1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/uuid.h> 26 #include <linux/xarray.h> 27 28 struct module; 29 struct request_queue; 30 struct elevator_queue; 31 struct blk_trace; 32 struct request; 33 struct sg_io_hdr; 34 struct blkcg_gq; 35 struct blk_flush_queue; 36 struct kiocb; 37 struct pr_ops; 38 struct rq_qos; 39 struct blk_queue_stats; 40 struct blk_stat_callback; 41 struct blk_crypto_profile; 42 43 extern const struct device_type disk_type; 44 extern struct device_type part_type; 45 extern struct class block_class; 46 47 /* Must be consistent with blk_mq_poll_stats_bkt() */ 48 #define BLK_MQ_POLL_STATS_BKTS 16 49 50 /* Doing classic polling */ 51 #define BLK_MQ_POLL_CLASSIC -1 52 53 /* 54 * Maximum number of blkcg policies allowed to be registered concurrently. 55 * Defined here to simplify include dependency. 56 */ 57 #define BLKCG_MAX_POLS 6 58 59 #define DISK_MAX_PARTS 256 60 #define DISK_NAME_LEN 32 61 62 #define PARTITION_META_INFO_VOLNAMELTH 64 63 /* 64 * Enough for the string representation of any kind of UUID plus NULL. 65 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 66 */ 67 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 68 69 struct partition_meta_info { 70 char uuid[PARTITION_META_INFO_UUIDLTH]; 71 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 72 }; 73 74 /** 75 * DOC: genhd capability flags 76 * 77 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 78 * removable media. When set, the device remains present even when media is not 79 * inserted. Shall not be set for devices which are removed entirely when the 80 * media is removed. 81 * 82 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 83 * doesn't appear in sysfs, and can't be opened from userspace or using 84 * blkdev_get*. Used for the underlying components of multipath devices. 85 * 86 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 87 * scan for partitions from add_disk, and users can't add partitions manually. 88 * 89 */ 90 enum { 91 GENHD_FL_REMOVABLE = 1 << 0, 92 GENHD_FL_HIDDEN = 1 << 1, 93 GENHD_FL_NO_PART = 1 << 2, 94 }; 95 96 enum { 97 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 98 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 99 }; 100 101 enum { 102 /* Poll even if events_poll_msecs is unset */ 103 DISK_EVENT_FLAG_POLL = 1 << 0, 104 /* Forward events to udev */ 105 DISK_EVENT_FLAG_UEVENT = 1 << 1, 106 /* Block event polling when open for exclusive write */ 107 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 108 }; 109 110 struct disk_events; 111 struct badblocks; 112 113 struct blk_integrity { 114 const struct blk_integrity_profile *profile; 115 unsigned char flags; 116 unsigned char tuple_size; 117 unsigned char interval_exp; 118 unsigned char tag_size; 119 }; 120 121 struct gendisk { 122 /* 123 * major/first_minor/minors should not be set by any new driver, the 124 * block core will take care of allocating them automatically. 125 */ 126 int major; 127 int first_minor; 128 int minors; 129 130 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 131 132 unsigned short events; /* supported events */ 133 unsigned short event_flags; /* flags related to event processing */ 134 135 struct xarray part_tbl; 136 struct block_device *part0; 137 138 const struct block_device_operations *fops; 139 struct request_queue *queue; 140 void *private_data; 141 142 struct bio_set bio_split; 143 144 int flags; 145 unsigned long state; 146 #define GD_NEED_PART_SCAN 0 147 #define GD_READ_ONLY 1 148 #define GD_DEAD 2 149 #define GD_NATIVE_CAPACITY 3 150 #define GD_ADDED 4 151 #define GD_SUPPRESS_PART_SCAN 5 152 #define GD_OWNS_QUEUE 6 153 154 struct mutex open_mutex; /* open/close mutex */ 155 unsigned open_partitions; /* number of open partitions */ 156 157 struct backing_dev_info *bdi; 158 struct kobject queue_kobj; /* the queue/ directory */ 159 struct kobject *slave_dir; 160 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 161 struct list_head slave_bdevs; 162 #endif 163 struct timer_rand_state *random; 164 atomic_t sync_io; /* RAID */ 165 struct disk_events *ev; 166 #ifdef CONFIG_BLK_DEV_INTEGRITY 167 struct kobject integrity_kobj; 168 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 169 170 #ifdef CONFIG_BLK_DEV_ZONED 171 /* 172 * Zoned block device information for request dispatch control. 173 * nr_zones is the total number of zones of the device. This is always 174 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 175 * bits which indicates if a zone is conventional (bit set) or 176 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 177 * bits which indicates if a zone is write locked, that is, if a write 178 * request targeting the zone was dispatched. 179 * 180 * Reads of this information must be protected with blk_queue_enter() / 181 * blk_queue_exit(). Modifying this information is only allowed while 182 * no requests are being processed. See also blk_mq_freeze_queue() and 183 * blk_mq_unfreeze_queue(). 184 */ 185 unsigned int nr_zones; 186 unsigned int max_open_zones; 187 unsigned int max_active_zones; 188 unsigned long *conv_zones_bitmap; 189 unsigned long *seq_zones_wlock; 190 #endif /* CONFIG_BLK_DEV_ZONED */ 191 192 #if IS_ENABLED(CONFIG_CDROM) 193 struct cdrom_device_info *cdi; 194 #endif 195 int node_id; 196 struct badblocks *bb; 197 struct lockdep_map lockdep_map; 198 u64 diskseq; 199 200 /* 201 * Independent sector access ranges. This is always NULL for 202 * devices that do not have multiple independent access ranges. 203 */ 204 struct blk_independent_access_ranges *ia_ranges; 205 }; 206 207 static inline bool disk_live(struct gendisk *disk) 208 { 209 return !inode_unhashed(disk->part0->bd_inode); 210 } 211 212 /** 213 * disk_openers - returns how many openers are there for a disk 214 * @disk: disk to check 215 * 216 * This returns the number of openers for a disk. Note that this value is only 217 * stable if disk->open_mutex is held. 218 * 219 * Note: Due to a quirk in the block layer open code, each open partition is 220 * only counted once even if there are multiple openers. 221 */ 222 static inline unsigned int disk_openers(struct gendisk *disk) 223 { 224 return atomic_read(&disk->part0->bd_openers); 225 } 226 227 /* 228 * The gendisk is refcounted by the part0 block_device, and the bd_device 229 * therein is also used for device model presentation in sysfs. 230 */ 231 #define dev_to_disk(device) \ 232 (dev_to_bdev(device)->bd_disk) 233 #define disk_to_dev(disk) \ 234 (&((disk)->part0->bd_device)) 235 236 #if IS_REACHABLE(CONFIG_CDROM) 237 #define disk_to_cdi(disk) ((disk)->cdi) 238 #else 239 #define disk_to_cdi(disk) NULL 240 #endif 241 242 static inline dev_t disk_devt(struct gendisk *disk) 243 { 244 return MKDEV(disk->major, disk->first_minor); 245 } 246 247 static inline int blk_validate_block_size(unsigned long bsize) 248 { 249 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 250 return -EINVAL; 251 252 return 0; 253 } 254 255 static inline bool blk_op_is_passthrough(blk_opf_t op) 256 { 257 op &= REQ_OP_MASK; 258 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 259 } 260 261 /* 262 * Zoned block device models (zoned limit). 263 * 264 * Note: This needs to be ordered from the least to the most severe 265 * restrictions for the inheritance in blk_stack_limits() to work. 266 */ 267 enum blk_zoned_model { 268 BLK_ZONED_NONE = 0, /* Regular block device */ 269 BLK_ZONED_HA, /* Host-aware zoned block device */ 270 BLK_ZONED_HM, /* Host-managed zoned block device */ 271 }; 272 273 /* 274 * BLK_BOUNCE_NONE: never bounce (default) 275 * BLK_BOUNCE_HIGH: bounce all highmem pages 276 */ 277 enum blk_bounce { 278 BLK_BOUNCE_NONE, 279 BLK_BOUNCE_HIGH, 280 }; 281 282 struct queue_limits { 283 enum blk_bounce bounce; 284 unsigned long seg_boundary_mask; 285 unsigned long virt_boundary_mask; 286 287 unsigned int max_hw_sectors; 288 unsigned int max_dev_sectors; 289 unsigned int chunk_sectors; 290 unsigned int max_sectors; 291 unsigned int max_segment_size; 292 unsigned int physical_block_size; 293 unsigned int logical_block_size; 294 unsigned int alignment_offset; 295 unsigned int io_min; 296 unsigned int io_opt; 297 unsigned int max_discard_sectors; 298 unsigned int max_hw_discard_sectors; 299 unsigned int max_secure_erase_sectors; 300 unsigned int max_write_zeroes_sectors; 301 unsigned int max_zone_append_sectors; 302 unsigned int discard_granularity; 303 unsigned int discard_alignment; 304 unsigned int zone_write_granularity; 305 306 unsigned short max_segments; 307 unsigned short max_integrity_segments; 308 unsigned short max_discard_segments; 309 310 unsigned char misaligned; 311 unsigned char discard_misaligned; 312 unsigned char raid_partial_stripes_expensive; 313 enum blk_zoned_model zoned; 314 315 /* 316 * Drivers that set dma_alignment to less than 511 must be prepared to 317 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 318 * due to possible offsets. 319 */ 320 unsigned int dma_alignment; 321 }; 322 323 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 324 void *data); 325 326 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 327 328 #ifdef CONFIG_BLK_DEV_ZONED 329 330 #define BLK_ALL_ZONES ((unsigned int)-1) 331 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 332 unsigned int nr_zones, report_zones_cb cb, void *data); 333 unsigned int bdev_nr_zones(struct block_device *bdev); 334 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 335 sector_t sectors, sector_t nr_sectors, 336 gfp_t gfp_mask); 337 int blk_revalidate_disk_zones(struct gendisk *disk, 338 void (*update_driver_data)(struct gendisk *disk)); 339 340 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 341 unsigned int cmd, unsigned long arg); 342 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 343 unsigned int cmd, unsigned long arg); 344 345 #else /* CONFIG_BLK_DEV_ZONED */ 346 347 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 348 { 349 return 0; 350 } 351 352 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 353 fmode_t mode, unsigned int cmd, 354 unsigned long arg) 355 { 356 return -ENOTTY; 357 } 358 359 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 360 fmode_t mode, unsigned int cmd, 361 unsigned long arg) 362 { 363 return -ENOTTY; 364 } 365 366 #endif /* CONFIG_BLK_DEV_ZONED */ 367 368 /* 369 * Independent access ranges: struct blk_independent_access_range describes 370 * a range of contiguous sectors that can be accessed using device command 371 * execution resources that are independent from the resources used for 372 * other access ranges. This is typically found with single-LUN multi-actuator 373 * HDDs where each access range is served by a different set of heads. 374 * The set of independent ranges supported by the device is defined using 375 * struct blk_independent_access_ranges. The independent ranges must not overlap 376 * and must include all sectors within the disk capacity (no sector holes 377 * allowed). 378 * For a device with multiple ranges, requests targeting sectors in different 379 * ranges can be executed in parallel. A request can straddle an access range 380 * boundary. 381 */ 382 struct blk_independent_access_range { 383 struct kobject kobj; 384 sector_t sector; 385 sector_t nr_sectors; 386 }; 387 388 struct blk_independent_access_ranges { 389 struct kobject kobj; 390 bool sysfs_registered; 391 unsigned int nr_ia_ranges; 392 struct blk_independent_access_range ia_range[]; 393 }; 394 395 struct request_queue { 396 struct request *last_merge; 397 struct elevator_queue *elevator; 398 399 struct percpu_ref q_usage_counter; 400 401 struct blk_queue_stats *stats; 402 struct rq_qos *rq_qos; 403 404 const struct blk_mq_ops *mq_ops; 405 406 /* sw queues */ 407 struct blk_mq_ctx __percpu *queue_ctx; 408 409 unsigned int queue_depth; 410 411 /* hw dispatch queues */ 412 struct xarray hctx_table; 413 unsigned int nr_hw_queues; 414 415 /* 416 * The queue owner gets to use this for whatever they like. 417 * ll_rw_blk doesn't touch it. 418 */ 419 void *queuedata; 420 421 /* 422 * various queue flags, see QUEUE_* below 423 */ 424 unsigned long queue_flags; 425 /* 426 * Number of contexts that have called blk_set_pm_only(). If this 427 * counter is above zero then only RQF_PM requests are processed. 428 */ 429 atomic_t pm_only; 430 431 /* 432 * ida allocated id for this queue. Used to index queues from 433 * ioctx. 434 */ 435 int id; 436 437 spinlock_t queue_lock; 438 439 struct gendisk *disk; 440 441 refcount_t refs; 442 443 /* 444 * mq queue kobject 445 */ 446 struct kobject *mq_kobj; 447 448 #ifdef CONFIG_BLK_DEV_INTEGRITY 449 struct blk_integrity integrity; 450 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 451 452 #ifdef CONFIG_PM 453 struct device *dev; 454 enum rpm_status rpm_status; 455 #endif 456 457 /* 458 * queue settings 459 */ 460 unsigned long nr_requests; /* Max # of requests */ 461 462 unsigned int dma_pad_mask; 463 464 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 465 struct blk_crypto_profile *crypto_profile; 466 struct kobject *crypto_kobject; 467 #endif 468 469 unsigned int rq_timeout; 470 int poll_nsec; 471 472 struct blk_stat_callback *poll_cb; 473 struct blk_rq_stat *poll_stat; 474 475 struct timer_list timeout; 476 struct work_struct timeout_work; 477 478 atomic_t nr_active_requests_shared_tags; 479 480 struct blk_mq_tags *sched_shared_tags; 481 482 struct list_head icq_list; 483 #ifdef CONFIG_BLK_CGROUP 484 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 485 struct blkcg_gq *root_blkg; 486 struct list_head blkg_list; 487 #endif 488 489 struct queue_limits limits; 490 491 unsigned int required_elevator_features; 492 493 int node; 494 #ifdef CONFIG_BLK_DEV_IO_TRACE 495 struct blk_trace __rcu *blk_trace; 496 #endif 497 /* 498 * for flush operations 499 */ 500 struct blk_flush_queue *fq; 501 502 struct list_head requeue_list; 503 spinlock_t requeue_lock; 504 struct delayed_work requeue_work; 505 506 struct mutex sysfs_lock; 507 struct mutex sysfs_dir_lock; 508 509 /* 510 * for reusing dead hctx instance in case of updating 511 * nr_hw_queues 512 */ 513 struct list_head unused_hctx_list; 514 spinlock_t unused_hctx_lock; 515 516 int mq_freeze_depth; 517 518 #ifdef CONFIG_BLK_DEV_THROTTLING 519 /* Throttle data */ 520 struct throtl_data *td; 521 #endif 522 struct rcu_head rcu_head; 523 wait_queue_head_t mq_freeze_wq; 524 /* 525 * Protect concurrent access to q_usage_counter by 526 * percpu_ref_kill() and percpu_ref_reinit(). 527 */ 528 struct mutex mq_freeze_lock; 529 530 int quiesce_depth; 531 532 struct blk_mq_tag_set *tag_set; 533 struct list_head tag_set_list; 534 535 struct dentry *debugfs_dir; 536 struct dentry *sched_debugfs_dir; 537 struct dentry *rqos_debugfs_dir; 538 /* 539 * Serializes all debugfs metadata operations using the above dentries. 540 */ 541 struct mutex debugfs_mutex; 542 543 bool mq_sysfs_init_done; 544 }; 545 546 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 547 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 548 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 549 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 550 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 551 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 552 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 553 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 554 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 555 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 556 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 557 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 558 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 559 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 560 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 561 #define QUEUE_FLAG_WC 17 /* Write back caching */ 562 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 563 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 564 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 565 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 566 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 567 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 568 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 569 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 570 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 571 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 572 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 573 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE 31 /* quiesce_tagset skip the queue*/ 574 575 #define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \ 576 (1UL << QUEUE_FLAG_SAME_COMP) | \ 577 (1UL << QUEUE_FLAG_NOWAIT)) 578 579 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 580 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 581 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 582 583 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 584 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 585 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 586 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 587 #define blk_queue_noxmerges(q) \ 588 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 589 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 590 #define blk_queue_stable_writes(q) \ 591 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 592 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 593 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 594 #define blk_queue_zone_resetall(q) \ 595 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 596 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 597 #define blk_queue_pci_p2pdma(q) \ 598 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 599 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 600 #define blk_queue_rq_alloc_time(q) \ 601 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 602 #else 603 #define blk_queue_rq_alloc_time(q) false 604 #endif 605 606 #define blk_noretry_request(rq) \ 607 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 608 REQ_FAILFAST_DRIVER)) 609 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 610 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 611 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 612 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 613 #define blk_queue_skip_tagset_quiesce(q) \ 614 test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags) 615 616 extern void blk_set_pm_only(struct request_queue *q); 617 extern void blk_clear_pm_only(struct request_queue *q); 618 619 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 620 621 #define dma_map_bvec(dev, bv, dir, attrs) \ 622 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 623 (dir), (attrs)) 624 625 static inline bool queue_is_mq(struct request_queue *q) 626 { 627 return q->mq_ops; 628 } 629 630 #ifdef CONFIG_PM 631 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 632 { 633 return q->rpm_status; 634 } 635 #else 636 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 637 { 638 return RPM_ACTIVE; 639 } 640 #endif 641 642 static inline enum blk_zoned_model 643 blk_queue_zoned_model(struct request_queue *q) 644 { 645 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 646 return q->limits.zoned; 647 return BLK_ZONED_NONE; 648 } 649 650 static inline bool blk_queue_is_zoned(struct request_queue *q) 651 { 652 switch (blk_queue_zoned_model(q)) { 653 case BLK_ZONED_HA: 654 case BLK_ZONED_HM: 655 return true; 656 default: 657 return false; 658 } 659 } 660 661 #ifdef CONFIG_BLK_DEV_ZONED 662 static inline unsigned int disk_nr_zones(struct gendisk *disk) 663 { 664 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0; 665 } 666 667 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 668 { 669 if (!blk_queue_is_zoned(disk->queue)) 670 return 0; 671 return sector >> ilog2(disk->queue->limits.chunk_sectors); 672 } 673 674 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 675 { 676 if (!blk_queue_is_zoned(disk->queue)) 677 return false; 678 if (!disk->conv_zones_bitmap) 679 return true; 680 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 681 } 682 683 static inline void disk_set_max_open_zones(struct gendisk *disk, 684 unsigned int max_open_zones) 685 { 686 disk->max_open_zones = max_open_zones; 687 } 688 689 static inline void disk_set_max_active_zones(struct gendisk *disk, 690 unsigned int max_active_zones) 691 { 692 disk->max_active_zones = max_active_zones; 693 } 694 695 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 696 { 697 return bdev->bd_disk->max_open_zones; 698 } 699 700 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 701 { 702 return bdev->bd_disk->max_active_zones; 703 } 704 705 #else /* CONFIG_BLK_DEV_ZONED */ 706 static inline unsigned int disk_nr_zones(struct gendisk *disk) 707 { 708 return 0; 709 } 710 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 711 { 712 return false; 713 } 714 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 715 { 716 return 0; 717 } 718 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 719 { 720 return 0; 721 } 722 723 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 724 { 725 return 0; 726 } 727 #endif /* CONFIG_BLK_DEV_ZONED */ 728 729 static inline unsigned int blk_queue_depth(struct request_queue *q) 730 { 731 if (q->queue_depth) 732 return q->queue_depth; 733 734 return q->nr_requests; 735 } 736 737 /* 738 * default timeout for SG_IO if none specified 739 */ 740 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 741 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 742 743 /* This should not be used directly - use rq_for_each_segment */ 744 #define for_each_bio(_bio) \ 745 for (; _bio; _bio = _bio->bi_next) 746 747 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 748 const struct attribute_group **groups); 749 static inline int __must_check add_disk(struct gendisk *disk) 750 { 751 return device_add_disk(NULL, disk, NULL); 752 } 753 void del_gendisk(struct gendisk *gp); 754 void invalidate_disk(struct gendisk *disk); 755 void set_disk_ro(struct gendisk *disk, bool read_only); 756 void disk_uevent(struct gendisk *disk, enum kobject_action action); 757 758 static inline int get_disk_ro(struct gendisk *disk) 759 { 760 return disk->part0->bd_read_only || 761 test_bit(GD_READ_ONLY, &disk->state); 762 } 763 764 static inline int bdev_read_only(struct block_device *bdev) 765 { 766 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 767 } 768 769 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 770 bool disk_force_media_change(struct gendisk *disk, unsigned int events); 771 772 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 773 void rand_initialize_disk(struct gendisk *disk); 774 775 static inline sector_t get_start_sect(struct block_device *bdev) 776 { 777 return bdev->bd_start_sect; 778 } 779 780 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 781 { 782 return bdev->bd_nr_sectors; 783 } 784 785 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 786 { 787 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 788 } 789 790 static inline sector_t get_capacity(struct gendisk *disk) 791 { 792 return bdev_nr_sectors(disk->part0); 793 } 794 795 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 796 { 797 return bdev_nr_sectors(sb->s_bdev) >> 798 (sb->s_blocksize_bits - SECTOR_SHIFT); 799 } 800 801 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 802 803 void put_disk(struct gendisk *disk); 804 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 805 806 /** 807 * blk_alloc_disk - allocate a gendisk structure 808 * @node_id: numa node to allocate on 809 * 810 * Allocate and pre-initialize a gendisk structure for use with BIO based 811 * drivers. 812 * 813 * Context: can sleep 814 */ 815 #define blk_alloc_disk(node_id) \ 816 ({ \ 817 static struct lock_class_key __key; \ 818 \ 819 __blk_alloc_disk(node_id, &__key); \ 820 }) 821 822 int __register_blkdev(unsigned int major, const char *name, 823 void (*probe)(dev_t devt)); 824 #define register_blkdev(major, name) \ 825 __register_blkdev(major, name, NULL) 826 void unregister_blkdev(unsigned int major, const char *name); 827 828 bool bdev_check_media_change(struct block_device *bdev); 829 int __invalidate_device(struct block_device *bdev, bool kill_dirty); 830 void set_capacity(struct gendisk *disk, sector_t size); 831 832 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 833 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 834 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 835 #else 836 static inline int bd_link_disk_holder(struct block_device *bdev, 837 struct gendisk *disk) 838 { 839 return 0; 840 } 841 static inline void bd_unlink_disk_holder(struct block_device *bdev, 842 struct gendisk *disk) 843 { 844 } 845 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 846 847 dev_t part_devt(struct gendisk *disk, u8 partno); 848 void inc_diskseq(struct gendisk *disk); 849 dev_t blk_lookup_devt(const char *name, int partno); 850 void blk_request_module(dev_t devt); 851 852 extern int blk_register_queue(struct gendisk *disk); 853 extern void blk_unregister_queue(struct gendisk *disk); 854 void submit_bio_noacct(struct bio *bio); 855 struct bio *bio_split_to_limits(struct bio *bio); 856 857 extern int blk_lld_busy(struct request_queue *q); 858 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 859 extern void blk_queue_exit(struct request_queue *q); 860 extern void blk_sync_queue(struct request_queue *q); 861 862 /* Helper to convert REQ_OP_XXX to its string format XXX */ 863 extern const char *blk_op_str(enum req_op op); 864 865 int blk_status_to_errno(blk_status_t status); 866 blk_status_t errno_to_blk_status(int errno); 867 868 /* only poll the hardware once, don't continue until a completion was found */ 869 #define BLK_POLL_ONESHOT (1 << 0) 870 /* do not sleep to wait for the expected completion time */ 871 #define BLK_POLL_NOSLEEP (1 << 1) 872 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 873 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 874 unsigned int flags); 875 876 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 877 { 878 return bdev->bd_queue; /* this is never NULL */ 879 } 880 881 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 882 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 883 884 static inline unsigned int bio_zone_no(struct bio *bio) 885 { 886 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 887 } 888 889 static inline unsigned int bio_zone_is_seq(struct bio *bio) 890 { 891 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 892 } 893 894 /* 895 * Return how much of the chunk is left to be used for I/O at a given offset. 896 */ 897 static inline unsigned int blk_chunk_sectors_left(sector_t offset, 898 unsigned int chunk_sectors) 899 { 900 if (unlikely(!is_power_of_2(chunk_sectors))) 901 return chunk_sectors - sector_div(offset, chunk_sectors); 902 return chunk_sectors - (offset & (chunk_sectors - 1)); 903 } 904 905 /* 906 * Access functions for manipulating queue properties 907 */ 908 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 909 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 910 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 911 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 912 extern void blk_queue_max_discard_segments(struct request_queue *, 913 unsigned short); 914 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 915 unsigned int max_sectors); 916 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 917 extern void blk_queue_max_discard_sectors(struct request_queue *q, 918 unsigned int max_discard_sectors); 919 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 920 unsigned int max_write_same_sectors); 921 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 922 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 923 unsigned int max_zone_append_sectors); 924 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 925 void blk_queue_zone_write_granularity(struct request_queue *q, 926 unsigned int size); 927 extern void blk_queue_alignment_offset(struct request_queue *q, 928 unsigned int alignment); 929 void disk_update_readahead(struct gendisk *disk); 930 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 931 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 932 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 933 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 934 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 935 extern void blk_set_stacking_limits(struct queue_limits *lim); 936 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 937 sector_t offset); 938 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 939 sector_t offset); 940 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 941 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 942 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 943 extern void blk_queue_dma_alignment(struct request_queue *, int); 944 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 945 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 946 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 947 948 struct blk_independent_access_ranges * 949 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 950 void disk_set_independent_access_ranges(struct gendisk *disk, 951 struct blk_independent_access_ranges *iars); 952 953 /* 954 * Elevator features for blk_queue_required_elevator_features: 955 */ 956 /* Supports zoned block devices sequential write constraint */ 957 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 958 959 extern void blk_queue_required_elevator_features(struct request_queue *q, 960 unsigned int features); 961 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 962 struct device *dev); 963 964 bool __must_check blk_get_queue(struct request_queue *); 965 extern void blk_put_queue(struct request_queue *); 966 967 void blk_mark_disk_dead(struct gendisk *disk); 968 969 #ifdef CONFIG_BLOCK 970 /* 971 * blk_plug permits building a queue of related requests by holding the I/O 972 * fragments for a short period. This allows merging of sequential requests 973 * into single larger request. As the requests are moved from a per-task list to 974 * the device's request_queue in a batch, this results in improved scalability 975 * as the lock contention for request_queue lock is reduced. 976 * 977 * It is ok not to disable preemption when adding the request to the plug list 978 * or when attempting a merge. For details, please see schedule() where 979 * blk_flush_plug() is called. 980 */ 981 struct blk_plug { 982 struct request *mq_list; /* blk-mq requests */ 983 984 /* if ios_left is > 1, we can batch tag/rq allocations */ 985 struct request *cached_rq; 986 unsigned short nr_ios; 987 988 unsigned short rq_count; 989 990 bool multiple_queues; 991 bool has_elevator; 992 bool nowait; 993 994 struct list_head cb_list; /* md requires an unplug callback */ 995 }; 996 997 struct blk_plug_cb; 998 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 999 struct blk_plug_cb { 1000 struct list_head list; 1001 blk_plug_cb_fn callback; 1002 void *data; 1003 }; 1004 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1005 void *data, int size); 1006 extern void blk_start_plug(struct blk_plug *); 1007 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1008 extern void blk_finish_plug(struct blk_plug *); 1009 1010 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1011 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1012 { 1013 if (plug) 1014 __blk_flush_plug(plug, async); 1015 } 1016 1017 int blkdev_issue_flush(struct block_device *bdev); 1018 long nr_blockdev_pages(void); 1019 #else /* CONFIG_BLOCK */ 1020 struct blk_plug { 1021 }; 1022 1023 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1024 unsigned short nr_ios) 1025 { 1026 } 1027 1028 static inline void blk_start_plug(struct blk_plug *plug) 1029 { 1030 } 1031 1032 static inline void blk_finish_plug(struct blk_plug *plug) 1033 { 1034 } 1035 1036 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1037 { 1038 } 1039 1040 static inline int blkdev_issue_flush(struct block_device *bdev) 1041 { 1042 return 0; 1043 } 1044 1045 static inline long nr_blockdev_pages(void) 1046 { 1047 return 0; 1048 } 1049 #endif /* CONFIG_BLOCK */ 1050 1051 extern void blk_io_schedule(void); 1052 1053 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1054 sector_t nr_sects, gfp_t gfp_mask); 1055 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1056 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1057 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1058 sector_t nr_sects, gfp_t gfp); 1059 1060 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1061 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1062 1063 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1064 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1065 unsigned flags); 1066 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1067 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1068 1069 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1070 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1071 { 1072 return blkdev_issue_discard(sb->s_bdev, 1073 block << (sb->s_blocksize_bits - 1074 SECTOR_SHIFT), 1075 nr_blocks << (sb->s_blocksize_bits - 1076 SECTOR_SHIFT), 1077 gfp_mask); 1078 } 1079 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1080 sector_t nr_blocks, gfp_t gfp_mask) 1081 { 1082 return blkdev_issue_zeroout(sb->s_bdev, 1083 block << (sb->s_blocksize_bits - 1084 SECTOR_SHIFT), 1085 nr_blocks << (sb->s_blocksize_bits - 1086 SECTOR_SHIFT), 1087 gfp_mask, 0); 1088 } 1089 1090 static inline bool bdev_is_partition(struct block_device *bdev) 1091 { 1092 return bdev->bd_partno; 1093 } 1094 1095 enum blk_default_limits { 1096 BLK_MAX_SEGMENTS = 128, 1097 BLK_SAFE_MAX_SECTORS = 255, 1098 BLK_DEF_MAX_SECTORS = 2560, 1099 BLK_MAX_SEGMENT_SIZE = 65536, 1100 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1101 }; 1102 1103 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1104 { 1105 return q->limits.seg_boundary_mask; 1106 } 1107 1108 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1109 { 1110 return q->limits.virt_boundary_mask; 1111 } 1112 1113 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1114 { 1115 return q->limits.max_sectors; 1116 } 1117 1118 static inline unsigned int queue_max_bytes(struct request_queue *q) 1119 { 1120 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1121 } 1122 1123 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1124 { 1125 return q->limits.max_hw_sectors; 1126 } 1127 1128 static inline unsigned short queue_max_segments(const struct request_queue *q) 1129 { 1130 return q->limits.max_segments; 1131 } 1132 1133 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1134 { 1135 return q->limits.max_discard_segments; 1136 } 1137 1138 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1139 { 1140 return q->limits.max_segment_size; 1141 } 1142 1143 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1144 { 1145 1146 const struct queue_limits *l = &q->limits; 1147 1148 return min(l->max_zone_append_sectors, l->max_sectors); 1149 } 1150 1151 static inline unsigned int 1152 bdev_max_zone_append_sectors(struct block_device *bdev) 1153 { 1154 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1155 } 1156 1157 static inline unsigned int bdev_max_segments(struct block_device *bdev) 1158 { 1159 return queue_max_segments(bdev_get_queue(bdev)); 1160 } 1161 1162 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1163 { 1164 int retval = 512; 1165 1166 if (q && q->limits.logical_block_size) 1167 retval = q->limits.logical_block_size; 1168 1169 return retval; 1170 } 1171 1172 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1173 { 1174 return queue_logical_block_size(bdev_get_queue(bdev)); 1175 } 1176 1177 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1178 { 1179 return q->limits.physical_block_size; 1180 } 1181 1182 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1183 { 1184 return queue_physical_block_size(bdev_get_queue(bdev)); 1185 } 1186 1187 static inline unsigned int queue_io_min(const struct request_queue *q) 1188 { 1189 return q->limits.io_min; 1190 } 1191 1192 static inline int bdev_io_min(struct block_device *bdev) 1193 { 1194 return queue_io_min(bdev_get_queue(bdev)); 1195 } 1196 1197 static inline unsigned int queue_io_opt(const struct request_queue *q) 1198 { 1199 return q->limits.io_opt; 1200 } 1201 1202 static inline int bdev_io_opt(struct block_device *bdev) 1203 { 1204 return queue_io_opt(bdev_get_queue(bdev)); 1205 } 1206 1207 static inline unsigned int 1208 queue_zone_write_granularity(const struct request_queue *q) 1209 { 1210 return q->limits.zone_write_granularity; 1211 } 1212 1213 static inline unsigned int 1214 bdev_zone_write_granularity(struct block_device *bdev) 1215 { 1216 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1217 } 1218 1219 int bdev_alignment_offset(struct block_device *bdev); 1220 unsigned int bdev_discard_alignment(struct block_device *bdev); 1221 1222 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1223 { 1224 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1225 } 1226 1227 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1228 { 1229 return bdev_get_queue(bdev)->limits.discard_granularity; 1230 } 1231 1232 static inline unsigned int 1233 bdev_max_secure_erase_sectors(struct block_device *bdev) 1234 { 1235 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1236 } 1237 1238 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1239 { 1240 struct request_queue *q = bdev_get_queue(bdev); 1241 1242 if (q) 1243 return q->limits.max_write_zeroes_sectors; 1244 1245 return 0; 1246 } 1247 1248 static inline bool bdev_nonrot(struct block_device *bdev) 1249 { 1250 return blk_queue_nonrot(bdev_get_queue(bdev)); 1251 } 1252 1253 static inline bool bdev_stable_writes(struct block_device *bdev) 1254 { 1255 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1256 &bdev_get_queue(bdev)->queue_flags); 1257 } 1258 1259 static inline bool bdev_write_cache(struct block_device *bdev) 1260 { 1261 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1262 } 1263 1264 static inline bool bdev_fua(struct block_device *bdev) 1265 { 1266 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1267 } 1268 1269 static inline bool bdev_nowait(struct block_device *bdev) 1270 { 1271 return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags); 1272 } 1273 1274 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1275 { 1276 struct request_queue *q = bdev_get_queue(bdev); 1277 1278 if (q) 1279 return blk_queue_zoned_model(q); 1280 1281 return BLK_ZONED_NONE; 1282 } 1283 1284 static inline bool bdev_is_zoned(struct block_device *bdev) 1285 { 1286 struct request_queue *q = bdev_get_queue(bdev); 1287 1288 if (q) 1289 return blk_queue_is_zoned(q); 1290 1291 return false; 1292 } 1293 1294 static inline bool bdev_op_is_zoned_write(struct block_device *bdev, 1295 blk_opf_t op) 1296 { 1297 if (!bdev_is_zoned(bdev)) 1298 return false; 1299 1300 return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES; 1301 } 1302 1303 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1304 { 1305 struct request_queue *q = bdev_get_queue(bdev); 1306 1307 if (!blk_queue_is_zoned(q)) 1308 return 0; 1309 return q->limits.chunk_sectors; 1310 } 1311 1312 static inline int queue_dma_alignment(const struct request_queue *q) 1313 { 1314 return q ? q->limits.dma_alignment : 511; 1315 } 1316 1317 static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1318 { 1319 return queue_dma_alignment(bdev_get_queue(bdev)); 1320 } 1321 1322 static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1323 struct iov_iter *iter) 1324 { 1325 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1326 bdev_logical_block_size(bdev) - 1); 1327 } 1328 1329 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1330 unsigned int len) 1331 { 1332 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1333 return !(addr & alignment) && !(len & alignment); 1334 } 1335 1336 /* assumes size > 256 */ 1337 static inline unsigned int blksize_bits(unsigned int size) 1338 { 1339 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1340 } 1341 1342 static inline unsigned int block_size(struct block_device *bdev) 1343 { 1344 return 1 << bdev->bd_inode->i_blkbits; 1345 } 1346 1347 int kblockd_schedule_work(struct work_struct *work); 1348 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1349 1350 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1351 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1352 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1353 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1354 1355 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1356 1357 bool blk_crypto_register(struct blk_crypto_profile *profile, 1358 struct request_queue *q); 1359 1360 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1361 1362 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1363 struct request_queue *q) 1364 { 1365 return true; 1366 } 1367 1368 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1369 1370 enum blk_unique_id { 1371 /* these match the Designator Types specified in SPC */ 1372 BLK_UID_T10 = 1, 1373 BLK_UID_EUI64 = 2, 1374 BLK_UID_NAA = 3, 1375 }; 1376 1377 #define NFL4_UFLG_MASK 0x0000003F 1378 1379 struct block_device_operations { 1380 void (*submit_bio)(struct bio *bio); 1381 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1382 unsigned int flags); 1383 int (*open) (struct block_device *, fmode_t); 1384 void (*release) (struct gendisk *, fmode_t); 1385 int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op); 1386 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1387 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1388 unsigned int (*check_events) (struct gendisk *disk, 1389 unsigned int clearing); 1390 void (*unlock_native_capacity) (struct gendisk *); 1391 int (*getgeo)(struct block_device *, struct hd_geometry *); 1392 int (*set_read_only)(struct block_device *bdev, bool ro); 1393 void (*free_disk)(struct gendisk *disk); 1394 /* this callback is with swap_lock and sometimes page table lock held */ 1395 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1396 int (*report_zones)(struct gendisk *, sector_t sector, 1397 unsigned int nr_zones, report_zones_cb cb, void *data); 1398 /* returns the length of the identifier or a negative errno: */ 1399 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1400 enum blk_unique_id id_type); 1401 struct module *owner; 1402 const struct pr_ops *pr_ops; 1403 1404 /* 1405 * Special callback for probing GPT entry at a given sector. 1406 * Needed by Android devices, used by GPT scanner and MMC blk 1407 * driver. 1408 */ 1409 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1410 }; 1411 1412 #ifdef CONFIG_COMPAT 1413 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1414 unsigned int, unsigned long); 1415 #else 1416 #define blkdev_compat_ptr_ioctl NULL 1417 #endif 1418 1419 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1420 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1421 struct writeback_control *); 1422 1423 static inline void blk_wake_io_task(struct task_struct *waiter) 1424 { 1425 /* 1426 * If we're polling, the task itself is doing the completions. For 1427 * that case, we don't need to signal a wakeup, it's enough to just 1428 * mark us as RUNNING. 1429 */ 1430 if (waiter == current) 1431 __set_current_state(TASK_RUNNING); 1432 else 1433 wake_up_process(waiter); 1434 } 1435 1436 unsigned long bdev_start_io_acct(struct block_device *bdev, 1437 unsigned int sectors, enum req_op op, 1438 unsigned long start_time); 1439 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1440 unsigned long start_time); 1441 1442 unsigned long bio_start_io_acct(struct bio *bio); 1443 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1444 struct block_device *orig_bdev); 1445 1446 /** 1447 * bio_end_io_acct - end I/O accounting for bio based drivers 1448 * @bio: bio to end account for 1449 * @start_time: start time returned by bio_start_io_acct() 1450 */ 1451 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1452 { 1453 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1454 } 1455 1456 int bdev_read_only(struct block_device *bdev); 1457 int set_blocksize(struct block_device *bdev, int size); 1458 1459 int lookup_bdev(const char *pathname, dev_t *dev); 1460 1461 void blkdev_show(struct seq_file *seqf, off_t offset); 1462 1463 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1464 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1465 #ifdef CONFIG_BLOCK 1466 #define BLKDEV_MAJOR_MAX 512 1467 #else 1468 #define BLKDEV_MAJOR_MAX 0 1469 #endif 1470 1471 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1472 void *holder); 1473 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1474 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1475 void bd_abort_claiming(struct block_device *bdev, void *holder); 1476 void blkdev_put(struct block_device *bdev, fmode_t mode); 1477 1478 /* just for blk-cgroup, don't use elsewhere */ 1479 struct block_device *blkdev_get_no_open(dev_t dev); 1480 void blkdev_put_no_open(struct block_device *bdev); 1481 1482 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1483 void bdev_add(struct block_device *bdev, dev_t dev); 1484 struct block_device *I_BDEV(struct inode *inode); 1485 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1486 loff_t lend); 1487 1488 #ifdef CONFIG_BLOCK 1489 void invalidate_bdev(struct block_device *bdev); 1490 int sync_blockdev(struct block_device *bdev); 1491 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1492 int sync_blockdev_nowait(struct block_device *bdev); 1493 void sync_bdevs(bool wait); 1494 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat); 1495 void printk_all_partitions(void); 1496 #else 1497 static inline void invalidate_bdev(struct block_device *bdev) 1498 { 1499 } 1500 static inline int sync_blockdev(struct block_device *bdev) 1501 { 1502 return 0; 1503 } 1504 static inline int sync_blockdev_nowait(struct block_device *bdev) 1505 { 1506 return 0; 1507 } 1508 static inline void sync_bdevs(bool wait) 1509 { 1510 } 1511 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat) 1512 { 1513 } 1514 static inline void printk_all_partitions(void) 1515 { 1516 } 1517 #endif /* CONFIG_BLOCK */ 1518 1519 int fsync_bdev(struct block_device *bdev); 1520 1521 int freeze_bdev(struct block_device *bdev); 1522 int thaw_bdev(struct block_device *bdev); 1523 1524 struct io_comp_batch { 1525 struct request *req_list; 1526 bool need_ts; 1527 void (*complete)(struct io_comp_batch *); 1528 }; 1529 1530 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1531 1532 #endif /* _LINUX_BLKDEV_H */ 1533