1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 31 struct module; 32 struct scsi_ioctl_command; 33 34 struct request_queue; 35 struct elevator_queue; 36 struct blk_trace; 37 struct request; 38 struct sg_io_hdr; 39 struct bsg_job; 40 struct blkcg_gq; 41 struct blk_flush_queue; 42 struct pr_ops; 43 struct rq_qos; 44 struct blk_queue_stats; 45 struct blk_stat_callback; 46 struct blk_keyslot_manager; 47 48 #define BLKDEV_MIN_RQ 4 49 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 50 51 /* Must be consistent with blk_mq_poll_stats_bkt() */ 52 #define BLK_MQ_POLL_STATS_BKTS 16 53 54 /* Doing classic polling */ 55 #define BLK_MQ_POLL_CLASSIC -1 56 57 /* 58 * Maximum number of blkcg policies allowed to be registered concurrently. 59 * Defined here to simplify include dependency. 60 */ 61 #define BLKCG_MAX_POLS 5 62 63 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 64 65 /* 66 * request flags */ 67 typedef __u32 __bitwise req_flags_t; 68 69 /* elevator knows about this request */ 70 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 71 /* drive already may have started this one */ 72 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 73 /* may not be passed by ioscheduler */ 74 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 75 /* request for flush sequence */ 76 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 77 /* merge of different types, fail separately */ 78 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 79 /* track inflight for MQ */ 80 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 81 /* don't call prep for this one */ 82 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 83 /* set for "ide_preempt" requests and also for requests for which the SCSI 84 "quiesce" state must be ignored. */ 85 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 86 /* vaguely specified driver internal error. Ignored by the block layer */ 87 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 88 /* don't warn about errors */ 89 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 90 /* elevator private data attached */ 91 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 92 /* account into disk and partition IO statistics */ 93 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 94 /* request came from our alloc pool */ 95 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 96 /* runtime pm request */ 97 #define RQF_PM ((__force req_flags_t)(1 << 15)) 98 /* on IO scheduler merge hash */ 99 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 100 /* track IO completion time */ 101 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 102 /* Look at ->special_vec for the actual data payload instead of the 103 bio chain. */ 104 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 105 /* The per-zone write lock is held for this request */ 106 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 107 /* already slept for hybrid poll */ 108 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 109 /* ->timeout has been called, don't expire again */ 110 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 111 112 /* flags that prevent us from merging requests: */ 113 #define RQF_NOMERGE_FLAGS \ 114 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 115 116 /* 117 * Request state for blk-mq. 118 */ 119 enum mq_rq_state { 120 MQ_RQ_IDLE = 0, 121 MQ_RQ_IN_FLIGHT = 1, 122 MQ_RQ_COMPLETE = 2, 123 }; 124 125 /* 126 * Try to put the fields that are referenced together in the same cacheline. 127 * 128 * If you modify this structure, make sure to update blk_rq_init() and 129 * especially blk_mq_rq_ctx_init() to take care of the added fields. 130 */ 131 struct request { 132 struct request_queue *q; 133 struct blk_mq_ctx *mq_ctx; 134 struct blk_mq_hw_ctx *mq_hctx; 135 136 unsigned int cmd_flags; /* op and common flags */ 137 req_flags_t rq_flags; 138 139 int tag; 140 int internal_tag; 141 142 /* the following two fields are internal, NEVER access directly */ 143 unsigned int __data_len; /* total data len */ 144 sector_t __sector; /* sector cursor */ 145 146 struct bio *bio; 147 struct bio *biotail; 148 149 struct list_head queuelist; 150 151 /* 152 * The hash is used inside the scheduler, and killed once the 153 * request reaches the dispatch list. The ipi_list is only used 154 * to queue the request for softirq completion, which is long 155 * after the request has been unhashed (and even removed from 156 * the dispatch list). 157 */ 158 union { 159 struct hlist_node hash; /* merge hash */ 160 struct list_head ipi_list; 161 }; 162 163 /* 164 * The rb_node is only used inside the io scheduler, requests 165 * are pruned when moved to the dispatch queue. So let the 166 * completion_data share space with the rb_node. 167 */ 168 union { 169 struct rb_node rb_node; /* sort/lookup */ 170 struct bio_vec special_vec; 171 void *completion_data; 172 int error_count; /* for legacy drivers, don't use */ 173 }; 174 175 /* 176 * Three pointers are available for the IO schedulers, if they need 177 * more they have to dynamically allocate it. Flush requests are 178 * never put on the IO scheduler. So let the flush fields share 179 * space with the elevator data. 180 */ 181 union { 182 struct { 183 struct io_cq *icq; 184 void *priv[2]; 185 } elv; 186 187 struct { 188 unsigned int seq; 189 struct list_head list; 190 rq_end_io_fn *saved_end_io; 191 } flush; 192 }; 193 194 struct gendisk *rq_disk; 195 struct hd_struct *part; 196 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 197 /* Time that the first bio started allocating this request. */ 198 u64 alloc_time_ns; 199 #endif 200 /* Time that this request was allocated for this IO. */ 201 u64 start_time_ns; 202 /* Time that I/O was submitted to the device. */ 203 u64 io_start_time_ns; 204 205 #ifdef CONFIG_BLK_WBT 206 unsigned short wbt_flags; 207 #endif 208 /* 209 * rq sectors used for blk stats. It has the same value 210 * with blk_rq_sectors(rq), except that it never be zeroed 211 * by completion. 212 */ 213 unsigned short stats_sectors; 214 215 /* 216 * Number of scatter-gather DMA addr+len pairs after 217 * physical address coalescing is performed. 218 */ 219 unsigned short nr_phys_segments; 220 221 #if defined(CONFIG_BLK_DEV_INTEGRITY) 222 unsigned short nr_integrity_segments; 223 #endif 224 225 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 226 struct bio_crypt_ctx *crypt_ctx; 227 struct blk_ksm_keyslot *crypt_keyslot; 228 #endif 229 230 unsigned short write_hint; 231 unsigned short ioprio; 232 233 enum mq_rq_state state; 234 refcount_t ref; 235 236 unsigned int timeout; 237 unsigned long deadline; 238 239 union { 240 struct __call_single_data csd; 241 u64 fifo_time; 242 }; 243 244 /* 245 * completion callback. 246 */ 247 rq_end_io_fn *end_io; 248 void *end_io_data; 249 }; 250 251 static inline bool blk_op_is_scsi(unsigned int op) 252 { 253 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 254 } 255 256 static inline bool blk_op_is_private(unsigned int op) 257 { 258 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 259 } 260 261 static inline bool blk_rq_is_scsi(struct request *rq) 262 { 263 return blk_op_is_scsi(req_op(rq)); 264 } 265 266 static inline bool blk_rq_is_private(struct request *rq) 267 { 268 return blk_op_is_private(req_op(rq)); 269 } 270 271 static inline bool blk_rq_is_passthrough(struct request *rq) 272 { 273 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 274 } 275 276 static inline bool bio_is_passthrough(struct bio *bio) 277 { 278 unsigned op = bio_op(bio); 279 280 return blk_op_is_scsi(op) || blk_op_is_private(op); 281 } 282 283 static inline unsigned short req_get_ioprio(struct request *req) 284 { 285 return req->ioprio; 286 } 287 288 #include <linux/elevator.h> 289 290 struct blk_queue_ctx; 291 292 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 293 294 struct bio_vec; 295 296 enum blk_eh_timer_return { 297 BLK_EH_DONE, /* drivers has completed the command */ 298 BLK_EH_RESET_TIMER, /* reset timer and try again */ 299 }; 300 301 enum blk_queue_state { 302 Queue_down, 303 Queue_up, 304 }; 305 306 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 307 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 308 309 #define BLK_SCSI_MAX_CMDS (256) 310 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 311 312 /* 313 * Zoned block device models (zoned limit). 314 */ 315 enum blk_zoned_model { 316 BLK_ZONED_NONE, /* Regular block device */ 317 BLK_ZONED_HA, /* Host-aware zoned block device */ 318 BLK_ZONED_HM, /* Host-managed zoned block device */ 319 }; 320 321 struct queue_limits { 322 unsigned long bounce_pfn; 323 unsigned long seg_boundary_mask; 324 unsigned long virt_boundary_mask; 325 326 unsigned int max_hw_sectors; 327 unsigned int max_dev_sectors; 328 unsigned int chunk_sectors; 329 unsigned int max_sectors; 330 unsigned int max_segment_size; 331 unsigned int physical_block_size; 332 unsigned int logical_block_size; 333 unsigned int alignment_offset; 334 unsigned int io_min; 335 unsigned int io_opt; 336 unsigned int max_discard_sectors; 337 unsigned int max_hw_discard_sectors; 338 unsigned int max_write_same_sectors; 339 unsigned int max_write_zeroes_sectors; 340 unsigned int max_zone_append_sectors; 341 unsigned int discard_granularity; 342 unsigned int discard_alignment; 343 344 unsigned short max_segments; 345 unsigned short max_integrity_segments; 346 unsigned short max_discard_segments; 347 348 unsigned char misaligned; 349 unsigned char discard_misaligned; 350 unsigned char raid_partial_stripes_expensive; 351 enum blk_zoned_model zoned; 352 }; 353 354 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 355 void *data); 356 357 #ifdef CONFIG_BLK_DEV_ZONED 358 359 #define BLK_ALL_ZONES ((unsigned int)-1) 360 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 361 unsigned int nr_zones, report_zones_cb cb, void *data); 362 unsigned int blkdev_nr_zones(struct gendisk *disk); 363 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 364 sector_t sectors, sector_t nr_sectors, 365 gfp_t gfp_mask); 366 int blk_revalidate_disk_zones(struct gendisk *disk, 367 void (*update_driver_data)(struct gendisk *disk)); 368 369 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 370 unsigned int cmd, unsigned long arg); 371 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 372 unsigned int cmd, unsigned long arg); 373 374 #else /* CONFIG_BLK_DEV_ZONED */ 375 376 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 377 { 378 return 0; 379 } 380 381 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 382 fmode_t mode, unsigned int cmd, 383 unsigned long arg) 384 { 385 return -ENOTTY; 386 } 387 388 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 389 fmode_t mode, unsigned int cmd, 390 unsigned long arg) 391 { 392 return -ENOTTY; 393 } 394 395 #endif /* CONFIG_BLK_DEV_ZONED */ 396 397 struct request_queue { 398 struct request *last_merge; 399 struct elevator_queue *elevator; 400 401 struct blk_queue_stats *stats; 402 struct rq_qos *rq_qos; 403 404 make_request_fn *make_request_fn; 405 406 const struct blk_mq_ops *mq_ops; 407 408 /* sw queues */ 409 struct blk_mq_ctx __percpu *queue_ctx; 410 411 unsigned int queue_depth; 412 413 /* hw dispatch queues */ 414 struct blk_mq_hw_ctx **queue_hw_ctx; 415 unsigned int nr_hw_queues; 416 417 struct backing_dev_info *backing_dev_info; 418 419 /* 420 * The queue owner gets to use this for whatever they like. 421 * ll_rw_blk doesn't touch it. 422 */ 423 void *queuedata; 424 425 /* 426 * various queue flags, see QUEUE_* below 427 */ 428 unsigned long queue_flags; 429 /* 430 * Number of contexts that have called blk_set_pm_only(). If this 431 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 432 * processed. 433 */ 434 atomic_t pm_only; 435 436 /* 437 * ida allocated id for this queue. Used to index queues from 438 * ioctx. 439 */ 440 int id; 441 442 /* 443 * queue needs bounce pages for pages above this limit 444 */ 445 gfp_t bounce_gfp; 446 447 spinlock_t queue_lock; 448 449 /* 450 * queue kobject 451 */ 452 struct kobject kobj; 453 454 /* 455 * mq queue kobject 456 */ 457 struct kobject *mq_kobj; 458 459 #ifdef CONFIG_BLK_DEV_INTEGRITY 460 struct blk_integrity integrity; 461 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 462 463 #ifdef CONFIG_PM 464 struct device *dev; 465 int rpm_status; 466 unsigned int nr_pending; 467 #endif 468 469 /* 470 * queue settings 471 */ 472 unsigned long nr_requests; /* Max # of requests */ 473 474 unsigned int dma_pad_mask; 475 unsigned int dma_alignment; 476 477 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 478 /* Inline crypto capabilities */ 479 struct blk_keyslot_manager *ksm; 480 #endif 481 482 unsigned int rq_timeout; 483 int poll_nsec; 484 485 struct blk_stat_callback *poll_cb; 486 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 487 488 struct timer_list timeout; 489 struct work_struct timeout_work; 490 491 struct list_head icq_list; 492 #ifdef CONFIG_BLK_CGROUP 493 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 494 struct blkcg_gq *root_blkg; 495 struct list_head blkg_list; 496 #endif 497 498 struct queue_limits limits; 499 500 unsigned int required_elevator_features; 501 502 #ifdef CONFIG_BLK_DEV_ZONED 503 /* 504 * Zoned block device information for request dispatch control. 505 * nr_zones is the total number of zones of the device. This is always 506 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 507 * bits which indicates if a zone is conventional (bit set) or 508 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 509 * bits which indicates if a zone is write locked, that is, if a write 510 * request targeting the zone was dispatched. All three fields are 511 * initialized by the low level device driver (e.g. scsi/sd.c). 512 * Stacking drivers (device mappers) may or may not initialize 513 * these fields. 514 * 515 * Reads of this information must be protected with blk_queue_enter() / 516 * blk_queue_exit(). Modifying this information is only allowed while 517 * no requests are being processed. See also blk_mq_freeze_queue() and 518 * blk_mq_unfreeze_queue(). 519 */ 520 unsigned int nr_zones; 521 unsigned long *conv_zones_bitmap; 522 unsigned long *seq_zones_wlock; 523 #endif /* CONFIG_BLK_DEV_ZONED */ 524 525 /* 526 * sg stuff 527 */ 528 unsigned int sg_timeout; 529 unsigned int sg_reserved_size; 530 int node; 531 struct mutex debugfs_mutex; 532 #ifdef CONFIG_BLK_DEV_IO_TRACE 533 struct blk_trace __rcu *blk_trace; 534 #endif 535 /* 536 * for flush operations 537 */ 538 struct blk_flush_queue *fq; 539 540 struct list_head requeue_list; 541 spinlock_t requeue_lock; 542 struct delayed_work requeue_work; 543 544 struct mutex sysfs_lock; 545 struct mutex sysfs_dir_lock; 546 547 /* 548 * for reusing dead hctx instance in case of updating 549 * nr_hw_queues 550 */ 551 struct list_head unused_hctx_list; 552 spinlock_t unused_hctx_lock; 553 554 int mq_freeze_depth; 555 556 #if defined(CONFIG_BLK_DEV_BSG) 557 struct bsg_class_device bsg_dev; 558 #endif 559 560 #ifdef CONFIG_BLK_DEV_THROTTLING 561 /* Throttle data */ 562 struct throtl_data *td; 563 #endif 564 struct rcu_head rcu_head; 565 wait_queue_head_t mq_freeze_wq; 566 /* 567 * Protect concurrent access to q_usage_counter by 568 * percpu_ref_kill() and percpu_ref_reinit(). 569 */ 570 struct mutex mq_freeze_lock; 571 struct percpu_ref q_usage_counter; 572 573 struct blk_mq_tag_set *tag_set; 574 struct list_head tag_set_list; 575 struct bio_set bio_split; 576 577 struct dentry *debugfs_dir; 578 579 #ifdef CONFIG_BLK_DEBUG_FS 580 struct dentry *sched_debugfs_dir; 581 struct dentry *rqos_debugfs_dir; 582 #endif 583 584 bool mq_sysfs_init_done; 585 586 size_t cmd_size; 587 588 #define BLK_MAX_WRITE_HINTS 5 589 u64 write_hints[BLK_MAX_WRITE_HINTS]; 590 }; 591 592 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 593 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 594 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 595 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 596 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 597 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 598 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 599 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 600 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 601 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 602 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 603 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 604 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 605 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 606 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 607 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 608 #define QUEUE_FLAG_WC 17 /* Write back caching */ 609 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 610 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 611 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 612 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 613 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 614 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 615 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 616 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 617 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 618 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 619 620 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 621 (1 << QUEUE_FLAG_SAME_COMP)) 622 623 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 624 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 625 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 626 627 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 628 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 629 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 630 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 631 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 632 #define blk_queue_noxmerges(q) \ 633 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 634 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 635 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 636 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 637 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 638 #define blk_queue_zone_resetall(q) \ 639 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 640 #define blk_queue_secure_erase(q) \ 641 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 642 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 643 #define blk_queue_scsi_passthrough(q) \ 644 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 645 #define blk_queue_pci_p2pdma(q) \ 646 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 647 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 648 #define blk_queue_rq_alloc_time(q) \ 649 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 650 #else 651 #define blk_queue_rq_alloc_time(q) false 652 #endif 653 654 #define blk_noretry_request(rq) \ 655 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 656 REQ_FAILFAST_DRIVER)) 657 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 658 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 659 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 660 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 661 662 extern void blk_set_pm_only(struct request_queue *q); 663 extern void blk_clear_pm_only(struct request_queue *q); 664 665 static inline bool blk_account_rq(struct request *rq) 666 { 667 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 668 } 669 670 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 671 672 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 673 674 #define rq_dma_dir(rq) \ 675 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 676 677 #define dma_map_bvec(dev, bv, dir, attrs) \ 678 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 679 (dir), (attrs)) 680 681 static inline bool queue_is_mq(struct request_queue *q) 682 { 683 return q->mq_ops; 684 } 685 686 static inline enum blk_zoned_model 687 blk_queue_zoned_model(struct request_queue *q) 688 { 689 return q->limits.zoned; 690 } 691 692 static inline bool blk_queue_is_zoned(struct request_queue *q) 693 { 694 switch (blk_queue_zoned_model(q)) { 695 case BLK_ZONED_HA: 696 case BLK_ZONED_HM: 697 return true; 698 default: 699 return false; 700 } 701 } 702 703 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 704 { 705 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 706 } 707 708 #ifdef CONFIG_BLK_DEV_ZONED 709 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 710 { 711 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 712 } 713 714 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 715 sector_t sector) 716 { 717 if (!blk_queue_is_zoned(q)) 718 return 0; 719 return sector >> ilog2(q->limits.chunk_sectors); 720 } 721 722 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 723 sector_t sector) 724 { 725 if (!blk_queue_is_zoned(q)) 726 return false; 727 if (!q->conv_zones_bitmap) 728 return true; 729 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 730 } 731 #else /* CONFIG_BLK_DEV_ZONED */ 732 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 733 { 734 return 0; 735 } 736 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 737 sector_t sector) 738 { 739 return false; 740 } 741 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 742 sector_t sector) 743 { 744 return 0; 745 } 746 #endif /* CONFIG_BLK_DEV_ZONED */ 747 748 static inline bool rq_is_sync(struct request *rq) 749 { 750 return op_is_sync(rq->cmd_flags); 751 } 752 753 static inline bool rq_mergeable(struct request *rq) 754 { 755 if (blk_rq_is_passthrough(rq)) 756 return false; 757 758 if (req_op(rq) == REQ_OP_FLUSH) 759 return false; 760 761 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 762 return false; 763 764 if (req_op(rq) == REQ_OP_ZONE_APPEND) 765 return false; 766 767 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 768 return false; 769 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 770 return false; 771 772 return true; 773 } 774 775 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 776 { 777 if (bio_page(a) == bio_page(b) && 778 bio_offset(a) == bio_offset(b)) 779 return true; 780 781 return false; 782 } 783 784 static inline unsigned int blk_queue_depth(struct request_queue *q) 785 { 786 if (q->queue_depth) 787 return q->queue_depth; 788 789 return q->nr_requests; 790 } 791 792 extern unsigned long blk_max_low_pfn, blk_max_pfn; 793 794 /* 795 * standard bounce addresses: 796 * 797 * BLK_BOUNCE_HIGH : bounce all highmem pages 798 * BLK_BOUNCE_ANY : don't bounce anything 799 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 800 */ 801 802 #if BITS_PER_LONG == 32 803 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 804 #else 805 #define BLK_BOUNCE_HIGH -1ULL 806 #endif 807 #define BLK_BOUNCE_ANY (-1ULL) 808 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 809 810 /* 811 * default timeout for SG_IO if none specified 812 */ 813 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 814 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 815 816 struct rq_map_data { 817 struct page **pages; 818 int page_order; 819 int nr_entries; 820 unsigned long offset; 821 int null_mapped; 822 int from_user; 823 }; 824 825 struct req_iterator { 826 struct bvec_iter iter; 827 struct bio *bio; 828 }; 829 830 /* This should not be used directly - use rq_for_each_segment */ 831 #define for_each_bio(_bio) \ 832 for (; _bio; _bio = _bio->bi_next) 833 #define __rq_for_each_bio(_bio, rq) \ 834 if ((rq->bio)) \ 835 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 836 837 #define rq_for_each_segment(bvl, _rq, _iter) \ 838 __rq_for_each_bio(_iter.bio, _rq) \ 839 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 840 841 #define rq_for_each_bvec(bvl, _rq, _iter) \ 842 __rq_for_each_bio(_iter.bio, _rq) \ 843 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 844 845 #define rq_iter_last(bvec, _iter) \ 846 (_iter.bio->bi_next == NULL && \ 847 bio_iter_last(bvec, _iter.iter)) 848 849 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 850 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 851 #endif 852 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 853 extern void rq_flush_dcache_pages(struct request *rq); 854 #else 855 static inline void rq_flush_dcache_pages(struct request *rq) 856 { 857 } 858 #endif 859 860 extern int blk_register_queue(struct gendisk *disk); 861 extern void blk_unregister_queue(struct gendisk *disk); 862 extern blk_qc_t generic_make_request(struct bio *bio); 863 extern blk_qc_t direct_make_request(struct bio *bio); 864 extern void blk_rq_init(struct request_queue *q, struct request *rq); 865 extern void blk_put_request(struct request *); 866 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 867 blk_mq_req_flags_t flags); 868 extern int blk_lld_busy(struct request_queue *q); 869 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 870 struct bio_set *bs, gfp_t gfp_mask, 871 int (*bio_ctr)(struct bio *, struct bio *, void *), 872 void *data); 873 extern void blk_rq_unprep_clone(struct request *rq); 874 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 875 struct request *rq); 876 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 877 extern void blk_queue_split(struct request_queue *, struct bio **); 878 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 879 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 880 unsigned int, void __user *); 881 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 882 unsigned int, void __user *); 883 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 884 struct scsi_ioctl_command __user *); 885 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 886 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 887 888 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 889 extern void blk_queue_exit(struct request_queue *q); 890 extern void blk_sync_queue(struct request_queue *q); 891 extern int blk_rq_map_user(struct request_queue *, struct request *, 892 struct rq_map_data *, void __user *, unsigned long, 893 gfp_t); 894 extern int blk_rq_unmap_user(struct bio *); 895 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 896 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 897 struct rq_map_data *, const struct iov_iter *, 898 gfp_t); 899 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 900 struct request *, int); 901 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 902 struct request *, int, rq_end_io_fn *); 903 904 /* Helper to convert REQ_OP_XXX to its string format XXX */ 905 extern const char *blk_op_str(unsigned int op); 906 907 int blk_status_to_errno(blk_status_t status); 908 blk_status_t errno_to_blk_status(int errno); 909 910 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 911 912 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 913 { 914 return bdev->bd_disk->queue; /* this is never NULL */ 915 } 916 917 /* 918 * The basic unit of block I/O is a sector. It is used in a number of contexts 919 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 920 * bytes. Variables of type sector_t represent an offset or size that is a 921 * multiple of 512 bytes. Hence these two constants. 922 */ 923 #ifndef SECTOR_SHIFT 924 #define SECTOR_SHIFT 9 925 #endif 926 #ifndef SECTOR_SIZE 927 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 928 #endif 929 930 /* 931 * blk_rq_pos() : the current sector 932 * blk_rq_bytes() : bytes left in the entire request 933 * blk_rq_cur_bytes() : bytes left in the current segment 934 * blk_rq_err_bytes() : bytes left till the next error boundary 935 * blk_rq_sectors() : sectors left in the entire request 936 * blk_rq_cur_sectors() : sectors left in the current segment 937 * blk_rq_stats_sectors() : sectors of the entire request used for stats 938 */ 939 static inline sector_t blk_rq_pos(const struct request *rq) 940 { 941 return rq->__sector; 942 } 943 944 static inline unsigned int blk_rq_bytes(const struct request *rq) 945 { 946 return rq->__data_len; 947 } 948 949 static inline int blk_rq_cur_bytes(const struct request *rq) 950 { 951 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 952 } 953 954 extern unsigned int blk_rq_err_bytes(const struct request *rq); 955 956 static inline unsigned int blk_rq_sectors(const struct request *rq) 957 { 958 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 959 } 960 961 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 962 { 963 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 964 } 965 966 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 967 { 968 return rq->stats_sectors; 969 } 970 971 #ifdef CONFIG_BLK_DEV_ZONED 972 973 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 974 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 975 976 static inline unsigned int blk_rq_zone_no(struct request *rq) 977 { 978 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 979 } 980 981 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 982 { 983 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 984 } 985 #endif /* CONFIG_BLK_DEV_ZONED */ 986 987 /* 988 * Some commands like WRITE SAME have a payload or data transfer size which 989 * is different from the size of the request. Any driver that supports such 990 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 991 * calculate the data transfer size. 992 */ 993 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 994 { 995 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 996 return rq->special_vec.bv_len; 997 return blk_rq_bytes(rq); 998 } 999 1000 /* 1001 * Return the first full biovec in the request. The caller needs to check that 1002 * there are any bvecs before calling this helper. 1003 */ 1004 static inline struct bio_vec req_bvec(struct request *rq) 1005 { 1006 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1007 return rq->special_vec; 1008 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1009 } 1010 1011 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1012 int op) 1013 { 1014 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1015 return min(q->limits.max_discard_sectors, 1016 UINT_MAX >> SECTOR_SHIFT); 1017 1018 if (unlikely(op == REQ_OP_WRITE_SAME)) 1019 return q->limits.max_write_same_sectors; 1020 1021 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1022 return q->limits.max_write_zeroes_sectors; 1023 1024 return q->limits.max_sectors; 1025 } 1026 1027 /* 1028 * Return maximum size of a request at given offset. Only valid for 1029 * file system requests. 1030 */ 1031 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1032 sector_t offset) 1033 { 1034 if (!q->limits.chunk_sectors) 1035 return q->limits.max_sectors; 1036 1037 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1038 (offset & (q->limits.chunk_sectors - 1)))); 1039 } 1040 1041 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1042 sector_t offset) 1043 { 1044 struct request_queue *q = rq->q; 1045 1046 if (blk_rq_is_passthrough(rq)) 1047 return q->limits.max_hw_sectors; 1048 1049 if (!q->limits.chunk_sectors || 1050 req_op(rq) == REQ_OP_DISCARD || 1051 req_op(rq) == REQ_OP_SECURE_ERASE) 1052 return blk_queue_get_max_sectors(q, req_op(rq)); 1053 1054 return min(blk_max_size_offset(q, offset), 1055 blk_queue_get_max_sectors(q, req_op(rq))); 1056 } 1057 1058 static inline unsigned int blk_rq_count_bios(struct request *rq) 1059 { 1060 unsigned int nr_bios = 0; 1061 struct bio *bio; 1062 1063 __rq_for_each_bio(bio, rq) 1064 nr_bios++; 1065 1066 return nr_bios; 1067 } 1068 1069 void blk_steal_bios(struct bio_list *list, struct request *rq); 1070 1071 /* 1072 * Request completion related functions. 1073 * 1074 * blk_update_request() completes given number of bytes and updates 1075 * the request without completing it. 1076 */ 1077 extern bool blk_update_request(struct request *rq, blk_status_t error, 1078 unsigned int nr_bytes); 1079 1080 extern void blk_abort_request(struct request *); 1081 1082 /* 1083 * Access functions for manipulating queue properties 1084 */ 1085 extern void blk_cleanup_queue(struct request_queue *); 1086 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1087 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1088 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1089 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1090 extern void blk_queue_max_discard_segments(struct request_queue *, 1091 unsigned short); 1092 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1093 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1094 unsigned int max_discard_sectors); 1095 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1096 unsigned int max_write_same_sectors); 1097 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1098 unsigned int max_write_same_sectors); 1099 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1100 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1101 unsigned int max_zone_append_sectors); 1102 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1103 extern void blk_queue_alignment_offset(struct request_queue *q, 1104 unsigned int alignment); 1105 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1106 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1107 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1108 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1109 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1110 extern void blk_set_default_limits(struct queue_limits *lim); 1111 extern void blk_set_stacking_limits(struct queue_limits *lim); 1112 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1113 sector_t offset); 1114 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1115 sector_t offset); 1116 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1117 sector_t offset); 1118 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1119 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1120 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1121 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1122 extern void blk_queue_dma_alignment(struct request_queue *, int); 1123 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1124 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1125 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1126 extern void blk_queue_required_elevator_features(struct request_queue *q, 1127 unsigned int features); 1128 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1129 struct device *dev); 1130 1131 /* 1132 * Number of physical segments as sent to the device. 1133 * 1134 * Normally this is the number of discontiguous data segments sent by the 1135 * submitter. But for data-less command like discard we might have no 1136 * actual data segments submitted, but the driver might have to add it's 1137 * own special payload. In that case we still return 1 here so that this 1138 * special payload will be mapped. 1139 */ 1140 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1141 { 1142 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1143 return 1; 1144 return rq->nr_phys_segments; 1145 } 1146 1147 /* 1148 * Number of discard segments (or ranges) the driver needs to fill in. 1149 * Each discard bio merged into a request is counted as one segment. 1150 */ 1151 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1152 { 1153 return max_t(unsigned short, rq->nr_phys_segments, 1); 1154 } 1155 1156 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1157 struct scatterlist *sglist, struct scatterlist **last_sg); 1158 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1159 struct scatterlist *sglist) 1160 { 1161 struct scatterlist *last_sg = NULL; 1162 1163 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1164 } 1165 extern void blk_dump_rq_flags(struct request *, char *); 1166 extern long nr_blockdev_pages(void); 1167 1168 bool __must_check blk_get_queue(struct request_queue *); 1169 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id); 1170 extern void blk_put_queue(struct request_queue *); 1171 extern void blk_set_queue_dying(struct request_queue *); 1172 1173 /* 1174 * blk_plug permits building a queue of related requests by holding the I/O 1175 * fragments for a short period. This allows merging of sequential requests 1176 * into single larger request. As the requests are moved from a per-task list to 1177 * the device's request_queue in a batch, this results in improved scalability 1178 * as the lock contention for request_queue lock is reduced. 1179 * 1180 * It is ok not to disable preemption when adding the request to the plug list 1181 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1182 * the plug list when the task sleeps by itself. For details, please see 1183 * schedule() where blk_schedule_flush_plug() is called. 1184 */ 1185 struct blk_plug { 1186 struct list_head mq_list; /* blk-mq requests */ 1187 struct list_head cb_list; /* md requires an unplug callback */ 1188 unsigned short rq_count; 1189 bool multiple_queues; 1190 }; 1191 #define BLK_MAX_REQUEST_COUNT 16 1192 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1193 1194 struct blk_plug_cb; 1195 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1196 struct blk_plug_cb { 1197 struct list_head list; 1198 blk_plug_cb_fn callback; 1199 void *data; 1200 }; 1201 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1202 void *data, int size); 1203 extern void blk_start_plug(struct blk_plug *); 1204 extern void blk_finish_plug(struct blk_plug *); 1205 extern void blk_flush_plug_list(struct blk_plug *, bool); 1206 1207 static inline void blk_flush_plug(struct task_struct *tsk) 1208 { 1209 struct blk_plug *plug = tsk->plug; 1210 1211 if (plug) 1212 blk_flush_plug_list(plug, false); 1213 } 1214 1215 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1216 { 1217 struct blk_plug *plug = tsk->plug; 1218 1219 if (plug) 1220 blk_flush_plug_list(plug, true); 1221 } 1222 1223 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1224 { 1225 struct blk_plug *plug = tsk->plug; 1226 1227 return plug && 1228 (!list_empty(&plug->mq_list) || 1229 !list_empty(&plug->cb_list)); 1230 } 1231 1232 extern void blk_io_schedule(void); 1233 1234 int blkdev_issue_flush(struct block_device *, gfp_t); 1235 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1236 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1237 1238 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1239 1240 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1241 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1242 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1243 sector_t nr_sects, gfp_t gfp_mask, int flags, 1244 struct bio **biop); 1245 1246 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1247 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1248 1249 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1250 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1251 unsigned flags); 1252 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1253 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1254 1255 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1256 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1257 { 1258 return blkdev_issue_discard(sb->s_bdev, 1259 block << (sb->s_blocksize_bits - 1260 SECTOR_SHIFT), 1261 nr_blocks << (sb->s_blocksize_bits - 1262 SECTOR_SHIFT), 1263 gfp_mask, flags); 1264 } 1265 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1266 sector_t nr_blocks, gfp_t gfp_mask) 1267 { 1268 return blkdev_issue_zeroout(sb->s_bdev, 1269 block << (sb->s_blocksize_bits - 1270 SECTOR_SHIFT), 1271 nr_blocks << (sb->s_blocksize_bits - 1272 SECTOR_SHIFT), 1273 gfp_mask, 0); 1274 } 1275 1276 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1277 1278 enum blk_default_limits { 1279 BLK_MAX_SEGMENTS = 128, 1280 BLK_SAFE_MAX_SECTORS = 255, 1281 BLK_DEF_MAX_SECTORS = 2560, 1282 BLK_MAX_SEGMENT_SIZE = 65536, 1283 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1284 }; 1285 1286 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1287 { 1288 return q->limits.seg_boundary_mask; 1289 } 1290 1291 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1292 { 1293 return q->limits.virt_boundary_mask; 1294 } 1295 1296 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1297 { 1298 return q->limits.max_sectors; 1299 } 1300 1301 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1302 { 1303 return q->limits.max_hw_sectors; 1304 } 1305 1306 static inline unsigned short queue_max_segments(const struct request_queue *q) 1307 { 1308 return q->limits.max_segments; 1309 } 1310 1311 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1312 { 1313 return q->limits.max_discard_segments; 1314 } 1315 1316 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1317 { 1318 return q->limits.max_segment_size; 1319 } 1320 1321 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1322 { 1323 return q->limits.max_zone_append_sectors; 1324 } 1325 1326 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1327 { 1328 int retval = 512; 1329 1330 if (q && q->limits.logical_block_size) 1331 retval = q->limits.logical_block_size; 1332 1333 return retval; 1334 } 1335 1336 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1337 { 1338 return queue_logical_block_size(bdev_get_queue(bdev)); 1339 } 1340 1341 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1342 { 1343 return q->limits.physical_block_size; 1344 } 1345 1346 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1347 { 1348 return queue_physical_block_size(bdev_get_queue(bdev)); 1349 } 1350 1351 static inline unsigned int queue_io_min(const struct request_queue *q) 1352 { 1353 return q->limits.io_min; 1354 } 1355 1356 static inline int bdev_io_min(struct block_device *bdev) 1357 { 1358 return queue_io_min(bdev_get_queue(bdev)); 1359 } 1360 1361 static inline unsigned int queue_io_opt(const struct request_queue *q) 1362 { 1363 return q->limits.io_opt; 1364 } 1365 1366 static inline int bdev_io_opt(struct block_device *bdev) 1367 { 1368 return queue_io_opt(bdev_get_queue(bdev)); 1369 } 1370 1371 static inline int queue_alignment_offset(const struct request_queue *q) 1372 { 1373 if (q->limits.misaligned) 1374 return -1; 1375 1376 return q->limits.alignment_offset; 1377 } 1378 1379 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1380 { 1381 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1382 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1383 << SECTOR_SHIFT; 1384 1385 return (granularity + lim->alignment_offset - alignment) % granularity; 1386 } 1387 1388 static inline int bdev_alignment_offset(struct block_device *bdev) 1389 { 1390 struct request_queue *q = bdev_get_queue(bdev); 1391 1392 if (q->limits.misaligned) 1393 return -1; 1394 1395 if (bdev != bdev->bd_contains) 1396 return bdev->bd_part->alignment_offset; 1397 1398 return q->limits.alignment_offset; 1399 } 1400 1401 static inline int queue_discard_alignment(const struct request_queue *q) 1402 { 1403 if (q->limits.discard_misaligned) 1404 return -1; 1405 1406 return q->limits.discard_alignment; 1407 } 1408 1409 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1410 { 1411 unsigned int alignment, granularity, offset; 1412 1413 if (!lim->max_discard_sectors) 1414 return 0; 1415 1416 /* Why are these in bytes, not sectors? */ 1417 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1418 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1419 if (!granularity) 1420 return 0; 1421 1422 /* Offset of the partition start in 'granularity' sectors */ 1423 offset = sector_div(sector, granularity); 1424 1425 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1426 offset = (granularity + alignment - offset) % granularity; 1427 1428 /* Turn it back into bytes, gaah */ 1429 return offset << SECTOR_SHIFT; 1430 } 1431 1432 static inline int bdev_discard_alignment(struct block_device *bdev) 1433 { 1434 struct request_queue *q = bdev_get_queue(bdev); 1435 1436 if (bdev != bdev->bd_contains) 1437 return bdev->bd_part->discard_alignment; 1438 1439 return q->limits.discard_alignment; 1440 } 1441 1442 static inline unsigned int bdev_write_same(struct block_device *bdev) 1443 { 1444 struct request_queue *q = bdev_get_queue(bdev); 1445 1446 if (q) 1447 return q->limits.max_write_same_sectors; 1448 1449 return 0; 1450 } 1451 1452 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1453 { 1454 struct request_queue *q = bdev_get_queue(bdev); 1455 1456 if (q) 1457 return q->limits.max_write_zeroes_sectors; 1458 1459 return 0; 1460 } 1461 1462 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1463 { 1464 struct request_queue *q = bdev_get_queue(bdev); 1465 1466 if (q) 1467 return blk_queue_zoned_model(q); 1468 1469 return BLK_ZONED_NONE; 1470 } 1471 1472 static inline bool bdev_is_zoned(struct block_device *bdev) 1473 { 1474 struct request_queue *q = bdev_get_queue(bdev); 1475 1476 if (q) 1477 return blk_queue_is_zoned(q); 1478 1479 return false; 1480 } 1481 1482 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1483 { 1484 struct request_queue *q = bdev_get_queue(bdev); 1485 1486 if (q) 1487 return blk_queue_zone_sectors(q); 1488 return 0; 1489 } 1490 1491 static inline int queue_dma_alignment(const struct request_queue *q) 1492 { 1493 return q ? q->dma_alignment : 511; 1494 } 1495 1496 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1497 unsigned int len) 1498 { 1499 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1500 return !(addr & alignment) && !(len & alignment); 1501 } 1502 1503 /* assumes size > 256 */ 1504 static inline unsigned int blksize_bits(unsigned int size) 1505 { 1506 unsigned int bits = 8; 1507 do { 1508 bits++; 1509 size >>= 1; 1510 } while (size > 256); 1511 return bits; 1512 } 1513 1514 static inline unsigned int block_size(struct block_device *bdev) 1515 { 1516 return bdev->bd_block_size; 1517 } 1518 1519 int kblockd_schedule_work(struct work_struct *work); 1520 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1521 1522 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1523 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1524 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1525 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1526 1527 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1528 1529 enum blk_integrity_flags { 1530 BLK_INTEGRITY_VERIFY = 1 << 0, 1531 BLK_INTEGRITY_GENERATE = 1 << 1, 1532 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1533 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1534 }; 1535 1536 struct blk_integrity_iter { 1537 void *prot_buf; 1538 void *data_buf; 1539 sector_t seed; 1540 unsigned int data_size; 1541 unsigned short interval; 1542 const char *disk_name; 1543 }; 1544 1545 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1546 typedef void (integrity_prepare_fn) (struct request *); 1547 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1548 1549 struct blk_integrity_profile { 1550 integrity_processing_fn *generate_fn; 1551 integrity_processing_fn *verify_fn; 1552 integrity_prepare_fn *prepare_fn; 1553 integrity_complete_fn *complete_fn; 1554 const char *name; 1555 }; 1556 1557 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1558 extern void blk_integrity_unregister(struct gendisk *); 1559 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1560 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1561 struct scatterlist *); 1562 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1563 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1564 struct request *); 1565 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1566 struct bio *); 1567 1568 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1569 { 1570 struct blk_integrity *bi = &disk->queue->integrity; 1571 1572 if (!bi->profile) 1573 return NULL; 1574 1575 return bi; 1576 } 1577 1578 static inline 1579 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1580 { 1581 return blk_get_integrity(bdev->bd_disk); 1582 } 1583 1584 static inline bool 1585 blk_integrity_queue_supports_integrity(struct request_queue *q) 1586 { 1587 return q->integrity.profile; 1588 } 1589 1590 static inline bool blk_integrity_rq(struct request *rq) 1591 { 1592 return rq->cmd_flags & REQ_INTEGRITY; 1593 } 1594 1595 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1596 unsigned int segs) 1597 { 1598 q->limits.max_integrity_segments = segs; 1599 } 1600 1601 static inline unsigned short 1602 queue_max_integrity_segments(const struct request_queue *q) 1603 { 1604 return q->limits.max_integrity_segments; 1605 } 1606 1607 /** 1608 * bio_integrity_intervals - Return number of integrity intervals for a bio 1609 * @bi: blk_integrity profile for device 1610 * @sectors: Size of the bio in 512-byte sectors 1611 * 1612 * Description: The block layer calculates everything in 512 byte 1613 * sectors but integrity metadata is done in terms of the data integrity 1614 * interval size of the storage device. Convert the block layer sectors 1615 * to the appropriate number of integrity intervals. 1616 */ 1617 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1618 unsigned int sectors) 1619 { 1620 return sectors >> (bi->interval_exp - 9); 1621 } 1622 1623 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1624 unsigned int sectors) 1625 { 1626 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1627 } 1628 1629 /* 1630 * Return the first bvec that contains integrity data. Only drivers that are 1631 * limited to a single integrity segment should use this helper. 1632 */ 1633 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1634 { 1635 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1636 return NULL; 1637 return rq->bio->bi_integrity->bip_vec; 1638 } 1639 1640 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1641 1642 struct bio; 1643 struct block_device; 1644 struct gendisk; 1645 struct blk_integrity; 1646 1647 static inline int blk_integrity_rq(struct request *rq) 1648 { 1649 return 0; 1650 } 1651 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1652 struct bio *b) 1653 { 1654 return 0; 1655 } 1656 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1657 struct bio *b, 1658 struct scatterlist *s) 1659 { 1660 return 0; 1661 } 1662 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1663 { 1664 return NULL; 1665 } 1666 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1667 { 1668 return NULL; 1669 } 1670 static inline bool 1671 blk_integrity_queue_supports_integrity(struct request_queue *q) 1672 { 1673 return false; 1674 } 1675 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1676 { 1677 return 0; 1678 } 1679 static inline void blk_integrity_register(struct gendisk *d, 1680 struct blk_integrity *b) 1681 { 1682 } 1683 static inline void blk_integrity_unregister(struct gendisk *d) 1684 { 1685 } 1686 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1687 unsigned int segs) 1688 { 1689 } 1690 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1691 { 1692 return 0; 1693 } 1694 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1695 struct request *r1, 1696 struct request *r2) 1697 { 1698 return true; 1699 } 1700 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1701 struct request *r, 1702 struct bio *b) 1703 { 1704 return true; 1705 } 1706 1707 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1708 unsigned int sectors) 1709 { 1710 return 0; 1711 } 1712 1713 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1714 unsigned int sectors) 1715 { 1716 return 0; 1717 } 1718 1719 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1720 { 1721 return NULL; 1722 } 1723 1724 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1725 1726 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1727 1728 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1729 1730 void blk_ksm_unregister(struct request_queue *q); 1731 1732 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1733 1734 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1735 struct request_queue *q) 1736 { 1737 return true; 1738 } 1739 1740 static inline void blk_ksm_unregister(struct request_queue *q) { } 1741 1742 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1743 1744 1745 struct block_device_operations { 1746 int (*open) (struct block_device *, fmode_t); 1747 void (*release) (struct gendisk *, fmode_t); 1748 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1749 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1750 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1751 unsigned int (*check_events) (struct gendisk *disk, 1752 unsigned int clearing); 1753 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1754 int (*media_changed) (struct gendisk *); 1755 void (*unlock_native_capacity) (struct gendisk *); 1756 int (*revalidate_disk) (struct gendisk *); 1757 int (*getgeo)(struct block_device *, struct hd_geometry *); 1758 /* this callback is with swap_lock and sometimes page table lock held */ 1759 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1760 int (*report_zones)(struct gendisk *, sector_t sector, 1761 unsigned int nr_zones, report_zones_cb cb, void *data); 1762 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1763 struct module *owner; 1764 const struct pr_ops *pr_ops; 1765 }; 1766 1767 #ifdef CONFIG_COMPAT 1768 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1769 unsigned int, unsigned long); 1770 #else 1771 #define blkdev_compat_ptr_ioctl NULL 1772 #endif 1773 1774 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1775 unsigned long); 1776 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1777 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1778 struct writeback_control *); 1779 1780 #ifdef CONFIG_BLK_DEV_ZONED 1781 bool blk_req_needs_zone_write_lock(struct request *rq); 1782 bool blk_req_zone_write_trylock(struct request *rq); 1783 void __blk_req_zone_write_lock(struct request *rq); 1784 void __blk_req_zone_write_unlock(struct request *rq); 1785 1786 static inline void blk_req_zone_write_lock(struct request *rq) 1787 { 1788 if (blk_req_needs_zone_write_lock(rq)) 1789 __blk_req_zone_write_lock(rq); 1790 } 1791 1792 static inline void blk_req_zone_write_unlock(struct request *rq) 1793 { 1794 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1795 __blk_req_zone_write_unlock(rq); 1796 } 1797 1798 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1799 { 1800 return rq->q->seq_zones_wlock && 1801 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1802 } 1803 1804 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1805 { 1806 if (!blk_req_needs_zone_write_lock(rq)) 1807 return true; 1808 return !blk_req_zone_is_write_locked(rq); 1809 } 1810 #else 1811 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1812 { 1813 return false; 1814 } 1815 1816 static inline void blk_req_zone_write_lock(struct request *rq) 1817 { 1818 } 1819 1820 static inline void blk_req_zone_write_unlock(struct request *rq) 1821 { 1822 } 1823 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1824 { 1825 return false; 1826 } 1827 1828 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1829 { 1830 return true; 1831 } 1832 #endif /* CONFIG_BLK_DEV_ZONED */ 1833 1834 #else /* CONFIG_BLOCK */ 1835 1836 struct block_device; 1837 1838 /* 1839 * stubs for when the block layer is configured out 1840 */ 1841 #define buffer_heads_over_limit 0 1842 1843 static inline long nr_blockdev_pages(void) 1844 { 1845 return 0; 1846 } 1847 1848 struct blk_plug { 1849 }; 1850 1851 static inline void blk_start_plug(struct blk_plug *plug) 1852 { 1853 } 1854 1855 static inline void blk_finish_plug(struct blk_plug *plug) 1856 { 1857 } 1858 1859 static inline void blk_flush_plug(struct task_struct *task) 1860 { 1861 } 1862 1863 static inline void blk_schedule_flush_plug(struct task_struct *task) 1864 { 1865 } 1866 1867 1868 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1869 { 1870 return false; 1871 } 1872 1873 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1874 { 1875 return 0; 1876 } 1877 1878 #endif /* CONFIG_BLOCK */ 1879 1880 static inline void blk_wake_io_task(struct task_struct *waiter) 1881 { 1882 /* 1883 * If we're polling, the task itself is doing the completions. For 1884 * that case, we don't need to signal a wakeup, it's enough to just 1885 * mark us as RUNNING. 1886 */ 1887 if (waiter == current) 1888 __set_current_state(TASK_RUNNING); 1889 else 1890 wake_up_process(waiter); 1891 } 1892 1893 #ifdef CONFIG_BLOCK 1894 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1895 unsigned int op); 1896 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1897 unsigned long start_time); 1898 1899 /** 1900 * bio_start_io_acct - start I/O accounting for bio based drivers 1901 * @bio: bio to start account for 1902 * 1903 * Returns the start time that should be passed back to bio_end_io_acct(). 1904 */ 1905 static inline unsigned long bio_start_io_acct(struct bio *bio) 1906 { 1907 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1908 } 1909 1910 /** 1911 * bio_end_io_acct - end I/O accounting for bio based drivers 1912 * @bio: bio to end account for 1913 * @start: start time returned by bio_start_io_acct() 1914 */ 1915 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1916 { 1917 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1918 } 1919 #endif /* CONFIG_BLOCK */ 1920 1921 int bdev_read_only(struct block_device *bdev); 1922 int set_blocksize(struct block_device *bdev, int size); 1923 1924 const char *bdevname(struct block_device *bdev, char *buffer); 1925 struct block_device *lookup_bdev(const char *); 1926 1927 void blkdev_show(struct seq_file *seqf, off_t offset); 1928 1929 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1930 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1931 #ifdef CONFIG_BLOCK 1932 #define BLKDEV_MAJOR_MAX 512 1933 #else 1934 #define BLKDEV_MAJOR_MAX 0 1935 #endif 1936 1937 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder); 1938 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1939 void *holder); 1940 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1941 struct block_device *bd_start_claiming(struct block_device *bdev, void *holder); 1942 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1943 void *holder); 1944 void blkdev_put(struct block_device *bdev, fmode_t mode); 1945 1946 struct block_device *bdget(dev_t); 1947 struct block_device *bdgrab(struct block_device *bdev); 1948 void bdput(struct block_device *); 1949 1950 #ifdef CONFIG_BLOCK 1951 void invalidate_bdev(struct block_device *bdev); 1952 int sync_blockdev(struct block_device *bdev); 1953 #else 1954 static inline void invalidate_bdev(struct block_device *bdev) 1955 { 1956 } 1957 static inline int sync_blockdev(struct block_device *bdev) 1958 { 1959 return 0; 1960 } 1961 #endif 1962 int fsync_bdev(struct block_device *bdev); 1963 1964 struct super_block *freeze_bdev(struct block_device *bdev); 1965 int thaw_bdev(struct block_device *bdev, struct super_block *sb); 1966 1967 #endif /* _LINUX_BLKDEV_H */ 1968