongs to */ 65 #ifdef CONFIG_BLK_CGROUP 66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 67 #endif 68 /* 69 * count[], starved[], and wait[] are indexed by 70 * BLK_RW_SYNC/BLK_RW_ASYNC 71 */ 72 int count[2]; 73 int starved[2]; 74 mempool_t *rq_pool; 75 wait_queue_head_t wait[2]; 76 unsigned int flags; 77 }; 78 79 /* 80 * request flags */ 81 typedef __u32 __bitwise req_flags_t; 82 83 /* elevator knows about this request */ 84 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 85 /* drive already may have started this one */ 86 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 87 /* uses tagged queueing */ 88 #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 89 /* may not be passed by ioscheduler */ 90 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 91 /* request for flush sequence */ 92 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 93 /* merge of different types, fail separately */ 94 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 95 /* track inflight for MQ */ 96 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 97 /* don't call prep for this one */ 98 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 99 /* set for "ide_preempt" requests and also for requests for which the SCSI 100 "quiesce" state must be ignored. */ 101 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 102 /* contains copies of user pages */ 103 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 104 /* vaguely specified driver internal error. Ignored by the block layer */ 105 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 106 /* don't warn about errors */ 107 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 108 /* elevator private data attached */ 109 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 110 /* account I/O stat */ 111 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 112 /* request came from our alloc pool */ 113 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 114 /* runtime pm request */ 115 #define RQF_PM ((__force req_flags_t)(1 << 15)) 116 /* on IO scheduler merge hash */ 117 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 118 /* IO stats tracking on */ 119 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 120 /* Look at ->special_vec for the actual data payload instead of the 121 bio chain. */ 122 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 123 124 /* flags that prevent us from merging requests: */ 125 #define RQF_NOMERGE_FLAGS \ 126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 127 128 /* 129 * Try to put the fields that are referenced together in the same cacheline. 130 * 131 * If you modify this structure, make sure to update blk_rq_init() and 132 * especially blk_mq_rq_ctx_init() to take care of the added fields. 133 */ 134 struct request { 135 struct list_head queuelist; 136 union { 137 call_single_data_t csd; 138 u64 fifo_time; 139 }; 140 141 struct request_queue *q; 142 struct blk_mq_ctx *mq_ctx; 143 144 int cpu; 145 unsigned int cmd_flags; /* op and common flags */ 146 req_flags_t rq_flags; 147 148 int internal_tag; 149 150 unsigned long atomic_flags; 151 152 /* the following two fields are internal, NEVER access directly */ 153 unsigned int __data_len; /* total data len */ 154 int tag; 155 sector_t __sector; /* sector cursor */ 156 157 struct bio *bio; 158 struct bio *biotail; 159 160 /* 161 * The hash is used inside the scheduler, and killed once the 162 * request reaches the dispatch list. The ipi_list is only used 163 * to queue the request for softirq completion, which is long 164 * after the request has been unhashed (and even removed from 165 * the dispatch list). 166 */ 167 union { 168 struct hlist_node hash; /* merge hash */ 169 struct list_head ipi_list; 170 }; 171 172 /* 173 * The rb_node is only used inside the io scheduler, requests 174 * are pruned when moved to the dispatch queue. So let the 175 * completion_data share space with the rb_node. 176 */ 177 union { 178 struct rb_node rb_node; /* sort/lookup */ 179 struct bio_vec special_vec; 180 void *completion_data; 181 int error_count; /* for legacy drivers, don't use */ 182 }; 183 184 /* 185 * Three pointers are available for the IO schedulers, if they need 186 * more they have to dynamically allocate it. Flush requests are 187 * never put on the IO scheduler. So let the flush fields share 188 * space with the elevator data. 189 */ 190 union { 191 struct { 192 struct io_cq *icq; 193 void *priv[2]; 194 } elv; 195 196 struct { 197 unsigned int seq; 198 struct list_head list; 199 rq_end_io_fn *saved_end_io; 200 } flush; 201 }; 202 203 struct gendisk *rq_disk; 204 struct hd_struct *part; 205 unsigned long start_time; 206 struct blk_issue_stat issue_stat; 207 #ifdef CONFIG_BLK_CGROUP 208 struct request_list *rl; /* rl this rq is alloced from */ 209 unsigned long long start_time_ns; 210 unsigned long long io_start_time_ns; /* when passed to hardware */ 211 #endif 212 /* Number of scatter-gather DMA addr+len pairs after 213 * physical address coalescing is performed. 214 */ 215 unsigned short nr_phys_segments; 216 #if defined(CONFIG_BLK_DEV_INTEGRITY) 217 unsigned short nr_integrity_segments; 218 #endif 219 220 unsigned short ioprio; 221 222 unsigned int timeout; 223 224 void *special; /* opaque pointer available for LLD use */ 225 226 unsigned int extra_len; /* length of alignment and padding */ 227 228 unsigned short write_hint; 229 230 unsigned long deadline; 231 struct list_head timeout_list; 232 233 /* 234 * completion callback. 235 */ 236 rq_end_io_fn *end_io; 237 void *end_io_data; 238 239 /* for bidi */ 240 struct request *next_rq; 241 }; 242 243 static inline bool blk_rq_is_scsi(struct request *rq) 244 { 245 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT; 246 } 247 248 static inline bool blk_rq_is_private(struct request *rq) 249 { 250 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT; 251 } 252 253 static inline bool blk_rq_is_passthrough(struct request *rq) 254 { 255 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 256 } 257 258 static inline unsigned short req_get_ioprio(struct request *req) 259 { 260 return req->ioprio; 261 } 262 263 #include <linux/elevator.h> 264 265 struct blk_queue_ctx; 266 267 typedef void (request_fn_proc) (struct request_queue *q); 268 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 269 typedef int (prep_rq_fn) (struct request_queue *, struct request *); 270 typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 271 272 struct bio_vec; 273 typedef void (softirq_done_fn)(struct request *); 274 typedef int (dma_drain_needed_fn)(struct request *); 275 typedef int (lld_busy_fn) (struct request_queue *q); 276 typedef int (bsg_job_fn) (struct bsg_job *); 277 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 278 typedef void (exit_rq_fn)(struct request_queue *, struct request *); 279 280 enum blk_eh_timer_return { 281 BLK_EH_NOT_HANDLED, 282 BLK_EH_HANDLED, 283 BLK_EH_RESET_TIMER, 284 }; 285 286 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 287 288 enum blk_queue_state { 289 Queue_down, 290 Queue_up, 291 }; 292 293 struct blk_queue_tag { 294 struct request **tag_index; /* map of busy tags */ 295 unsigned long *tag_map; /* bit map of free/busy tags */ 296 int max_depth; /* what we will send to device */ 297 int real_max_depth; /* what the array can hold */ 298 atomic_t refcnt; /* map can be shared */ 299 int alloc_policy; /* tag allocation policy */ 300 int next_tag; /* next tag */ 301 }; 302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 304 305 #define BLK_SCSI_MAX_CMDS (256) 306 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 307 308 /* 309 * Zoned block device models (zoned limit). 310 */ 311 enum blk_zoned_model { 312 BLK_ZONED_NONE, /* Regular block device */ 313 BLK_ZONED_HA, /* Host-aware zoned block device */ 314 BLK_ZONED_HM, /* Host-managed zoned block device */ 315 }; 316 317 struct queue_limits { 318 unsigned long bounce_pfn; 319 unsigned long seg_boundary_mask; 320 unsigned long virt_boundary_mask; 321 322 unsigned int max_hw_sectors; 323 unsigned int max_dev_sectors; 324 unsigned int chunk_sectors; 325 unsigned int max_sectors; 326 unsigned int max_segment_size; 327 unsigned int physical_block_size; 328 unsigned int alignment_offset; 329 unsigned int io_min; 330 unsigned int io_opt; 331 unsigned int max_discard_sectors; 332 unsigned int max_hw_discard_sectors; 333 unsigned int max_write_same_sectors; 334 unsigned int max_write_zeroes_sectors; 335 unsigned int discard_granularity; 336 unsigned int discard_alignment; 337 338 unsigned short logical_block_size; 339 unsigned short max_segments; 340 unsigned short max_integrity_segments; 341 unsigned short max_discard_segments; 342 343 unsigned char misaligned; 344 unsigned char discard_misaligned; 345 unsigned char cluster; 346 unsigned char raid_partial_stripes_expensive; 347 enum blk_zoned_model zoned; 348 }; 349 350 #ifdef CONFIG_BLK_DEV_ZONED 351 352 struct blk_zone_report_hdr { 353 unsigned int nr_zones; 354 u8 padding[60]; 355 }; 356 357 extern int blkdev_report_zones(struct block_device *bdev, 358 sector_t sector, struct blk_zone *zones, 359 unsigned int *nr_zones, gfp_t gfp_mask); 360 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 361 sector_t nr_sectors, gfp_t gfp_mask); 362 363 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 364 unsigned int cmd, unsigned long arg); 365 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 366 unsigned int cmd, unsigned long arg); 367 368 #else /* CONFIG_BLK_DEV_ZONED */ 369 370 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 371 fmode_t mode, unsigned int cmd, 372 unsigned long arg) 373 { 374 return -ENOTTY; 375 } 376 377 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 378 fmode_t mode, unsigned int cmd, 379 unsigned long arg) 380 { 381 return -ENOTTY; 382 } 383 384 #endif /* CONFIG_BLK_DEV_ZONED */ 385 386 struct request_queue { 387 /* 388 * Together with queue_head for cacheline sharing 389 */ 390 struct list_head queue_head; 391 struct request *last_merge; 392 struct elevator_queue *elevator; 393 int nr_rqs[2]; /* # allocated [a]sync rqs */ 394 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 395 396 atomic_t shared_hctx_restart; 397 398 struct blk_queue_stats *stats; 399 struct rq_wb *rq_wb; 400 401 /* 402 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 403 * is used, root blkg allocates from @q->root_rl and all other 404 * blkgs from their own blkg->rl. Which one to use should be 405 * determined using bio_request_list(). 406 */ 407 struct request_list root_rl; 408 409 request_fn_proc *request_fn; 410 make_request_fn *make_request_fn; 411 prep_rq_fn *prep_rq_fn; 412 unprep_rq_fn *unprep_rq_fn; 413 softirq_done_fn *softirq_done_fn; 414 rq_timed_out_fn *rq_timed_out_fn; 415 dma_drain_needed_fn *dma_drain_needed; 416 lld_busy_fn *lld_busy_fn; 417 /* Called just after a request is allocated */ 418 init_rq_fn *init_rq_fn; 419 /* Called just before a request is freed */ 420 exit_rq_fn *exit_rq_fn; 421 /* Called from inside blk_get_request() */ 422 void (*initialize_rq_fn)(struct request *rq); 423 424 const struct blk_mq_ops *mq_ops; 425 426 unsigned int *mq_map; 427 428 /* sw queues */ 429 struct blk_mq_ctx __percpu *queue_ctx; 430 unsigned int nr_queues; 431 432 unsigned int queue_depth; 433 434 /* hw dispatch queues */ 435 struct blk_mq_hw_ctx **queue_hw_ctx; 436 unsigned int nr_hw_queues; 437 438 /* 439 * Dispatch queue sorting 440 */ 441 sector_t end_sector; 442 struct request *boundary_rq; 443 444 /* 445 * Delayed queue handling 446 */ 447 struct delayed_work delay_work; 448 449 struct backing_dev_info *backing_dev_info; 450 451 /* 452 * The queue owner gets to use this for whatever they like. 453 * ll_rw_blk doesn't touch it. 454 */ 455 void *queuedata; 456 457 /* 458 * various queue flags, see QUEUE_* below 459 */ 460 unsigned long queue_flags; 461 462 /* 463 * ida allocated id for this queue. Used to index queues from 464 * ioctx. 465 */ 466 int id; 467 468 /* 469 * queue needs bounce pages for pages above this limit 470 */ 471 gfp_t bounce_gfp; 472 473 /* 474 * protects queue structures from reentrancy. ->__queue_lock should 475 * _never_ be used directly, it is queue private. always use 476 * ->queue_lock. 477 */ 478 spinlock_t __queue_lock; 479 spinlock_t *queue_lock; 480 481 /* 482 * queue kobject 483 */ 484 struct kobject kobj; 485 486 /* 487 * mq queue kobject 488 */ 489 struct kobject mq_kobj; 490 491 #ifdef CONFIG_BLK_DEV_INTEGRITY 492 struct blk_integrity integrity; 493 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 494 495 #ifdef CONFIG_PM 496 struct device *dev; 497 int rpm_status; 498 unsigned int nr_pending; 499 #endif 500 501 /* 502 * queue settings 503 */ 504 unsigned long nr_requests; /* Max # of requests */ 505 unsigned int nr_congestion_on; 506 unsigned int nr_congestion_off; 507 unsigned int nr_batching; 508 509 unsigned int dma_drain_size; 510 void *dma_drain_buffer; 511 unsigned int dma_pad_mask; 512 unsigned int dma_alignment; 513 514 struct blk_queue_tag *queue_tags; 515 struct list_head tag_busy_list; 516 517 unsigned int nr_sorted; 518 unsigned int in_flight[2]; 519 520 /* 521 * Number of active block driver functions for which blk_drain_queue() 522 * must wait. Must be incremented around functions that unlock the 523 * queue_lock internally, e.g. scsi_request_fn(). 524 */ 525 unsigned int request_fn_active; 526 527 unsigned int rq_timeout; 528 int poll_nsec; 529 530 struct blk_stat_callback *poll_cb; 531 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 532 533 struct timer_list timeout; 534 struct work_struct timeout_work; 535 struct list_head timeout_list; 536 537 struct list_head icq_list; 538 #ifdef CONFIG_BLK_CGROUP 539 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 540 struct blkcg_gq *root_blkg; 541 struct list_head blkg_list; 542 #endif 543 544 struct queue_limits limits; 545 546 /* 547 * sg stuff 548 */ 549 unsigned int sg_timeout; 550 unsigned int sg_reserved_size; 551 int node; 552 #ifdef CONFIG_BLK_DEV_IO_TRACE 553 struct blk_trace *blk_trace; 554 #endif 555 /* 556 * for flush operations 557 */ 558 struct blk_flush_queue *fq; 559 560 struct list_head requeue_list; 561 spinlock_t requeue_lock; 562 struct delayed_work requeue_work; 563 564 struct mutex sysfs_lock; 565 566 int bypass_depth; 567 atomic_t mq_freeze_depth; 568 569 #if defined(CONFIG_BLK_DEV_BSG) 570 bsg_job_fn *bsg_job_fn; 571 struct bsg_class_device bsg_dev; 572 #endif 573 574 #ifdef CONFIG_BLK_DEV_THROTTLING 575 /* Throttle data */ 576 struct throtl_data *td; 577 #endif 578 struct rcu_head rcu_head; 579 wait_queue_head_t mq_freeze_wq; 580 struct percpu_ref q_usage_counter; 581 struct list_head all_q_node; 582 583 struct blk_mq_tag_set *tag_set; 584 struct list_head tag_set_list; 585 struct bio_set *bio_split; 586 587 #ifdef CONFIG_BLK_DEBUG_FS 588 struct dentry *debugfs_dir; 589 struct dentry *sched_debugfs_dir; 590 #endif 591 592 bool mq_sysfs_init_done; 593 594 size_t cmd_size; 595 void *rq_alloc_data; 596 597 struct work_struct release_work; 598 599 #define BLK_MAX_WRITE_HINTS 5 600 u64 write_hints[BLK_MAX_WRITE_HINTS]; 601 }; 602 603 #define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */ 604 #define QUEUE_FLAG_STOPPED 1 /* queue is stopped */ 605 #define QUEUE_FLAG_DYING 2 /* queue being torn down */ 606 #define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */ 607 #define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */ 608 #define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */ 609 #define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */ 610 #define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */ 611 #define QUEUE_FLAG_STACKABLE 8 /* supports request stacking */ 612 #define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */ 613 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 614 #define QUEUE_FLAG_IO_STAT 10 /* do IO stats */ 615 #define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */ 616 #define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */ 617 #define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */ 618 #define QUEUE_FLAG_SECERASE 14 /* supports secure erase */ 619 #define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */ 620 #define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */ 621 #define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */ 622 #define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/ 623 #define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */ 624 #define QUEUE_FLAG_WC 20 /* Write back caching */ 625 #define QUEUE_FLAG_FUA 21 /* device supports FUA writes */ 626 #define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */ 627 #define QUEUE_FLAG_DAX 23 /* device supports DAX */ 628 #define QUEUE_FLAG_STATS 24 /* track rq completion times */ 629 #define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */ 630 #define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */ 631 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */ 632 #define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */ 633 634 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 635 (1 << QUEUE_FLAG_STACKABLE) | \ 636 (1 << QUEUE_FLAG_SAME_COMP) | \ 637 (1 << QUEUE_FLAG_ADD_RANDOM)) 638 639 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 640 (1 << QUEUE_FLAG_STACKABLE) | \ 641 (1 << QUEUE_FLAG_SAME_COMP) | \ 642 (1 << QUEUE_FLAG_POLL)) 643 644 /* 645 * @q->queue_lock is set while a queue is being initialized. Since we know 646 * that no other threads access the queue object before @q->queue_lock has 647 * been set, it is safe to manipulate queue flags without holding the 648 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and 649 * blk_init_allocated_queue(). 650 */ 651 static inline void queue_lockdep_assert_held(struct request_queue *q) 652 { 653 if (q->queue_lock) 654 lockdep_assert_held(q->queue_lock); 655 } 656 657 static inline void queue_flag_set_unlocked(unsigned int flag, 658 struct request_queue *q) 659 { 660 __set_bit(flag, &q->queue_flags); 661 } 662 663 static inline int queue_flag_test_and_clear(unsigned int flag, 664 struct request_queue *q) 665 { 666 queue_lockdep_assert_held(q); 667 668 if (test_bit(flag, &q->queue_flags)) { 669 __clear_bit(flag, &q->queue_flags); 670 return 1; 671 } 672 673 return 0; 674 } 675 676 static inline int queue_flag_test_and_set(unsigned int flag, 677 struct request_queue *q) 678 { 679 queue_lockdep_assert_held(q); 680 681 if (!test_bit(flag, &q->queue_flags)) { 682 __set_bit(flag, &q->queue_flags); 683 return 0; 684 } 685 686 return 1; 687 } 688 689 static inline void queue_flag_set(unsigned int flag, struct request_queue *q) 690 { 691 queue_lockdep_assert_held(q); 692 __set_bit(flag, &q->queue_flags); 693 } 694 695 static inline void queue_flag_clear_unlocked(unsigned int flag, 696 struct request_queue *q) 697 { 698 __clear_bit(flag, &q->queue_flags); 699 } 700 701 static inline int queue_in_flight(struct request_queue *q) 702 { 703 return q->in_flight[0] + q->in_flight[1]; 704 } 705 706 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) 707 { 708 queue_lockdep_assert_held(q); 709 __clear_bit(flag, &q->queue_flags); 710 } 711 712 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 713 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 714 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 715 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 716 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 717 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 718 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 719 #define blk_queue_noxmerges(q) \ 720 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 721 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 722 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 723 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 724 #define blk_queue_stackable(q) \ 725 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags) 726 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 727 #define blk_queue_secure_erase(q) \ 728 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 729 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 730 #define blk_queue_scsi_passthrough(q) \ 731 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 732 733 #define blk_noretry_request(rq) \ 734 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 735 REQ_FAILFAST_DRIVER)) 736 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 737 738 static inline bool blk_account_rq(struct request *rq) 739 { 740 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 741 } 742 743 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 744 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 745 /* rq->queuelist of dequeued request must be list_empty() */ 746 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 747 748 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 749 750 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 751 752 /* 753 * Driver can handle struct request, if it either has an old style 754 * request_fn defined, or is blk-mq based. 755 */ 756 static inline bool queue_is_rq_based(struct request_queue *q) 757 { 758 return q->request_fn || q->mq_ops; 759 } 760 761 static inline unsigned int blk_queue_cluster(struct request_queue *q) 762 { 763 return q->limits.cluster; 764 } 765 766 static inline enum blk_zoned_model 767 blk_queue_zoned_model(struct request_queue *q) 768 { 769 return q->limits.zoned; 770 } 771 772 static inline bool blk_queue_is_zoned(struct request_queue *q) 773 { 774 switch (blk_queue_zoned_model(q)) { 775 case BLK_ZONED_HA: 776 case BLK_ZONED_HM: 777 return true; 778 default: 779 return false; 780 } 781 } 782 783 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 784 { 785 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 786 } 787 788 static inline bool rq_is_sync(struct request *rq) 789 { 790 return op_is_sync(rq->cmd_flags); 791 } 792 793 static inline bool blk_rl_full(struct request_list *rl, bool sync) 794 { 795 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 796 797 return rl->flags & flag; 798 } 799 800 static inline void blk_set_rl_full(struct request_list *rl, bool sync) 801 { 802 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 803 804 rl->flags |= flag; 805 } 806 807 static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 808 { 809 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 810 811 rl->flags &= ~flag; 812 } 813 814 static inline bool rq_mergeable(struct request *rq) 815 { 816 if (blk_rq_is_passthrough(rq)) 817 return false; 818 819 if (req_op(rq) == REQ_OP_FLUSH) 820 return false; 821 822 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 823 return false; 824 825 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 826 return false; 827 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 828 return false; 829 830 return true; 831 } 832 833 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 834 { 835 if (bio_page(a) == bio_page(b) && 836 bio_offset(a) == bio_offset(b)) 837 return true; 838 839 return false; 840 } 841 842 static inline unsigned int blk_queue_depth(struct request_queue *q) 843 { 844 if (q->queue_depth) 845 return q->queue_depth; 846 847 return q->nr_requests; 848 } 849 850 /* 851 * q->prep_rq_fn return values 852 */ 853 enum { 854 BLKPREP_OK, /* serve it */ 855 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 856 BLKPREP_DEFER, /* leave on queue */ 857 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 858 }; 859 860 extern unsigned long blk_max_low_pfn, blk_max_pfn; 861 862 /* 863 * standard bounce addresses: 864 * 865 * BLK_BOUNCE_HIGH : bounce all highmem pages 866 * BLK_BOUNCE_ANY : don't bounce anything 867 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 868 */ 869 870 #if BITS_PER_LONG == 32 871 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 872 #else 873 #define BLK_BOUNCE_HIGH -1ULL 874 #endif 875 #define BLK_BOUNCE_ANY (-1ULL) 876 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 877 878 /* 879 * default timeout for SG_IO if none specified 880 */ 881 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 882 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 883 884 struct rq_map_data { 885 struct page **pages; 886 int page_order; 887 int nr_entries; 888 unsigned long offset; 889 int null_mapped; 890 int from_user; 891 }; 892 893 struct req_iterator { 894 struct bvec_iter iter; 895 struct bio *bio; 896 }; 897 898 /* This should not be used directly - use rq_for_each_segment */ 899 #define for_each_bio(_bio) \ 900 for (; _bio; _bio = _bio->bi_next) 901 #define __rq_for_each_bio(_bio, rq) \ 902 if ((rq->bio)) \ 903 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 904 905 #define rq_for_each_segment(bvl, _rq, _iter) \ 906 __rq_for_each_bio(_iter.bio, _rq) \ 907 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 908 909 #define rq_iter_last(bvec, _iter) \ 910 (_iter.bio->bi_next == NULL && \ 911 bio_iter_last(bvec, _iter.iter)) 912 913 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 914 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 915 #endif 916 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 917 extern void rq_flush_dcache_pages(struct request *rq); 918 #else 919 static inline void rq_flush_dcache_pages(struct request *rq) 920 { 921 } 922 #endif 923 924 #ifdef CONFIG_PRINTK 925 #define vfs_msg(sb, level, fmt, ...) \ 926 __vfs_msg(sb, level, fmt, ##__VA_ARGS__) 927 #else 928 #define vfs_msg(sb, level, fmt, ...) \ 929 do { \ 930 no_printk(fmt, ##__VA_ARGS__); \ 931 __vfs_msg(sb, "", " "); \ 932 } while (0) 933 #endif 934 935 extern int blk_register_queue(struct gendisk *disk); 936 extern void blk_unregister_queue(struct gendisk *disk); 937 extern blk_qc_t generic_make_request(struct bio *bio); 938 extern void blk_rq_init(struct request_queue *q, struct request *rq); 939 extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 940 extern void blk_put_request(struct request *); 941 extern void __blk_put_request(struct request_queue *, struct request *); 942 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 943 gfp_t gfp_mask); 944 extern void blk_requeue_request(struct request_queue *, struct request *); 945 extern int blk_lld_busy(struct request_queue *q); 946 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 947 struct bio_set *bs, gfp_t gfp_mask, 948 int (*bio_ctr)(struct bio *, struct bio *, void *), 949 void *data); 950 extern void blk_rq_unprep_clone(struct request *rq); 951 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 952 struct request *rq); 953 extern int blk_rq_append_bio(struct request *rq, struct bio *bio); 954 extern void blk_delay_queue(struct request_queue *, unsigned long); 955 extern void blk_queue_split(struct request_queue *, struct bio **); 956 extern void blk_recount_segments(struct request_queue *, struct bio *); 957 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 958 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 959 unsigned int, void __user *); 960 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 961 unsigned int, void __user *); 962 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 963 struct scsi_ioctl_command __user *); 964 965 extern int blk_queue_enter(struct request_queue *q, bool nowait); 966 extern void blk_queue_exit(struct request_queue *q); 967 extern void blk_start_queue(struct request_queue *q); 968 extern void blk_start_queue_async(struct request_queue *q); 969 extern void blk_stop_queue(struct request_queue *q); 970 extern void blk_sync_queue(struct request_queue *q); 971 extern void __blk_stop_queue(struct request_queue *q); 972 extern void __blk_run_queue(struct request_queue *q); 973 extern void __blk_run_queue_uncond(struct request_queue *q); 974 extern void blk_run_queue(struct request_queue *); 975 extern void blk_run_queue_async(struct request_queue *q); 976 extern int blk_rq_map_user(struct request_queue *, struct request *, 977 struct rq_map_data *, void __user *, unsigned long, 978 gfp_t); 979 extern int blk_rq_unmap_user(struct bio *); 980 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 981 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 982 struct rq_map_data *, const struct iov_iter *, 983 gfp_t); 984 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 985 struct request *, int); 986 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 987 struct request *, int, rq_end_io_fn *); 988 989 int blk_status_to_errno(blk_status_t status); 990 blk_status_t errno_to_blk_status(int errno); 991 992 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 993 994 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 995 { 996 return bdev->bd_disk->queue; /* this is never NULL */ 997 } 998 999 /* 1000 * blk_rq_pos() : the current sector 1001 * blk_rq_bytes() : bytes left in the entire request 1002 * blk_rq_cur_bytes() : bytes left in the current segment 1003 * blk_rq_err_bytes() : bytes left till the next error boundary 1004 * blk_rq_sectors() : sectors left in the entire request 1005 * blk_rq_cur_sectors() : sectors left in the current segment 1006 */ 1007 static inline sector_t blk_rq_pos(const struct request *rq) 1008 { 1009 return rq->__sector; 1010 } 1011 1012 static inline unsigned int blk_rq_bytes(const struct request *rq) 1013 { 1014 return rq->__data_len; 1015 } 1016 1017 static inline int blk_rq_cur_bytes(const struct request *rq) 1018 { 1019 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1020 } 1021 1022 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1023 1024 static inline unsigned int blk_rq_sectors(const struct request *rq) 1025 { 1026 return blk_rq_bytes(rq) >> 9; 1027 } 1028 1029 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1030 { 1031 return blk_rq_cur_bytes(rq) >> 9; 1032 } 1033 1034 /* 1035 * Some commands like WRITE SAME have a payload or data transfer size which 1036 * is different from the size of the request. Any driver that supports such 1037 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1038 * calculate the data transfer size. 1039 */ 1040 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1041 { 1042 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1043 return rq->special_vec.bv_len; 1044 return blk_rq_bytes(rq); 1045 } 1046 1047 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1048 int op) 1049 { 1050 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1051 return min(q->limits.max_discard_sectors, UINT_MAX >> 9); 1052 1053 if (unlikely(op == REQ_OP_WRITE_SAME)) 1054 return q->limits.max_write_same_sectors; 1055 1056 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1057 return q->limits.max_write_zeroes_sectors; 1058 1059 return q->limits.max_sectors; 1060 } 1061 1062 /* 1063 * Return maximum size of a request at given offset. Only valid for 1064 * file system requests. 1065 */ 1066 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1067 sector_t offset) 1068 { 1069 if (!q->limits.chunk_sectors) 1070 return q->limits.max_sectors; 1071 1072 return q->limits.chunk_sectors - 1073 (offset & (q->limits.chunk_sectors - 1)); 1074 } 1075 1076 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1077 sector_t offset) 1078 { 1079 struct request_queue *q = rq->q; 1080 1081 if (blk_rq_is_passthrough(rq)) 1082 return q->limits.max_hw_sectors; 1083 1084 if (!q->limits.chunk_sectors || 1085 req_op(rq) == REQ_OP_DISCARD || 1086 req_op(rq) == REQ_OP_SECURE_ERASE) 1087 return blk_queue_get_max_sectors(q, req_op(rq)); 1088 1089 return min(blk_max_size_offset(q, offset), 1090 blk_queue_get_max_sectors(q, req_op(rq))); 1091 } 1092 1093 static inline unsigned int blk_rq_count_bios(struct request *rq) 1094 { 1095 unsigned int nr_bios = 0; 1096 struct bio *bio; 1097 1098 __rq_for_each_bio(bio, rq) 1099 nr_bios++; 1100 1101 return nr_bios; 1102 } 1103 1104 /* 1105 * Request issue related functions. 1106 */ 1107 extern struct request *blk_peek_request(struct request_queue *q); 1108 extern void blk_start_request(struct request *rq); 1109 extern struct request *blk_fetch_request(struct request_queue *q); 1110 1111 /* 1112 * Request completion related functions. 1113 * 1114 * blk_update_request() completes given number of bytes and updates 1115 * the request without completing it. 1116 * 1117 * blk_end_request() and friends. __blk_end_request() must be called 1118 * with the request queue spinlock acquired. 1119 * 1120 * Several drivers define their own end_request and call 1121 * blk_end_request() for parts of the original function. 1122 * This prevents code duplication in drivers. 1123 */ 1124 extern bool blk_update_request(struct request *rq, blk_status_t error, 1125 unsigned int nr_bytes); 1126 extern void blk_finish_request(struct request *rq, blk_status_t error); 1127 extern bool blk_end_request(struct request *rq, blk_status_t error, 1128 unsigned int nr_bytes); 1129 extern void blk_end_request_all(struct request *rq, blk_status_t error); 1130 extern bool __blk_end_request(struct request *rq, blk_status_t error, 1131 unsigned int nr_bytes); 1132 extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1133 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1134 1135 extern void blk_complete_request(struct request *); 1136 extern void __blk_complete_request(struct request *); 1137 extern void blk_abort_request(struct request *); 1138 extern void blk_unprep_request(struct request *); 1139 1140 /* 1141 * Access functions for manipulating queue properties 1142 */ 1143 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1144 spinlock_t *lock, int node_id); 1145 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1146 extern int blk_init_allocated_queue(struct request_queue *); 1147 extern void blk_cleanup_queue(struct request_queue *); 1148 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1149 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1150 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1151 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1152 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1153 extern void blk_queue_max_discard_segments(struct request_queue *, 1154 unsigned short); 1155 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1156 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1157 unsigned int max_discard_sectors); 1158 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1159 unsigned int max_write_same_sectors); 1160 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1161 unsigned int max_write_same_sectors); 1162 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1163 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1164 extern void blk_queue_alignment_offset(struct request_queue *q, 1165 unsigned int alignment); 1166 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1167 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1168 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1169 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1170 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1171 extern void blk_set_default_limits(struct queue_limits *lim); 1172 extern void blk_set_stacking_limits(struct queue_limits *lim); 1173 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1174 sector_t offset); 1175 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1176 sector_t offset); 1177 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1178 sector_t offset); 1179 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1180 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1181 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1182 extern int blk_queue_dma_drain(struct request_queue *q, 1183 dma_drain_needed_fn *dma_drain_needed, 1184 void *buf, unsigned int size); 1185 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1186 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1187 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1188 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1189 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1190 extern void blk_queue_dma_alignment(struct request_queue *, int); 1191 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1192 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1193 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1194 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1195 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1196 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1197 1198 /* 1199 * Number of physical segments as sent to the device. 1200 * 1201 * Normally this is the number of discontiguous data segments sent by the 1202 * submitter. But for data-less command like discard we might have no 1203 * actual data segments submitted, but the driver might have to add it's 1204 * own special payload. In that case we still return 1 here so that this 1205 * special payload will be mapped. 1206 */ 1207 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1208 { 1209 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1210 return 1; 1211 return rq->nr_phys_segments; 1212 } 1213 1214 /* 1215 * Number of discard segments (or ranges) the driver needs to fill in. 1216 * Each discard bio merged into a request is counted as one segment. 1217 */ 1218 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1219 { 1220 return max_t(unsigned short, rq->nr_phys_segments, 1); 1221 } 1222 1223 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1224 extern void blk_dump_rq_flags(struct request *, char *); 1225 extern long nr_blockdev_pages(void); 1226 1227 bool __must_check blk_get_queue(struct request_queue *); 1228 struct request_queue *blk_alloc_queue(gfp_t); 1229 struct request_queue *blk_alloc_queue_node(gfp_t, int); 1230 extern void blk_put_queue(struct request_queue *); 1231 extern void blk_set_queue_dying(struct request_queue *); 1232 1233 /* 1234 * block layer runtime pm functions 1235 */ 1236 #ifdef CONFIG_PM 1237 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1238 extern int blk_pre_runtime_suspend(struct request_queue *q); 1239 extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1240 extern void blk_pre_runtime_resume(struct request_queue *q); 1241 extern void blk_post_runtime_resume(struct request_queue *q, int err); 1242 extern void blk_set_runtime_active(struct request_queue *q); 1243 #else 1244 static inline void blk_pm_runtime_init(struct request_queue *q, 1245 struct device *dev) {} 1246 static inline int blk_pre_runtime_suspend(struct request_queue *q) 1247 { 1248 return -ENOSYS; 1249 } 1250 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1251 static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1252 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1253 static inline void blk_set_runtime_active(struct request_queue *q) {} 1254 #endif 1255 1256 /* 1257 * blk_plug permits building a queue of related requests by holding the I/O 1258 * fragments for a short period. This allows merging of sequential requests 1259 * into single larger request. As the requests are moved from a per-task list to 1260 * the device's request_queue in a batch, this results in improved scalability 1261 * as the lock contention for request_queue lock is reduced. 1262 * 1263 * It is ok not to disable preemption when adding the request to the plug list 1264 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1265 * the plug list when the task sleeps by itself. For details, please see 1266 * schedule() where blk_schedule_flush_plug() is called. 1267 */ 1268 struct blk_plug { 1269 struct list_head list; /* requests */ 1270 struct list_head mq_list; /* blk-mq requests */ 1271 struct list_head cb_list; /* md requires an unplug callback */ 1272 }; 1273 #define BLK_MAX_REQUEST_COUNT 16 1274 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1275 1276 struct blk_plug_cb; 1277 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1278 struct blk_plug_cb { 1279 struct list_head list; 1280 blk_plug_cb_fn callback; 1281 void *data; 1282 }; 1283 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1284 void *data, int size); 1285 extern void blk_start_plug(struct blk_plug *); 1286 extern void blk_finish_plug(struct blk_plug *); 1287 extern void blk_flush_plug_list(struct blk_plug *, bool); 1288 1289 static inline void blk_flush_plug(struct task_struct *tsk) 1290 { 1291 struct blk_plug *plug = tsk->plug; 1292 1293 if (plug) 1294 blk_flush_plug_list(plug, false); 1295 } 1296 1297 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1298 { 1299 struct blk_plug *plug = tsk->plug; 1300 1301 if (plug) 1302 blk_flush_plug_list(plug, true); 1303 } 1304 1305 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1306 { 1307 struct blk_plug *plug = tsk->plug; 1308 1309 return plug && 1310 (!list_empty(&plug->list) || 1311 !list_empty(&plug->mq_list) || 1312 !list_empty(&plug->cb_list)); 1313 } 1314 1315 /* 1316 * tag stuff 1317 */ 1318 extern int blk_queue_start_tag(struct request_queue *, struct request *); 1319 extern struct request *blk_queue_find_tag(struct request_queue *, int); 1320 extern void blk_queue_end_tag(struct request_queue *, struct request *); 1321 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1322 extern void blk_queue_free_tags(struct request_queue *); 1323 extern int blk_queue_resize_tags(struct request_queue *, int); 1324 extern void blk_queue_invalidate_tags(struct request_queue *); 1325 extern struct blk_queue_tag *blk_init_tags(int, int); 1326 extern void blk_free_tags(struct blk_queue_tag *); 1327 1328 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1329 int tag) 1330 { 1331 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1332 return NULL; 1333 return bqt->tag_index[tag]; 1334 } 1335 1336 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1337 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1338 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1339 1340 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1341 1342 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1343 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1344 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1345 sector_t nr_sects, gfp_t gfp_mask, int flags, 1346 struct bio **biop); 1347 1348 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1349 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1350 1351 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1352 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1353 unsigned flags); 1354 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1355 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1356 1357 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1358 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1359 { 1360 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9), 1361 nr_blocks << (sb->s_blocksize_bits - 9), 1362 gfp_mask, flags); 1363 } 1364 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1365 sector_t nr_blocks, gfp_t gfp_mask) 1366 { 1367 return blkdev_issue_zeroout(sb->s_bdev, 1368 block << (sb->s_blocksize_bits - 9), 1369 nr_blocks << (sb->s_blocksize_bits - 9), 1370 gfp_mask, 0); 1371 } 1372 1373 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm); 1374 1375 enum blk_default_limits { 1376 BLK_MAX_SEGMENTS = 128, 1377 BLK_SAFE_MAX_SECTORS = 255, 1378 BLK_DEF_MAX_SECTORS = 2560, 1379 BLK_MAX_SEGMENT_SIZE = 65536, 1380 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1381 }; 1382 1383 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1384 1385 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1386 { 1387 return q->limits.seg_boundary_mask; 1388 } 1389 1390 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1391 { 1392 return q->limits.virt_boundary_mask; 1393 } 1394 1395 static inline unsigned int queue_max_sectors(struct request_queue *q) 1396 { 1397 return q->limits.max_sectors; 1398 } 1399 1400 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1401 { 1402 return q->limits.max_hw_sectors; 1403 } 1404 1405 static inline unsigned short queue_max_segments(struct request_queue *q) 1406 { 1407 return q->limits.max_segments; 1408 } 1409 1410 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1411 { 1412 return q->limits.max_discard_segments; 1413 } 1414 1415 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1416 { 1417 return q->limits.max_segment_size; 1418 } 1419 1420 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1421 { 1422 int retval = 512; 1423 1424 if (q && q->limits.logical_block_size) 1425 retval = q->limits.logical_block_size; 1426 1427 return retval; 1428 } 1429 1430 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1431 { 1432 return queue_logical_block_size(bdev_get_queue(bdev)); 1433 } 1434 1435 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1436 { 1437 return q->limits.physical_block_size; 1438 } 1439 1440 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1441 { 1442 return queue_physical_block_size(bdev_get_queue(bdev)); 1443 } 1444 1445 static inline unsigned int queue_io_min(struct request_queue *q) 1446 { 1447 return q->limits.io_min; 1448 } 1449 1450 static inline int bdev_io_min(struct block_device *bdev) 1451 { 1452 return queue_io_min(bdev_get_queue(bdev)); 1453 } 1454 1455 static inline unsigned int queue_io_opt(struct request_queue *q) 1456 { 1457 return q->limits.io_opt; 1458 } 1459 1460 static inline int bdev_io_opt(struct block_device *bdev) 1461 { 1462 return queue_io_opt(bdev_get_queue(bdev)); 1463 } 1464 1465 static inline int queue_alignment_offset(struct request_queue *q) 1466 { 1467 if (q->limits.misaligned) 1468 return -1; 1469 1470 return q->limits.alignment_offset; 1471 } 1472 1473 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1474 { 1475 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1476 unsigned int alignment = sector_div(sector, granularity >> 9) << 9; 1477 1478 return (granularity + lim->alignment_offset - alignment) % granularity; 1479 } 1480 1481 static inline int bdev_alignment_offset(struct block_device *bdev) 1482 { 1483 struct request_queue *q = bdev_get_queue(bdev); 1484 1485 if (q->limits.misaligned) 1486 return -1; 1487 1488 if (bdev != bdev->bd_contains) 1489 return bdev->bd_part->alignment_offset; 1490 1491 return q->limits.alignment_offset; 1492 } 1493 1494 static inline int queue_discard_alignment(struct request_queue *q) 1495 { 1496 if (q->limits.discard_misaligned) 1497 return -1; 1498 1499 return q->limits.discard_alignment; 1500 } 1501 1502 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1503 { 1504 unsigned int alignment, granularity, offset; 1505 1506 if (!lim->max_discard_sectors) 1507 return 0; 1508 1509 /* Why are these in bytes, not sectors? */ 1510 alignment = lim->discard_alignment >> 9; 1511 granularity = lim->discard_granularity >> 9; 1512 if (!granularity) 1513 return 0; 1514 1515 /* Offset of the partition start in 'granularity' sectors */ 1516 offset = sector_div(sector, granularity); 1517 1518 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1519 offset = (granularity + alignment - offset) % granularity; 1520 1521 /* Turn it back into bytes, gaah */ 1522 return offset << 9; 1523 } 1524 1525 static inline int bdev_discard_alignment(struct block_device *bdev) 1526 { 1527 struct request_queue *q = bdev_get_queue(bdev); 1528 1529 if (bdev != bdev->bd_contains) 1530 return bdev->bd_part->discard_alignment; 1531 1532 return q->limits.discard_alignment; 1533 } 1534 1535 static inline unsigned int bdev_write_same(struct block_device *bdev) 1536 { 1537 struct request_queue *q = bdev_get_queue(bdev); 1538 1539 if (q) 1540 return q->limits.max_write_same_sectors; 1541 1542 return 0; 1543 } 1544 1545 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1546 { 1547 struct request_queue *q = bdev_get_queue(bdev); 1548 1549 if (q) 1550 return q->limits.max_write_zeroes_sectors; 1551 1552 return 0; 1553 } 1554 1555 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1556 { 1557 struct request_queue *q = bdev_get_queue(bdev); 1558 1559 if (q) 1560 return blk_queue_zoned_model(q); 1561 1562 return BLK_ZONED_NONE; 1563 } 1564 1565 static inline bool bdev_is_zoned(struct block_device *bdev) 1566 { 1567 struct request_queue *q = bdev_get_queue(bdev); 1568 1569 if (q) 1570 return blk_queue_is_zoned(q); 1571 1572 return false; 1573 } 1574 1575 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1576 { 1577 struct request_queue *q = bdev_get_queue(bdev); 1578 1579 if (q) 1580 return blk_queue_zone_sectors(q); 1581 1582 return 0; 1583 } 1584 1585 static inline int queue_dma_alignment(struct request_queue *q) 1586 { 1587 return q ? q->dma_alignment : 511; 1588 } 1589 1590 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1591 unsigned int len) 1592 { 1593 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1594 return !(addr & alignment) && !(len & alignment); 1595 } 1596 1597 /* assumes size > 256 */ 1598 static inline unsigned int blksize_bits(unsigned int size) 1599 { 1600 unsigned int bits = 8; 1601 do { 1602 bits++; 1603 size >>= 1; 1604 } while (size > 256); 1605 return bits; 1606 } 1607 1608 static inline unsigned int block_size(struct block_device *bdev) 1609 { 1610 return bdev->bd_block_size; 1611 } 1612 1613 static inline bool queue_flush_queueable(struct request_queue *q) 1614 { 1615 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1616 } 1617 1618 typedef struct {struct page *v;} Sector; 1619 1620 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1621 1622 static inline void put_dev_sector(Sector p) 1623 { 1624 put_page(p.v); 1625 } 1626 1627 static inline bool __bvec_gap_to_prev(struct request_queue *q, 1628 struct bio_vec *bprv, unsigned int offset) 1629 { 1630 return offset || 1631 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1632 } 1633 1634 /* 1635 * Check if adding a bio_vec after bprv with offset would create a gap in 1636 * the SG list. Most drivers don't care about this, but some do. 1637 */ 1638 static inline bool bvec_gap_to_prev(struct request_queue *q, 1639 struct bio_vec *bprv, unsigned int offset) 1640 { 1641 if (!queue_virt_boundary(q)) 1642 return false; 1643 return __bvec_gap_to_prev(q, bprv, offset); 1644 } 1645 1646 /* 1647 * Check if the two bvecs from two bios can be merged to one segment. 1648 * If yes, no need to check gap between the two bios since the 1st bio 1649 * and the 1st bvec in the 2nd bio can be handled in one segment. 1650 */ 1651 static inline bool bios_segs_mergeable(struct request_queue *q, 1652 struct bio *prev, struct bio_vec *prev_last_bv, 1653 struct bio_vec *next_first_bv) 1654 { 1655 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1656 return false; 1657 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1658 return false; 1659 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1660 queue_max_segment_size(q)) 1661 return false; 1662 return true; 1663 } 1664 1665 static inline bool bio_will_gap(struct request_queue *q, 1666 struct request *prev_rq, 1667 struct bio *prev, 1668 struct bio *next) 1669 { 1670 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1671 struct bio_vec pb, nb; 1672 1673 /* 1674 * don't merge if the 1st bio starts with non-zero 1675 * offset, otherwise it is quite difficult to respect 1676 * sg gap limit. We work hard to merge a huge number of small 1677 * single bios in case of mkfs. 1678 */ 1679 if (prev_rq) 1680 bio_get_first_bvec(prev_rq->bio, &pb); 1681 else 1682 bio_get_first_bvec(prev, &pb); 1683 if (pb.bv_offset) 1684 return true; 1685 1686 /* 1687 * We don't need to worry about the situation that the 1688 * merged segment ends in unaligned virt boundary: 1689 * 1690 * - if 'pb' ends aligned, the merged segment ends aligned 1691 * - if 'pb' ends unaligned, the next bio must include 1692 * one single bvec of 'nb', otherwise the 'nb' can't 1693 * merge with 'pb' 1694 */ 1695 bio_get_last_bvec(prev, &pb); 1696 bio_get_first_bvec(next, &nb); 1697 1698 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1699 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1700 } 1701 1702 return false; 1703 } 1704 1705 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1706 { 1707 return bio_will_gap(req->q, req, req->biotail, bio); 1708 } 1709 1710 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1711 { 1712 return bio_will_gap(req->q, NULL, bio, req->bio); 1713 } 1714 1715 int kblockd_schedule_work(struct work_struct *work); 1716 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1717 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay); 1718 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1719 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1720 1721 #ifdef CONFIG_BLK_CGROUP 1722 /* 1723 * This should not be using sched_clock(). A real patch is in progress 1724 * to fix this up, until that is in place we need to disable preemption 1725 * around sched_clock() in this function and set_io_start_time_ns(). 1726 */ 1727 static inline void set_start_time_ns(struct request *req) 1728 { 1729 preempt_disable(); 1730 req->start_time_ns = sched_clock(); 1731 preempt_enable(); 1732 } 1733 1734 static inline void set_io_start_time_ns(struct request *req) 1735 { 1736 preempt_disable(); 1737 req->io_start_time_ns = sched_clock(); 1738 preempt_enable(); 1739 } 1740 1741 static inline uint64_t rq_start_time_ns(struct request *req) 1742 { 1743 return req->start_time_ns; 1744 } 1745 1746 static inline uint64_t rq_io_start_time_ns(struct request *req) 1747 { 1748 return req->io_start_time_ns; 1749 } 1750 #else 1751 static inline void set_start_time_ns(struct request *req) {} 1752 static inline void set_io_start_time_ns(struct request *req) {} 1753 static inline uint64_t rq_start_time_ns(struct request *req) 1754 { 1755 return 0; 1756 } 1757 static inline uint64_t rq_io_start_time_ns(struct request *req) 1758 { 1759 return 0; 1760 } 1761 #endif 1762 1763 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1764 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1765 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1766 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1767 1768 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1769 1770 enum blk_integrity_flags { 1771 BLK_INTEGRITY_VERIFY = 1 << 0, 1772 BLK_INTEGRITY_GENERATE = 1 << 1, 1773 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1774 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1775 }; 1776 1777 struct blk_integrity_iter { 1778 void *prot_buf; 1779 void *data_buf; 1780 sector_t seed; 1781 unsigned int data_size; 1782 unsigned short interval; 1783 const char *disk_name; 1784 }; 1785 1786 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1787 1788 struct blk_integrity_profile { 1789 integrity_processing_fn *generate_fn; 1790 integrity_processing_fn *verify_fn; 1791 const char *name; 1792 }; 1793 1794 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1795 extern void blk_integrity_unregister(struct gendisk *); 1796 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1797 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1798 struct scatterlist *); 1799 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1800 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1801 struct request *); 1802 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1803 struct bio *); 1804 1805 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1806 { 1807 struct blk_integrity *bi = &disk->queue->integrity; 1808 1809 if (!bi->profile) 1810 return NULL; 1811 1812 return bi; 1813 } 1814 1815 static inline 1816 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1817 { 1818 return blk_get_integrity(bdev->bd_disk); 1819 } 1820 1821 static inline bool blk_integrity_rq(struct request *rq) 1822 { 1823 return rq->cmd_flags & REQ_INTEGRITY; 1824 } 1825 1826 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1827 unsigned int segs) 1828 { 1829 q->limits.max_integrity_segments = segs; 1830 } 1831 1832 static inline unsigned short 1833 queue_max_integrity_segments(struct request_queue *q) 1834 { 1835 return q->limits.max_integrity_segments; 1836 } 1837 1838 static inline bool integrity_req_gap_back_merge(struct request *req, 1839 struct bio *next) 1840 { 1841 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1842 struct bio_integrity_payload *bip_next = bio_integrity(next); 1843 1844 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1845 bip_next->bip_vec[0].bv_offset); 1846 } 1847 1848 static inline bool integrity_req_gap_front_merge(struct request *req, 1849 struct bio *bio) 1850 { 1851 struct bio_integrity_payload *bip = bio_integrity(bio); 1852 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1853 1854 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1855 bip_next->bip_vec[0].bv_offset); 1856 } 1857 1858 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1859 1860 struct bio; 1861 struct block_device; 1862 struct gendisk; 1863 struct blk_integrity; 1864 1865 static inline int blk_integrity_rq(struct request *rq) 1866 { 1867 return 0; 1868 } 1869 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1870 struct bio *b) 1871 { 1872 return 0; 1873 } 1874 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1875 struct bio *b, 1876 struct scatterlist *s) 1877 { 1878 return 0; 1879 } 1880 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1881 { 1882 return NULL; 1883 } 1884 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1885 { 1886 return NULL; 1887 } 1888 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1889 { 1890 return 0; 1891 } 1892 static inline void blk_integrity_register(struct gendisk *d, 1893 struct blk_integrity *b) 1894 { 1895 } 1896 static inline void blk_integrity_unregister(struct gendisk *d) 1897 { 1898 } 1899 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1900 unsigned int segs) 1901 { 1902 } 1903 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1904 { 1905 return 0; 1906 } 1907 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1908 struct request *r1, 1909 struct request *r2) 1910 { 1911 return true; 1912 } 1913 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1914 struct request *r, 1915 struct bio *b) 1916 { 1917 return true; 1918 } 1919 1920 static inline bool integrity_req_gap_back_merge(struct request *req, 1921 struct bio *next) 1922 { 1923 return false; 1924 } 1925 static inline bool integrity_req_gap_front_merge(struct request *req, 1926 struct bio *bio) 1927 { 1928 return false; 1929 } 1930 1931 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1932 1933 struct block_device_operations { 1934 int (*open) (struct block_device *, fmode_t); 1935 void (*release) (struct gendisk *, fmode_t); 1936 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 1937 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1938 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1939 unsigned int (*check_events) (struct gendisk *disk, 1940 unsigned int clearing); 1941 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1942 int (*media_changed) (struct gendisk *); 1943 void (*unlock_native_capacity) (struct gendisk *); 1944 int (*revalidate_disk) (struct gendisk *); 1945 int (*getgeo)(struct block_device *, struct hd_geometry *); 1946 /* this callback is with swap_lock and sometimes page table lock held */ 1947 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1948 struct module *owner; 1949 const struct pr_ops *pr_ops; 1950 }; 1951 1952 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1953 unsigned long); 1954 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1955 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1956 struct writeback_control *); 1957 #else /* CONFIG_BLOCK */ 1958 1959 struct block_device; 1960 1961 /* 1962 * stubs for when the block layer is configured out 1963 */ 1964 #define buffer_heads_over_limit 0 1965 1966 static inline long nr_blockdev_pages(void) 1967 { 1968 return 0; 1969 } 1970 1971 struct blk_plug { 1972 }; 1973 1974 static inline void blk_start_plug(struct blk_plug *plug) 1975 { 1976 } 1977 1978 static inline void blk_finish_plug(struct blk_plug *plug) 1979 { 1980 } 1981 1982 static inline void blk_flush_plug(struct task_struct *task) 1983 { 1984 } 1985 1986 static inline void blk_schedule_flush_plug(struct task_struct *task) 1987 { 1988 } 1989 1990 1991 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1992 { 1993 return false; 1994 } 1995 1996 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1997 sector_t *error_sector) 1998 { 1999 return 0; 2000 } 2001 2002 #endif /* CONFIG_BLOCK */ 2003 2004 #endif 2005