xref: /linux-6.15/include/linux/blkdev.h (revision 32fdbd90)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 #include <linux/seqlock.h>
31 #include <linux/u64_stats_sync.h>
32 
33 struct module;
34 struct scsi_ioctl_command;
35 
36 struct request_queue;
37 struct elevator_queue;
38 struct blk_trace;
39 struct request;
40 struct sg_io_hdr;
41 struct bsg_job;
42 struct blkcg_gq;
43 struct blk_flush_queue;
44 struct pr_ops;
45 struct rq_wb;
46 struct blk_queue_stats;
47 struct blk_stat_callback;
48 
49 #define BLKDEV_MIN_RQ	4
50 #define BLKDEV_MAX_RQ	128	/* Default maximum */
51 
52 /* Must be consistent with blk_mq_poll_stats_bkt() */
53 #define BLK_MQ_POLL_STATS_BKTS 16
54 
55 /*
56  * Maximum number of blkcg policies allowed to be registered concurrently.
57  * Defined here to simplify include dependency.
58  */
59 #define BLKCG_MAX_POLS		3
60 
61 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
62 
63 #define BLK_RL_SYNCFULL		(1U << 0)
64 #define BLK_RL_ASYNCFULL	(1U << 1)
65 
66 struct request_list {
67 	struct request_queue	*q;	/* the queue this rl belongs to */
68 #ifdef CONFIG_BLK_CGROUP
69 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
70 #endif
71 	/*
72 	 * count[], starved[], and wait[] are indexed by
73 	 * BLK_RW_SYNC/BLK_RW_ASYNC
74 	 */
75 	int			count[2];
76 	int			starved[2];
77 	mempool_t		*rq_pool;
78 	wait_queue_head_t	wait[2];
79 	unsigned int		flags;
80 };
81 
82 /*
83  * request flags */
84 typedef __u32 __bitwise req_flags_t;
85 
86 /* elevator knows about this request */
87 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
88 /* drive already may have started this one */
89 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
90 /* uses tagged queueing */
91 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
92 /* may not be passed by ioscheduler */
93 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
94 /* request for flush sequence */
95 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
96 /* merge of different types, fail separately */
97 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
98 /* track inflight for MQ */
99 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
100 /* don't call prep for this one */
101 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
102 /* set for "ide_preempt" requests and also for requests for which the SCSI
103    "quiesce" state must be ignored. */
104 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
105 /* contains copies of user pages */
106 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
107 /* vaguely specified driver internal error.  Ignored by the block layer */
108 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
109 /* don't warn about errors */
110 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
111 /* elevator private data attached */
112 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
113 /* account I/O stat */
114 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
115 /* request came from our alloc pool */
116 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
117 /* runtime pm request */
118 #define RQF_PM			((__force req_flags_t)(1 << 15))
119 /* on IO scheduler merge hash */
120 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
121 /* IO stats tracking on */
122 #define RQF_STATS		((__force req_flags_t)(1 << 17))
123 /* Look at ->special_vec for the actual data payload instead of the
124    bio chain. */
125 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
126 /* The per-zone write lock is held for this request */
127 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
128 /* already slept for hybrid poll */
129 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
130 /* ->timeout has been called, don't expire again */
131 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
132 
133 /* flags that prevent us from merging requests: */
134 #define RQF_NOMERGE_FLAGS \
135 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
136 
137 /*
138  * Request state for blk-mq.
139  */
140 enum mq_rq_state {
141 	MQ_RQ_IDLE		= 0,
142 	MQ_RQ_IN_FLIGHT		= 1,
143 	MQ_RQ_COMPLETE		= 2,
144 };
145 
146 /*
147  * Try to put the fields that are referenced together in the same cacheline.
148  *
149  * If you modify this structure, make sure to update blk_rq_init() and
150  * especially blk_mq_rq_ctx_init() to take care of the added fields.
151  */
152 struct request {
153 	struct request_queue *q;
154 	struct blk_mq_ctx *mq_ctx;
155 
156 	int cpu;
157 	unsigned int cmd_flags;		/* op and common flags */
158 	req_flags_t rq_flags;
159 
160 	int internal_tag;
161 
162 	/* the following two fields are internal, NEVER access directly */
163 	unsigned int __data_len;	/* total data len */
164 	int tag;
165 	sector_t __sector;		/* sector cursor */
166 
167 	struct bio *bio;
168 	struct bio *biotail;
169 
170 	struct list_head queuelist;
171 
172 	/*
173 	 * The hash is used inside the scheduler, and killed once the
174 	 * request reaches the dispatch list. The ipi_list is only used
175 	 * to queue the request for softirq completion, which is long
176 	 * after the request has been unhashed (and even removed from
177 	 * the dispatch list).
178 	 */
179 	union {
180 		struct hlist_node hash;	/* merge hash */
181 		struct list_head ipi_list;
182 	};
183 
184 	/*
185 	 * The rb_node is only used inside the io scheduler, requests
186 	 * are pruned when moved to the dispatch queue. So let the
187 	 * completion_data share space with the rb_node.
188 	 */
189 	union {
190 		struct rb_node rb_node;	/* sort/lookup */
191 		struct bio_vec special_vec;
192 		void *completion_data;
193 		int error_count; /* for legacy drivers, don't use */
194 	};
195 
196 	/*
197 	 * Three pointers are available for the IO schedulers, if they need
198 	 * more they have to dynamically allocate it.  Flush requests are
199 	 * never put on the IO scheduler. So let the flush fields share
200 	 * space with the elevator data.
201 	 */
202 	union {
203 		struct {
204 			struct io_cq		*icq;
205 			void			*priv[2];
206 		} elv;
207 
208 		struct {
209 			unsigned int		seq;
210 			struct list_head	list;
211 			rq_end_io_fn		*saved_end_io;
212 		} flush;
213 	};
214 
215 	struct gendisk *rq_disk;
216 	struct hd_struct *part;
217 	/* Time that I/O was submitted to the kernel. */
218 	u64 start_time_ns;
219 	/* Time that I/O was submitted to the device. */
220 	u64 io_start_time_ns;
221 
222 #ifdef CONFIG_BLK_WBT
223 	unsigned short wbt_flags;
224 #endif
225 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
226 	unsigned short throtl_size;
227 #endif
228 
229 	/*
230 	 * Number of scatter-gather DMA addr+len pairs after
231 	 * physical address coalescing is performed.
232 	 */
233 	unsigned short nr_phys_segments;
234 
235 #if defined(CONFIG_BLK_DEV_INTEGRITY)
236 	unsigned short nr_integrity_segments;
237 #endif
238 
239 	unsigned short write_hint;
240 	unsigned short ioprio;
241 
242 	void *special;		/* opaque pointer available for LLD use */
243 
244 	unsigned int extra_len;	/* length of alignment and padding */
245 
246 	enum mq_rq_state state;
247 	refcount_t ref;
248 
249 	unsigned int timeout;
250 
251 	/* access through blk_rq_set_deadline, blk_rq_deadline */
252 	unsigned long __deadline;
253 
254 	struct list_head timeout_list;
255 
256 	union {
257 		struct __call_single_data csd;
258 		u64 fifo_time;
259 	};
260 
261 	/*
262 	 * completion callback.
263 	 */
264 	rq_end_io_fn *end_io;
265 	void *end_io_data;
266 
267 	/* for bidi */
268 	struct request *next_rq;
269 
270 #ifdef CONFIG_BLK_CGROUP
271 	struct request_list *rl;		/* rl this rq is alloced from */
272 #endif
273 };
274 
275 static inline bool blk_op_is_scsi(unsigned int op)
276 {
277 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
278 }
279 
280 static inline bool blk_op_is_private(unsigned int op)
281 {
282 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
283 }
284 
285 static inline bool blk_rq_is_scsi(struct request *rq)
286 {
287 	return blk_op_is_scsi(req_op(rq));
288 }
289 
290 static inline bool blk_rq_is_private(struct request *rq)
291 {
292 	return blk_op_is_private(req_op(rq));
293 }
294 
295 static inline bool blk_rq_is_passthrough(struct request *rq)
296 {
297 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
298 }
299 
300 static inline bool bio_is_passthrough(struct bio *bio)
301 {
302 	unsigned op = bio_op(bio);
303 
304 	return blk_op_is_scsi(op) || blk_op_is_private(op);
305 }
306 
307 static inline unsigned short req_get_ioprio(struct request *req)
308 {
309 	return req->ioprio;
310 }
311 
312 #include <linux/elevator.h>
313 
314 struct blk_queue_ctx;
315 
316 typedef void (request_fn_proc) (struct request_queue *q);
317 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
318 typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t);
319 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
320 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
321 
322 struct bio_vec;
323 typedef void (softirq_done_fn)(struct request *);
324 typedef int (dma_drain_needed_fn)(struct request *);
325 typedef int (lld_busy_fn) (struct request_queue *q);
326 typedef int (bsg_job_fn) (struct bsg_job *);
327 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
328 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
329 
330 enum blk_eh_timer_return {
331 	BLK_EH_DONE,		/* drivers has completed the command */
332 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
333 };
334 
335 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
336 
337 enum blk_queue_state {
338 	Queue_down,
339 	Queue_up,
340 };
341 
342 struct blk_queue_tag {
343 	struct request **tag_index;	/* map of busy tags */
344 	unsigned long *tag_map;		/* bit map of free/busy tags */
345 	int max_depth;			/* what we will send to device */
346 	int real_max_depth;		/* what the array can hold */
347 	atomic_t refcnt;		/* map can be shared */
348 	int alloc_policy;		/* tag allocation policy */
349 	int next_tag;			/* next tag */
350 };
351 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
352 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
353 
354 #define BLK_SCSI_MAX_CMDS	(256)
355 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
356 
357 /*
358  * Zoned block device models (zoned limit).
359  */
360 enum blk_zoned_model {
361 	BLK_ZONED_NONE,	/* Regular block device */
362 	BLK_ZONED_HA,	/* Host-aware zoned block device */
363 	BLK_ZONED_HM,	/* Host-managed zoned block device */
364 };
365 
366 struct queue_limits {
367 	unsigned long		bounce_pfn;
368 	unsigned long		seg_boundary_mask;
369 	unsigned long		virt_boundary_mask;
370 
371 	unsigned int		max_hw_sectors;
372 	unsigned int		max_dev_sectors;
373 	unsigned int		chunk_sectors;
374 	unsigned int		max_sectors;
375 	unsigned int		max_segment_size;
376 	unsigned int		physical_block_size;
377 	unsigned int		alignment_offset;
378 	unsigned int		io_min;
379 	unsigned int		io_opt;
380 	unsigned int		max_discard_sectors;
381 	unsigned int		max_hw_discard_sectors;
382 	unsigned int		max_write_same_sectors;
383 	unsigned int		max_write_zeroes_sectors;
384 	unsigned int		discard_granularity;
385 	unsigned int		discard_alignment;
386 
387 	unsigned short		logical_block_size;
388 	unsigned short		max_segments;
389 	unsigned short		max_integrity_segments;
390 	unsigned short		max_discard_segments;
391 
392 	unsigned char		misaligned;
393 	unsigned char		discard_misaligned;
394 	unsigned char		cluster;
395 	unsigned char		raid_partial_stripes_expensive;
396 	enum blk_zoned_model	zoned;
397 };
398 
399 #ifdef CONFIG_BLK_DEV_ZONED
400 
401 struct blk_zone_report_hdr {
402 	unsigned int	nr_zones;
403 	u8		padding[60];
404 };
405 
406 extern int blkdev_report_zones(struct block_device *bdev,
407 			       sector_t sector, struct blk_zone *zones,
408 			       unsigned int *nr_zones, gfp_t gfp_mask);
409 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
410 			      sector_t nr_sectors, gfp_t gfp_mask);
411 
412 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
413 				     unsigned int cmd, unsigned long arg);
414 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
415 				    unsigned int cmd, unsigned long arg);
416 
417 #else /* CONFIG_BLK_DEV_ZONED */
418 
419 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
420 					    fmode_t mode, unsigned int cmd,
421 					    unsigned long arg)
422 {
423 	return -ENOTTY;
424 }
425 
426 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
427 					   fmode_t mode, unsigned int cmd,
428 					   unsigned long arg)
429 {
430 	return -ENOTTY;
431 }
432 
433 #endif /* CONFIG_BLK_DEV_ZONED */
434 
435 struct request_queue {
436 	/*
437 	 * Together with queue_head for cacheline sharing
438 	 */
439 	struct list_head	queue_head;
440 	struct request		*last_merge;
441 	struct elevator_queue	*elevator;
442 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
443 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
444 
445 	atomic_t		shared_hctx_restart;
446 
447 	struct blk_queue_stats	*stats;
448 	struct rq_wb		*rq_wb;
449 
450 	/*
451 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
452 	 * is used, root blkg allocates from @q->root_rl and all other
453 	 * blkgs from their own blkg->rl.  Which one to use should be
454 	 * determined using bio_request_list().
455 	 */
456 	struct request_list	root_rl;
457 
458 	request_fn_proc		*request_fn;
459 	make_request_fn		*make_request_fn;
460 	poll_q_fn		*poll_fn;
461 	prep_rq_fn		*prep_rq_fn;
462 	unprep_rq_fn		*unprep_rq_fn;
463 	softirq_done_fn		*softirq_done_fn;
464 	rq_timed_out_fn		*rq_timed_out_fn;
465 	dma_drain_needed_fn	*dma_drain_needed;
466 	lld_busy_fn		*lld_busy_fn;
467 	/* Called just after a request is allocated */
468 	init_rq_fn		*init_rq_fn;
469 	/* Called just before a request is freed */
470 	exit_rq_fn		*exit_rq_fn;
471 	/* Called from inside blk_get_request() */
472 	void (*initialize_rq_fn)(struct request *rq);
473 
474 	const struct blk_mq_ops	*mq_ops;
475 
476 	unsigned int		*mq_map;
477 
478 	/* sw queues */
479 	struct blk_mq_ctx __percpu	*queue_ctx;
480 	unsigned int		nr_queues;
481 
482 	unsigned int		queue_depth;
483 
484 	/* hw dispatch queues */
485 	struct blk_mq_hw_ctx	**queue_hw_ctx;
486 	unsigned int		nr_hw_queues;
487 
488 	/*
489 	 * Dispatch queue sorting
490 	 */
491 	sector_t		end_sector;
492 	struct request		*boundary_rq;
493 
494 	/*
495 	 * Delayed queue handling
496 	 */
497 	struct delayed_work	delay_work;
498 
499 	struct backing_dev_info	*backing_dev_info;
500 
501 	/*
502 	 * The queue owner gets to use this for whatever they like.
503 	 * ll_rw_blk doesn't touch it.
504 	 */
505 	void			*queuedata;
506 
507 	/*
508 	 * various queue flags, see QUEUE_* below
509 	 */
510 	unsigned long		queue_flags;
511 
512 	/*
513 	 * ida allocated id for this queue.  Used to index queues from
514 	 * ioctx.
515 	 */
516 	int			id;
517 
518 	/*
519 	 * queue needs bounce pages for pages above this limit
520 	 */
521 	gfp_t			bounce_gfp;
522 
523 	/*
524 	 * protects queue structures from reentrancy. ->__queue_lock should
525 	 * _never_ be used directly, it is queue private. always use
526 	 * ->queue_lock.
527 	 */
528 	spinlock_t		__queue_lock;
529 	spinlock_t		*queue_lock;
530 
531 	/*
532 	 * queue kobject
533 	 */
534 	struct kobject kobj;
535 
536 	/*
537 	 * mq queue kobject
538 	 */
539 	struct kobject mq_kobj;
540 
541 #ifdef  CONFIG_BLK_DEV_INTEGRITY
542 	struct blk_integrity integrity;
543 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
544 
545 #ifdef CONFIG_PM
546 	struct device		*dev;
547 	int			rpm_status;
548 	unsigned int		nr_pending;
549 #endif
550 
551 	/*
552 	 * queue settings
553 	 */
554 	unsigned long		nr_requests;	/* Max # of requests */
555 	unsigned int		nr_congestion_on;
556 	unsigned int		nr_congestion_off;
557 	unsigned int		nr_batching;
558 
559 	unsigned int		dma_drain_size;
560 	void			*dma_drain_buffer;
561 	unsigned int		dma_pad_mask;
562 	unsigned int		dma_alignment;
563 
564 	struct blk_queue_tag	*queue_tags;
565 
566 	unsigned int		nr_sorted;
567 	unsigned int		in_flight[2];
568 
569 	/*
570 	 * Number of active block driver functions for which blk_drain_queue()
571 	 * must wait. Must be incremented around functions that unlock the
572 	 * queue_lock internally, e.g. scsi_request_fn().
573 	 */
574 	unsigned int		request_fn_active;
575 
576 	unsigned int		rq_timeout;
577 	int			poll_nsec;
578 
579 	struct blk_stat_callback	*poll_cb;
580 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
581 
582 	struct timer_list	timeout;
583 	struct work_struct	timeout_work;
584 	struct list_head	timeout_list;
585 
586 	struct list_head	icq_list;
587 #ifdef CONFIG_BLK_CGROUP
588 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
589 	struct blkcg_gq		*root_blkg;
590 	struct list_head	blkg_list;
591 #endif
592 
593 	struct queue_limits	limits;
594 
595 	/*
596 	 * Zoned block device information for request dispatch control.
597 	 * nr_zones is the total number of zones of the device. This is always
598 	 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
599 	 * bits which indicates if a zone is conventional (bit clear) or
600 	 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
601 	 * bits which indicates if a zone is write locked, that is, if a write
602 	 * request targeting the zone was dispatched. All three fields are
603 	 * initialized by the low level device driver (e.g. scsi/sd.c).
604 	 * Stacking drivers (device mappers) may or may not initialize
605 	 * these fields.
606 	 *
607 	 * Reads of this information must be protected with blk_queue_enter() /
608 	 * blk_queue_exit(). Modifying this information is only allowed while
609 	 * no requests are being processed. See also blk_mq_freeze_queue() and
610 	 * blk_mq_unfreeze_queue().
611 	 */
612 	unsigned int		nr_zones;
613 	unsigned long		*seq_zones_bitmap;
614 	unsigned long		*seq_zones_wlock;
615 
616 	/*
617 	 * sg stuff
618 	 */
619 	unsigned int		sg_timeout;
620 	unsigned int		sg_reserved_size;
621 	int			node;
622 #ifdef CONFIG_BLK_DEV_IO_TRACE
623 	struct blk_trace	*blk_trace;
624 	struct mutex		blk_trace_mutex;
625 #endif
626 	/*
627 	 * for flush operations
628 	 */
629 	struct blk_flush_queue	*fq;
630 
631 	struct list_head	requeue_list;
632 	spinlock_t		requeue_lock;
633 	struct delayed_work	requeue_work;
634 
635 	struct mutex		sysfs_lock;
636 
637 	int			bypass_depth;
638 	atomic_t		mq_freeze_depth;
639 
640 #if defined(CONFIG_BLK_DEV_BSG)
641 	bsg_job_fn		*bsg_job_fn;
642 	struct bsg_class_device bsg_dev;
643 #endif
644 
645 #ifdef CONFIG_BLK_DEV_THROTTLING
646 	/* Throttle data */
647 	struct throtl_data *td;
648 #endif
649 	struct rcu_head		rcu_head;
650 	wait_queue_head_t	mq_freeze_wq;
651 	struct percpu_ref	q_usage_counter;
652 	struct list_head	all_q_node;
653 
654 	struct blk_mq_tag_set	*tag_set;
655 	struct list_head	tag_set_list;
656 	struct bio_set		bio_split;
657 
658 #ifdef CONFIG_BLK_DEBUG_FS
659 	struct dentry		*debugfs_dir;
660 	struct dentry		*sched_debugfs_dir;
661 #endif
662 
663 	bool			mq_sysfs_init_done;
664 
665 	size_t			cmd_size;
666 	void			*rq_alloc_data;
667 
668 	struct work_struct	release_work;
669 
670 #define BLK_MAX_WRITE_HINTS	5
671 	u64			write_hints[BLK_MAX_WRITE_HINTS];
672 };
673 
674 #define QUEUE_FLAG_QUEUED	0	/* uses generic tag queueing */
675 #define QUEUE_FLAG_STOPPED	1	/* queue is stopped */
676 #define QUEUE_FLAG_DYING	2	/* queue being torn down */
677 #define QUEUE_FLAG_BYPASS	3	/* act as dumb FIFO queue */
678 #define QUEUE_FLAG_BIDI		4	/* queue supports bidi requests */
679 #define QUEUE_FLAG_NOMERGES     5	/* disable merge attempts */
680 #define QUEUE_FLAG_SAME_COMP	6	/* complete on same CPU-group */
681 #define QUEUE_FLAG_FAIL_IO	7	/* fake timeout */
682 #define QUEUE_FLAG_NONROT	9	/* non-rotational device (SSD) */
683 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
684 #define QUEUE_FLAG_IO_STAT     10	/* do IO stats */
685 #define QUEUE_FLAG_DISCARD     11	/* supports DISCARD */
686 #define QUEUE_FLAG_NOXMERGES   12	/* No extended merges */
687 #define QUEUE_FLAG_ADD_RANDOM  13	/* Contributes to random pool */
688 #define QUEUE_FLAG_SECERASE    14	/* supports secure erase */
689 #define QUEUE_FLAG_SAME_FORCE  15	/* force complete on same CPU */
690 #define QUEUE_FLAG_DEAD        16	/* queue tear-down finished */
691 #define QUEUE_FLAG_INIT_DONE   17	/* queue is initialized */
692 #define QUEUE_FLAG_NO_SG_MERGE 18	/* don't attempt to merge SG segments*/
693 #define QUEUE_FLAG_POLL	       19	/* IO polling enabled if set */
694 #define QUEUE_FLAG_WC	       20	/* Write back caching */
695 #define QUEUE_FLAG_FUA	       21	/* device supports FUA writes */
696 #define QUEUE_FLAG_FLUSH_NQ    22	/* flush not queueuable */
697 #define QUEUE_FLAG_DAX         23	/* device supports DAX */
698 #define QUEUE_FLAG_STATS       24	/* track rq completion times */
699 #define QUEUE_FLAG_POLL_STATS  25	/* collecting stats for hybrid polling */
700 #define QUEUE_FLAG_REGISTERED  26	/* queue has been registered to a disk */
701 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27	/* queue supports SCSI commands */
702 #define QUEUE_FLAG_QUIESCED    28	/* queue has been quiesced */
703 #define QUEUE_FLAG_PREEMPT_ONLY	29	/* only process REQ_PREEMPT requests */
704 
705 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
706 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
707 				 (1 << QUEUE_FLAG_ADD_RANDOM))
708 
709 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
710 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
711 				 (1 << QUEUE_FLAG_POLL))
712 
713 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
714 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
715 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
716 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q);
717 
718 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
719 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
720 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
721 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
722 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
723 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
724 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
725 #define blk_queue_noxmerges(q)	\
726 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
727 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
728 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
729 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
730 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
731 #define blk_queue_secure_erase(q) \
732 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
733 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
734 #define blk_queue_scsi_passthrough(q)	\
735 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
736 
737 #define blk_noretry_request(rq) \
738 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
739 			     REQ_FAILFAST_DRIVER))
740 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
741 #define blk_queue_preempt_only(q)				\
742 	test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags)
743 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
744 
745 extern int blk_set_preempt_only(struct request_queue *q);
746 extern void blk_clear_preempt_only(struct request_queue *q);
747 
748 static inline int queue_in_flight(struct request_queue *q)
749 {
750 	return q->in_flight[0] + q->in_flight[1];
751 }
752 
753 static inline bool blk_account_rq(struct request *rq)
754 {
755 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
756 }
757 
758 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
759 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
760 /* rq->queuelist of dequeued request must be list_empty() */
761 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
762 
763 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
764 
765 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
766 
767 /*
768  * Driver can handle struct request, if it either has an old style
769  * request_fn defined, or is blk-mq based.
770  */
771 static inline bool queue_is_rq_based(struct request_queue *q)
772 {
773 	return q->request_fn || q->mq_ops;
774 }
775 
776 static inline unsigned int blk_queue_cluster(struct request_queue *q)
777 {
778 	return q->limits.cluster;
779 }
780 
781 static inline enum blk_zoned_model
782 blk_queue_zoned_model(struct request_queue *q)
783 {
784 	return q->limits.zoned;
785 }
786 
787 static inline bool blk_queue_is_zoned(struct request_queue *q)
788 {
789 	switch (blk_queue_zoned_model(q)) {
790 	case BLK_ZONED_HA:
791 	case BLK_ZONED_HM:
792 		return true;
793 	default:
794 		return false;
795 	}
796 }
797 
798 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
799 {
800 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
801 }
802 
803 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
804 {
805 	return q->nr_zones;
806 }
807 
808 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
809 					     sector_t sector)
810 {
811 	if (!blk_queue_is_zoned(q))
812 		return 0;
813 	return sector >> ilog2(q->limits.chunk_sectors);
814 }
815 
816 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
817 					 sector_t sector)
818 {
819 	if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
820 		return false;
821 	return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
822 }
823 
824 static inline bool rq_is_sync(struct request *rq)
825 {
826 	return op_is_sync(rq->cmd_flags);
827 }
828 
829 static inline bool blk_rl_full(struct request_list *rl, bool sync)
830 {
831 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
832 
833 	return rl->flags & flag;
834 }
835 
836 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
837 {
838 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
839 
840 	rl->flags |= flag;
841 }
842 
843 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
844 {
845 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
846 
847 	rl->flags &= ~flag;
848 }
849 
850 static inline bool rq_mergeable(struct request *rq)
851 {
852 	if (blk_rq_is_passthrough(rq))
853 		return false;
854 
855 	if (req_op(rq) == REQ_OP_FLUSH)
856 		return false;
857 
858 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
859 		return false;
860 
861 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
862 		return false;
863 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
864 		return false;
865 
866 	return true;
867 }
868 
869 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
870 {
871 	if (bio_page(a) == bio_page(b) &&
872 	    bio_offset(a) == bio_offset(b))
873 		return true;
874 
875 	return false;
876 }
877 
878 static inline unsigned int blk_queue_depth(struct request_queue *q)
879 {
880 	if (q->queue_depth)
881 		return q->queue_depth;
882 
883 	return q->nr_requests;
884 }
885 
886 /*
887  * q->prep_rq_fn return values
888  */
889 enum {
890 	BLKPREP_OK,		/* serve it */
891 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
892 	BLKPREP_DEFER,		/* leave on queue */
893 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
894 };
895 
896 extern unsigned long blk_max_low_pfn, blk_max_pfn;
897 
898 /*
899  * standard bounce addresses:
900  *
901  * BLK_BOUNCE_HIGH	: bounce all highmem pages
902  * BLK_BOUNCE_ANY	: don't bounce anything
903  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
904  */
905 
906 #if BITS_PER_LONG == 32
907 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
908 #else
909 #define BLK_BOUNCE_HIGH		-1ULL
910 #endif
911 #define BLK_BOUNCE_ANY		(-1ULL)
912 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
913 
914 /*
915  * default timeout for SG_IO if none specified
916  */
917 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
918 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
919 
920 struct rq_map_data {
921 	struct page **pages;
922 	int page_order;
923 	int nr_entries;
924 	unsigned long offset;
925 	int null_mapped;
926 	int from_user;
927 };
928 
929 struct req_iterator {
930 	struct bvec_iter iter;
931 	struct bio *bio;
932 };
933 
934 /* This should not be used directly - use rq_for_each_segment */
935 #define for_each_bio(_bio)		\
936 	for (; _bio; _bio = _bio->bi_next)
937 #define __rq_for_each_bio(_bio, rq)	\
938 	if ((rq->bio))			\
939 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
940 
941 #define rq_for_each_segment(bvl, _rq, _iter)			\
942 	__rq_for_each_bio(_iter.bio, _rq)			\
943 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
944 
945 #define rq_iter_last(bvec, _iter)				\
946 		(_iter.bio->bi_next == NULL &&			\
947 		 bio_iter_last(bvec, _iter.iter))
948 
949 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
950 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
951 #endif
952 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
953 extern void rq_flush_dcache_pages(struct request *rq);
954 #else
955 static inline void rq_flush_dcache_pages(struct request *rq)
956 {
957 }
958 #endif
959 
960 extern int blk_register_queue(struct gendisk *disk);
961 extern void blk_unregister_queue(struct gendisk *disk);
962 extern blk_qc_t generic_make_request(struct bio *bio);
963 extern blk_qc_t direct_make_request(struct bio *bio);
964 extern void blk_rq_init(struct request_queue *q, struct request *rq);
965 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
966 extern void blk_put_request(struct request *);
967 extern void __blk_put_request(struct request_queue *, struct request *);
968 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
969 				       blk_mq_req_flags_t flags);
970 extern void blk_requeue_request(struct request_queue *, struct request *);
971 extern int blk_lld_busy(struct request_queue *q);
972 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
973 			     struct bio_set *bs, gfp_t gfp_mask,
974 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
975 			     void *data);
976 extern void blk_rq_unprep_clone(struct request *rq);
977 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
978 				     struct request *rq);
979 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
980 extern void blk_delay_queue(struct request_queue *, unsigned long);
981 extern void blk_queue_split(struct request_queue *, struct bio **);
982 extern void blk_recount_segments(struct request_queue *, struct bio *);
983 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
984 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
985 			      unsigned int, void __user *);
986 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
987 			  unsigned int, void __user *);
988 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
989 			 struct scsi_ioctl_command __user *);
990 
991 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
992 extern void blk_queue_exit(struct request_queue *q);
993 extern void blk_start_queue(struct request_queue *q);
994 extern void blk_start_queue_async(struct request_queue *q);
995 extern void blk_stop_queue(struct request_queue *q);
996 extern void blk_sync_queue(struct request_queue *q);
997 extern void __blk_stop_queue(struct request_queue *q);
998 extern void __blk_run_queue(struct request_queue *q);
999 extern void __blk_run_queue_uncond(struct request_queue *q);
1000 extern void blk_run_queue(struct request_queue *);
1001 extern void blk_run_queue_async(struct request_queue *q);
1002 extern int blk_rq_map_user(struct request_queue *, struct request *,
1003 			   struct rq_map_data *, void __user *, unsigned long,
1004 			   gfp_t);
1005 extern int blk_rq_unmap_user(struct bio *);
1006 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
1007 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
1008 			       struct rq_map_data *, const struct iov_iter *,
1009 			       gfp_t);
1010 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
1011 			  struct request *, int);
1012 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
1013 				  struct request *, int, rq_end_io_fn *);
1014 
1015 int blk_status_to_errno(blk_status_t status);
1016 blk_status_t errno_to_blk_status(int errno);
1017 
1018 bool blk_poll(struct request_queue *q, blk_qc_t cookie);
1019 
1020 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1021 {
1022 	return bdev->bd_disk->queue;	/* this is never NULL */
1023 }
1024 
1025 /*
1026  * The basic unit of block I/O is a sector. It is used in a number of contexts
1027  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
1028  * bytes. Variables of type sector_t represent an offset or size that is a
1029  * multiple of 512 bytes. Hence these two constants.
1030  */
1031 #ifndef SECTOR_SHIFT
1032 #define SECTOR_SHIFT 9
1033 #endif
1034 #ifndef SECTOR_SIZE
1035 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
1036 #endif
1037 
1038 /*
1039  * blk_rq_pos()			: the current sector
1040  * blk_rq_bytes()		: bytes left in the entire request
1041  * blk_rq_cur_bytes()		: bytes left in the current segment
1042  * blk_rq_err_bytes()		: bytes left till the next error boundary
1043  * blk_rq_sectors()		: sectors left in the entire request
1044  * blk_rq_cur_sectors()		: sectors left in the current segment
1045  */
1046 static inline sector_t blk_rq_pos(const struct request *rq)
1047 {
1048 	return rq->__sector;
1049 }
1050 
1051 static inline unsigned int blk_rq_bytes(const struct request *rq)
1052 {
1053 	return rq->__data_len;
1054 }
1055 
1056 static inline int blk_rq_cur_bytes(const struct request *rq)
1057 {
1058 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1059 }
1060 
1061 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1062 
1063 static inline unsigned int blk_rq_sectors(const struct request *rq)
1064 {
1065 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1066 }
1067 
1068 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1069 {
1070 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1071 }
1072 
1073 static inline unsigned int blk_rq_zone_no(struct request *rq)
1074 {
1075 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1076 }
1077 
1078 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1079 {
1080 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1081 }
1082 
1083 /*
1084  * Some commands like WRITE SAME have a payload or data transfer size which
1085  * is different from the size of the request.  Any driver that supports such
1086  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1087  * calculate the data transfer size.
1088  */
1089 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1090 {
1091 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1092 		return rq->special_vec.bv_len;
1093 	return blk_rq_bytes(rq);
1094 }
1095 
1096 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1097 						     int op)
1098 {
1099 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1100 		return min(q->limits.max_discard_sectors,
1101 			   UINT_MAX >> SECTOR_SHIFT);
1102 
1103 	if (unlikely(op == REQ_OP_WRITE_SAME))
1104 		return q->limits.max_write_same_sectors;
1105 
1106 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1107 		return q->limits.max_write_zeroes_sectors;
1108 
1109 	return q->limits.max_sectors;
1110 }
1111 
1112 /*
1113  * Return maximum size of a request at given offset. Only valid for
1114  * file system requests.
1115  */
1116 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1117 					       sector_t offset)
1118 {
1119 	if (!q->limits.chunk_sectors)
1120 		return q->limits.max_sectors;
1121 
1122 	return q->limits.chunk_sectors -
1123 			(offset & (q->limits.chunk_sectors - 1));
1124 }
1125 
1126 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1127 						  sector_t offset)
1128 {
1129 	struct request_queue *q = rq->q;
1130 
1131 	if (blk_rq_is_passthrough(rq))
1132 		return q->limits.max_hw_sectors;
1133 
1134 	if (!q->limits.chunk_sectors ||
1135 	    req_op(rq) == REQ_OP_DISCARD ||
1136 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1137 		return blk_queue_get_max_sectors(q, req_op(rq));
1138 
1139 	return min(blk_max_size_offset(q, offset),
1140 			blk_queue_get_max_sectors(q, req_op(rq)));
1141 }
1142 
1143 static inline unsigned int blk_rq_count_bios(struct request *rq)
1144 {
1145 	unsigned int nr_bios = 0;
1146 	struct bio *bio;
1147 
1148 	__rq_for_each_bio(bio, rq)
1149 		nr_bios++;
1150 
1151 	return nr_bios;
1152 }
1153 
1154 /*
1155  * Request issue related functions.
1156  */
1157 extern struct request *blk_peek_request(struct request_queue *q);
1158 extern void blk_start_request(struct request *rq);
1159 extern struct request *blk_fetch_request(struct request_queue *q);
1160 
1161 void blk_steal_bios(struct bio_list *list, struct request *rq);
1162 
1163 /*
1164  * Request completion related functions.
1165  *
1166  * blk_update_request() completes given number of bytes and updates
1167  * the request without completing it.
1168  *
1169  * blk_end_request() and friends.  __blk_end_request() must be called
1170  * with the request queue spinlock acquired.
1171  *
1172  * Several drivers define their own end_request and call
1173  * blk_end_request() for parts of the original function.
1174  * This prevents code duplication in drivers.
1175  */
1176 extern bool blk_update_request(struct request *rq, blk_status_t error,
1177 			       unsigned int nr_bytes);
1178 extern void blk_finish_request(struct request *rq, blk_status_t error);
1179 extern bool blk_end_request(struct request *rq, blk_status_t error,
1180 			    unsigned int nr_bytes);
1181 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1182 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1183 			      unsigned int nr_bytes);
1184 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1185 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1186 
1187 extern void blk_complete_request(struct request *);
1188 extern void __blk_complete_request(struct request *);
1189 extern void blk_abort_request(struct request *);
1190 extern void blk_unprep_request(struct request *);
1191 
1192 /*
1193  * Access functions for manipulating queue properties
1194  */
1195 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1196 					spinlock_t *lock, int node_id);
1197 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1198 extern int blk_init_allocated_queue(struct request_queue *);
1199 extern void blk_cleanup_queue(struct request_queue *);
1200 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1201 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1202 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1203 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1204 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1205 extern void blk_queue_max_discard_segments(struct request_queue *,
1206 		unsigned short);
1207 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1208 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1209 		unsigned int max_discard_sectors);
1210 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1211 		unsigned int max_write_same_sectors);
1212 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1213 		unsigned int max_write_same_sectors);
1214 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1215 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1216 extern void blk_queue_alignment_offset(struct request_queue *q,
1217 				       unsigned int alignment);
1218 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1219 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1220 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1221 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1222 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1223 extern void blk_set_default_limits(struct queue_limits *lim);
1224 extern void blk_set_stacking_limits(struct queue_limits *lim);
1225 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1226 			    sector_t offset);
1227 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1228 			    sector_t offset);
1229 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1230 			      sector_t offset);
1231 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1232 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1233 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1234 extern int blk_queue_dma_drain(struct request_queue *q,
1235 			       dma_drain_needed_fn *dma_drain_needed,
1236 			       void *buf, unsigned int size);
1237 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1238 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1239 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1240 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1241 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1242 extern void blk_queue_dma_alignment(struct request_queue *, int);
1243 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1244 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1245 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1246 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1247 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1248 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1249 
1250 /*
1251  * Number of physical segments as sent to the device.
1252  *
1253  * Normally this is the number of discontiguous data segments sent by the
1254  * submitter.  But for data-less command like discard we might have no
1255  * actual data segments submitted, but the driver might have to add it's
1256  * own special payload.  In that case we still return 1 here so that this
1257  * special payload will be mapped.
1258  */
1259 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1260 {
1261 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1262 		return 1;
1263 	return rq->nr_phys_segments;
1264 }
1265 
1266 /*
1267  * Number of discard segments (or ranges) the driver needs to fill in.
1268  * Each discard bio merged into a request is counted as one segment.
1269  */
1270 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1271 {
1272 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1273 }
1274 
1275 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1276 extern void blk_dump_rq_flags(struct request *, char *);
1277 extern long nr_blockdev_pages(void);
1278 
1279 bool __must_check blk_get_queue(struct request_queue *);
1280 struct request_queue *blk_alloc_queue(gfp_t);
1281 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1282 					   spinlock_t *lock);
1283 extern void blk_put_queue(struct request_queue *);
1284 extern void blk_set_queue_dying(struct request_queue *);
1285 
1286 /*
1287  * block layer runtime pm functions
1288  */
1289 #ifdef CONFIG_PM
1290 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1291 extern int blk_pre_runtime_suspend(struct request_queue *q);
1292 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1293 extern void blk_pre_runtime_resume(struct request_queue *q);
1294 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1295 extern void blk_set_runtime_active(struct request_queue *q);
1296 #else
1297 static inline void blk_pm_runtime_init(struct request_queue *q,
1298 	struct device *dev) {}
1299 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1300 {
1301 	return -ENOSYS;
1302 }
1303 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1304 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1305 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1306 static inline void blk_set_runtime_active(struct request_queue *q) {}
1307 #endif
1308 
1309 /*
1310  * blk_plug permits building a queue of related requests by holding the I/O
1311  * fragments for a short period. This allows merging of sequential requests
1312  * into single larger request. As the requests are moved from a per-task list to
1313  * the device's request_queue in a batch, this results in improved scalability
1314  * as the lock contention for request_queue lock is reduced.
1315  *
1316  * It is ok not to disable preemption when adding the request to the plug list
1317  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1318  * the plug list when the task sleeps by itself. For details, please see
1319  * schedule() where blk_schedule_flush_plug() is called.
1320  */
1321 struct blk_plug {
1322 	struct list_head list; /* requests */
1323 	struct list_head mq_list; /* blk-mq requests */
1324 	struct list_head cb_list; /* md requires an unplug callback */
1325 };
1326 #define BLK_MAX_REQUEST_COUNT 16
1327 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1328 
1329 struct blk_plug_cb;
1330 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1331 struct blk_plug_cb {
1332 	struct list_head list;
1333 	blk_plug_cb_fn callback;
1334 	void *data;
1335 };
1336 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1337 					     void *data, int size);
1338 extern void blk_start_plug(struct blk_plug *);
1339 extern void blk_finish_plug(struct blk_plug *);
1340 extern void blk_flush_plug_list(struct blk_plug *, bool);
1341 
1342 static inline void blk_flush_plug(struct task_struct *tsk)
1343 {
1344 	struct blk_plug *plug = tsk->plug;
1345 
1346 	if (plug)
1347 		blk_flush_plug_list(plug, false);
1348 }
1349 
1350 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1351 {
1352 	struct blk_plug *plug = tsk->plug;
1353 
1354 	if (plug)
1355 		blk_flush_plug_list(plug, true);
1356 }
1357 
1358 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1359 {
1360 	struct blk_plug *plug = tsk->plug;
1361 
1362 	return plug &&
1363 		(!list_empty(&plug->list) ||
1364 		 !list_empty(&plug->mq_list) ||
1365 		 !list_empty(&plug->cb_list));
1366 }
1367 
1368 /*
1369  * tag stuff
1370  */
1371 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1372 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1373 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1374 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1375 extern void blk_queue_free_tags(struct request_queue *);
1376 extern int blk_queue_resize_tags(struct request_queue *, int);
1377 extern struct blk_queue_tag *blk_init_tags(int, int);
1378 extern void blk_free_tags(struct blk_queue_tag *);
1379 
1380 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1381 						int tag)
1382 {
1383 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1384 		return NULL;
1385 	return bqt->tag_index[tag];
1386 }
1387 
1388 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1389 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1390 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1391 
1392 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1393 
1394 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1395 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1396 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1397 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1398 		struct bio **biop);
1399 
1400 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1401 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1402 
1403 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1404 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1405 		unsigned flags);
1406 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1407 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1408 
1409 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1410 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1411 {
1412 	return blkdev_issue_discard(sb->s_bdev,
1413 				    block << (sb->s_blocksize_bits -
1414 					      SECTOR_SHIFT),
1415 				    nr_blocks << (sb->s_blocksize_bits -
1416 						  SECTOR_SHIFT),
1417 				    gfp_mask, flags);
1418 }
1419 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1420 		sector_t nr_blocks, gfp_t gfp_mask)
1421 {
1422 	return blkdev_issue_zeroout(sb->s_bdev,
1423 				    block << (sb->s_blocksize_bits -
1424 					      SECTOR_SHIFT),
1425 				    nr_blocks << (sb->s_blocksize_bits -
1426 						  SECTOR_SHIFT),
1427 				    gfp_mask, 0);
1428 }
1429 
1430 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1431 
1432 enum blk_default_limits {
1433 	BLK_MAX_SEGMENTS	= 128,
1434 	BLK_SAFE_MAX_SECTORS	= 255,
1435 	BLK_DEF_MAX_SECTORS	= 2560,
1436 	BLK_MAX_SEGMENT_SIZE	= 65536,
1437 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1438 };
1439 
1440 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1441 
1442 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1443 {
1444 	return q->limits.seg_boundary_mask;
1445 }
1446 
1447 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1448 {
1449 	return q->limits.virt_boundary_mask;
1450 }
1451 
1452 static inline unsigned int queue_max_sectors(struct request_queue *q)
1453 {
1454 	return q->limits.max_sectors;
1455 }
1456 
1457 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1458 {
1459 	return q->limits.max_hw_sectors;
1460 }
1461 
1462 static inline unsigned short queue_max_segments(struct request_queue *q)
1463 {
1464 	return q->limits.max_segments;
1465 }
1466 
1467 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1468 {
1469 	return q->limits.max_discard_segments;
1470 }
1471 
1472 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1473 {
1474 	return q->limits.max_segment_size;
1475 }
1476 
1477 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1478 {
1479 	int retval = 512;
1480 
1481 	if (q && q->limits.logical_block_size)
1482 		retval = q->limits.logical_block_size;
1483 
1484 	return retval;
1485 }
1486 
1487 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1488 {
1489 	return queue_logical_block_size(bdev_get_queue(bdev));
1490 }
1491 
1492 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1493 {
1494 	return q->limits.physical_block_size;
1495 }
1496 
1497 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1498 {
1499 	return queue_physical_block_size(bdev_get_queue(bdev));
1500 }
1501 
1502 static inline unsigned int queue_io_min(struct request_queue *q)
1503 {
1504 	return q->limits.io_min;
1505 }
1506 
1507 static inline int bdev_io_min(struct block_device *bdev)
1508 {
1509 	return queue_io_min(bdev_get_queue(bdev));
1510 }
1511 
1512 static inline unsigned int queue_io_opt(struct request_queue *q)
1513 {
1514 	return q->limits.io_opt;
1515 }
1516 
1517 static inline int bdev_io_opt(struct block_device *bdev)
1518 {
1519 	return queue_io_opt(bdev_get_queue(bdev));
1520 }
1521 
1522 static inline int queue_alignment_offset(struct request_queue *q)
1523 {
1524 	if (q->limits.misaligned)
1525 		return -1;
1526 
1527 	return q->limits.alignment_offset;
1528 }
1529 
1530 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1531 {
1532 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1533 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1534 		<< SECTOR_SHIFT;
1535 
1536 	return (granularity + lim->alignment_offset - alignment) % granularity;
1537 }
1538 
1539 static inline int bdev_alignment_offset(struct block_device *bdev)
1540 {
1541 	struct request_queue *q = bdev_get_queue(bdev);
1542 
1543 	if (q->limits.misaligned)
1544 		return -1;
1545 
1546 	if (bdev != bdev->bd_contains)
1547 		return bdev->bd_part->alignment_offset;
1548 
1549 	return q->limits.alignment_offset;
1550 }
1551 
1552 static inline int queue_discard_alignment(struct request_queue *q)
1553 {
1554 	if (q->limits.discard_misaligned)
1555 		return -1;
1556 
1557 	return q->limits.discard_alignment;
1558 }
1559 
1560 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1561 {
1562 	unsigned int alignment, granularity, offset;
1563 
1564 	if (!lim->max_discard_sectors)
1565 		return 0;
1566 
1567 	/* Why are these in bytes, not sectors? */
1568 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1569 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1570 	if (!granularity)
1571 		return 0;
1572 
1573 	/* Offset of the partition start in 'granularity' sectors */
1574 	offset = sector_div(sector, granularity);
1575 
1576 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1577 	offset = (granularity + alignment - offset) % granularity;
1578 
1579 	/* Turn it back into bytes, gaah */
1580 	return offset << SECTOR_SHIFT;
1581 }
1582 
1583 static inline int bdev_discard_alignment(struct block_device *bdev)
1584 {
1585 	struct request_queue *q = bdev_get_queue(bdev);
1586 
1587 	if (bdev != bdev->bd_contains)
1588 		return bdev->bd_part->discard_alignment;
1589 
1590 	return q->limits.discard_alignment;
1591 }
1592 
1593 static inline unsigned int bdev_write_same(struct block_device *bdev)
1594 {
1595 	struct request_queue *q = bdev_get_queue(bdev);
1596 
1597 	if (q)
1598 		return q->limits.max_write_same_sectors;
1599 
1600 	return 0;
1601 }
1602 
1603 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1604 {
1605 	struct request_queue *q = bdev_get_queue(bdev);
1606 
1607 	if (q)
1608 		return q->limits.max_write_zeroes_sectors;
1609 
1610 	return 0;
1611 }
1612 
1613 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1614 {
1615 	struct request_queue *q = bdev_get_queue(bdev);
1616 
1617 	if (q)
1618 		return blk_queue_zoned_model(q);
1619 
1620 	return BLK_ZONED_NONE;
1621 }
1622 
1623 static inline bool bdev_is_zoned(struct block_device *bdev)
1624 {
1625 	struct request_queue *q = bdev_get_queue(bdev);
1626 
1627 	if (q)
1628 		return blk_queue_is_zoned(q);
1629 
1630 	return false;
1631 }
1632 
1633 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1634 {
1635 	struct request_queue *q = bdev_get_queue(bdev);
1636 
1637 	if (q)
1638 		return blk_queue_zone_sectors(q);
1639 	return 0;
1640 }
1641 
1642 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
1643 {
1644 	struct request_queue *q = bdev_get_queue(bdev);
1645 
1646 	if (q)
1647 		return blk_queue_nr_zones(q);
1648 	return 0;
1649 }
1650 
1651 static inline int queue_dma_alignment(struct request_queue *q)
1652 {
1653 	return q ? q->dma_alignment : 511;
1654 }
1655 
1656 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1657 				 unsigned int len)
1658 {
1659 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1660 	return !(addr & alignment) && !(len & alignment);
1661 }
1662 
1663 /* assumes size > 256 */
1664 static inline unsigned int blksize_bits(unsigned int size)
1665 {
1666 	unsigned int bits = 8;
1667 	do {
1668 		bits++;
1669 		size >>= 1;
1670 	} while (size > 256);
1671 	return bits;
1672 }
1673 
1674 static inline unsigned int block_size(struct block_device *bdev)
1675 {
1676 	return bdev->bd_block_size;
1677 }
1678 
1679 static inline bool queue_flush_queueable(struct request_queue *q)
1680 {
1681 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1682 }
1683 
1684 typedef struct {struct page *v;} Sector;
1685 
1686 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1687 
1688 static inline void put_dev_sector(Sector p)
1689 {
1690 	put_page(p.v);
1691 }
1692 
1693 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1694 				struct bio_vec *bprv, unsigned int offset)
1695 {
1696 	return offset ||
1697 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1698 }
1699 
1700 /*
1701  * Check if adding a bio_vec after bprv with offset would create a gap in
1702  * the SG list. Most drivers don't care about this, but some do.
1703  */
1704 static inline bool bvec_gap_to_prev(struct request_queue *q,
1705 				struct bio_vec *bprv, unsigned int offset)
1706 {
1707 	if (!queue_virt_boundary(q))
1708 		return false;
1709 	return __bvec_gap_to_prev(q, bprv, offset);
1710 }
1711 
1712 /*
1713  * Check if the two bvecs from two bios can be merged to one segment.
1714  * If yes, no need to check gap between the two bios since the 1st bio
1715  * and the 1st bvec in the 2nd bio can be handled in one segment.
1716  */
1717 static inline bool bios_segs_mergeable(struct request_queue *q,
1718 		struct bio *prev, struct bio_vec *prev_last_bv,
1719 		struct bio_vec *next_first_bv)
1720 {
1721 	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1722 		return false;
1723 	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1724 		return false;
1725 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
1726 			queue_max_segment_size(q))
1727 		return false;
1728 	return true;
1729 }
1730 
1731 static inline bool bio_will_gap(struct request_queue *q,
1732 				struct request *prev_rq,
1733 				struct bio *prev,
1734 				struct bio *next)
1735 {
1736 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1737 		struct bio_vec pb, nb;
1738 
1739 		/*
1740 		 * don't merge if the 1st bio starts with non-zero
1741 		 * offset, otherwise it is quite difficult to respect
1742 		 * sg gap limit. We work hard to merge a huge number of small
1743 		 * single bios in case of mkfs.
1744 		 */
1745 		if (prev_rq)
1746 			bio_get_first_bvec(prev_rq->bio, &pb);
1747 		else
1748 			bio_get_first_bvec(prev, &pb);
1749 		if (pb.bv_offset)
1750 			return true;
1751 
1752 		/*
1753 		 * We don't need to worry about the situation that the
1754 		 * merged segment ends in unaligned virt boundary:
1755 		 *
1756 		 * - if 'pb' ends aligned, the merged segment ends aligned
1757 		 * - if 'pb' ends unaligned, the next bio must include
1758 		 *   one single bvec of 'nb', otherwise the 'nb' can't
1759 		 *   merge with 'pb'
1760 		 */
1761 		bio_get_last_bvec(prev, &pb);
1762 		bio_get_first_bvec(next, &nb);
1763 
1764 		if (!bios_segs_mergeable(q, prev, &pb, &nb))
1765 			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1766 	}
1767 
1768 	return false;
1769 }
1770 
1771 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1772 {
1773 	return bio_will_gap(req->q, req, req->biotail, bio);
1774 }
1775 
1776 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1777 {
1778 	return bio_will_gap(req->q, NULL, bio, req->bio);
1779 }
1780 
1781 int kblockd_schedule_work(struct work_struct *work);
1782 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1783 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1784 
1785 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1786 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1787 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1788 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1789 
1790 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1791 
1792 enum blk_integrity_flags {
1793 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1794 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1795 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1796 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1797 };
1798 
1799 struct blk_integrity_iter {
1800 	void			*prot_buf;
1801 	void			*data_buf;
1802 	sector_t		seed;
1803 	unsigned int		data_size;
1804 	unsigned short		interval;
1805 	const char		*disk_name;
1806 };
1807 
1808 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1809 
1810 struct blk_integrity_profile {
1811 	integrity_processing_fn		*generate_fn;
1812 	integrity_processing_fn		*verify_fn;
1813 	const char			*name;
1814 };
1815 
1816 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1817 extern void blk_integrity_unregister(struct gendisk *);
1818 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1819 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1820 				   struct scatterlist *);
1821 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1822 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1823 				   struct request *);
1824 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1825 				    struct bio *);
1826 
1827 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1828 {
1829 	struct blk_integrity *bi = &disk->queue->integrity;
1830 
1831 	if (!bi->profile)
1832 		return NULL;
1833 
1834 	return bi;
1835 }
1836 
1837 static inline
1838 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1839 {
1840 	return blk_get_integrity(bdev->bd_disk);
1841 }
1842 
1843 static inline bool blk_integrity_rq(struct request *rq)
1844 {
1845 	return rq->cmd_flags & REQ_INTEGRITY;
1846 }
1847 
1848 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1849 						    unsigned int segs)
1850 {
1851 	q->limits.max_integrity_segments = segs;
1852 }
1853 
1854 static inline unsigned short
1855 queue_max_integrity_segments(struct request_queue *q)
1856 {
1857 	return q->limits.max_integrity_segments;
1858 }
1859 
1860 static inline bool integrity_req_gap_back_merge(struct request *req,
1861 						struct bio *next)
1862 {
1863 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1864 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1865 
1866 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1867 				bip_next->bip_vec[0].bv_offset);
1868 }
1869 
1870 static inline bool integrity_req_gap_front_merge(struct request *req,
1871 						 struct bio *bio)
1872 {
1873 	struct bio_integrity_payload *bip = bio_integrity(bio);
1874 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1875 
1876 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1877 				bip_next->bip_vec[0].bv_offset);
1878 }
1879 
1880 #else /* CONFIG_BLK_DEV_INTEGRITY */
1881 
1882 struct bio;
1883 struct block_device;
1884 struct gendisk;
1885 struct blk_integrity;
1886 
1887 static inline int blk_integrity_rq(struct request *rq)
1888 {
1889 	return 0;
1890 }
1891 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1892 					    struct bio *b)
1893 {
1894 	return 0;
1895 }
1896 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1897 					  struct bio *b,
1898 					  struct scatterlist *s)
1899 {
1900 	return 0;
1901 }
1902 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1903 {
1904 	return NULL;
1905 }
1906 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1907 {
1908 	return NULL;
1909 }
1910 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1911 {
1912 	return 0;
1913 }
1914 static inline void blk_integrity_register(struct gendisk *d,
1915 					 struct blk_integrity *b)
1916 {
1917 }
1918 static inline void blk_integrity_unregister(struct gendisk *d)
1919 {
1920 }
1921 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1922 						    unsigned int segs)
1923 {
1924 }
1925 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1926 {
1927 	return 0;
1928 }
1929 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1930 					  struct request *r1,
1931 					  struct request *r2)
1932 {
1933 	return true;
1934 }
1935 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1936 					   struct request *r,
1937 					   struct bio *b)
1938 {
1939 	return true;
1940 }
1941 
1942 static inline bool integrity_req_gap_back_merge(struct request *req,
1943 						struct bio *next)
1944 {
1945 	return false;
1946 }
1947 static inline bool integrity_req_gap_front_merge(struct request *req,
1948 						 struct bio *bio)
1949 {
1950 	return false;
1951 }
1952 
1953 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1954 
1955 struct block_device_operations {
1956 	int (*open) (struct block_device *, fmode_t);
1957 	void (*release) (struct gendisk *, fmode_t);
1958 	int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1959 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1960 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1961 	unsigned int (*check_events) (struct gendisk *disk,
1962 				      unsigned int clearing);
1963 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1964 	int (*media_changed) (struct gendisk *);
1965 	void (*unlock_native_capacity) (struct gendisk *);
1966 	int (*revalidate_disk) (struct gendisk *);
1967 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1968 	/* this callback is with swap_lock and sometimes page table lock held */
1969 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1970 	struct module *owner;
1971 	const struct pr_ops *pr_ops;
1972 };
1973 
1974 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1975 				 unsigned long);
1976 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1977 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1978 						struct writeback_control *);
1979 
1980 #ifdef CONFIG_BLK_DEV_ZONED
1981 bool blk_req_needs_zone_write_lock(struct request *rq);
1982 void __blk_req_zone_write_lock(struct request *rq);
1983 void __blk_req_zone_write_unlock(struct request *rq);
1984 
1985 static inline void blk_req_zone_write_lock(struct request *rq)
1986 {
1987 	if (blk_req_needs_zone_write_lock(rq))
1988 		__blk_req_zone_write_lock(rq);
1989 }
1990 
1991 static inline void blk_req_zone_write_unlock(struct request *rq)
1992 {
1993 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1994 		__blk_req_zone_write_unlock(rq);
1995 }
1996 
1997 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1998 {
1999 	return rq->q->seq_zones_wlock &&
2000 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
2001 }
2002 
2003 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2004 {
2005 	if (!blk_req_needs_zone_write_lock(rq))
2006 		return true;
2007 	return !blk_req_zone_is_write_locked(rq);
2008 }
2009 #else
2010 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
2011 {
2012 	return false;
2013 }
2014 
2015 static inline void blk_req_zone_write_lock(struct request *rq)
2016 {
2017 }
2018 
2019 static inline void blk_req_zone_write_unlock(struct request *rq)
2020 {
2021 }
2022 static inline bool blk_req_zone_is_write_locked(struct request *rq)
2023 {
2024 	return false;
2025 }
2026 
2027 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2028 {
2029 	return true;
2030 }
2031 #endif /* CONFIG_BLK_DEV_ZONED */
2032 
2033 #else /* CONFIG_BLOCK */
2034 
2035 struct block_device;
2036 
2037 /*
2038  * stubs for when the block layer is configured out
2039  */
2040 #define buffer_heads_over_limit 0
2041 
2042 static inline long nr_blockdev_pages(void)
2043 {
2044 	return 0;
2045 }
2046 
2047 struct blk_plug {
2048 };
2049 
2050 static inline void blk_start_plug(struct blk_plug *plug)
2051 {
2052 }
2053 
2054 static inline void blk_finish_plug(struct blk_plug *plug)
2055 {
2056 }
2057 
2058 static inline void blk_flush_plug(struct task_struct *task)
2059 {
2060 }
2061 
2062 static inline void blk_schedule_flush_plug(struct task_struct *task)
2063 {
2064 }
2065 
2066 
2067 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2068 {
2069 	return false;
2070 }
2071 
2072 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2073 				     sector_t *error_sector)
2074 {
2075 	return 0;
2076 }
2077 
2078 #endif /* CONFIG_BLOCK */
2079 
2080 #endif
2081