1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/pagemap.h> 15 #include <linux/backing-dev-defs.h> 16 #include <linux/wait.h> 17 #include <linux/mempool.h> 18 #include <linux/pfn.h> 19 #include <linux/bio.h> 20 #include <linux/stringify.h> 21 #include <linux/gfp.h> 22 #include <linux/bsg.h> 23 #include <linux/smp.h> 24 #include <linux/rcupdate.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/scatterlist.h> 27 #include <linux/blkzoned.h> 28 #include <linux/pm.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_qos; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 struct blk_keyslot_manager; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* elevator knows about this request */ 69 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70 /* drive already may have started this one */ 71 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72 /* may not be passed by ioscheduler */ 73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74 /* request for flush sequence */ 75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76 /* merge of different types, fail separately */ 77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78 /* track inflight for MQ */ 79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80 /* don't call prep for this one */ 81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82 /* vaguely specified driver internal error. Ignored by the block layer */ 83 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 84 /* don't warn about errors */ 85 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 86 /* elevator private data attached */ 87 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 88 /* account into disk and partition IO statistics */ 89 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 90 /* request came from our alloc pool */ 91 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 92 /* runtime pm request */ 93 #define RQF_PM ((__force req_flags_t)(1 << 15)) 94 /* on IO scheduler merge hash */ 95 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 96 /* track IO completion time */ 97 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 98 /* Look at ->special_vec for the actual data payload instead of the 99 bio chain. */ 100 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 101 /* The per-zone write lock is held for this request */ 102 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 103 /* already slept for hybrid poll */ 104 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 105 /* ->timeout has been called, don't expire again */ 106 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 107 108 /* flags that prevent us from merging requests: */ 109 #define RQF_NOMERGE_FLAGS \ 110 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 111 112 /* 113 * Request state for blk-mq. 114 */ 115 enum mq_rq_state { 116 MQ_RQ_IDLE = 0, 117 MQ_RQ_IN_FLIGHT = 1, 118 MQ_RQ_COMPLETE = 2, 119 }; 120 121 /* 122 * Try to put the fields that are referenced together in the same cacheline. 123 * 124 * If you modify this structure, make sure to update blk_rq_init() and 125 * especially blk_mq_rq_ctx_init() to take care of the added fields. 126 */ 127 struct request { 128 struct request_queue *q; 129 struct blk_mq_ctx *mq_ctx; 130 struct blk_mq_hw_ctx *mq_hctx; 131 132 unsigned int cmd_flags; /* op and common flags */ 133 req_flags_t rq_flags; 134 135 int tag; 136 int internal_tag; 137 138 /* the following two fields are internal, NEVER access directly */ 139 unsigned int __data_len; /* total data len */ 140 sector_t __sector; /* sector cursor */ 141 142 struct bio *bio; 143 struct bio *biotail; 144 145 struct list_head queuelist; 146 147 /* 148 * The hash is used inside the scheduler, and killed once the 149 * request reaches the dispatch list. The ipi_list is only used 150 * to queue the request for softirq completion, which is long 151 * after the request has been unhashed (and even removed from 152 * the dispatch list). 153 */ 154 union { 155 struct hlist_node hash; /* merge hash */ 156 struct llist_node ipi_list; 157 }; 158 159 /* 160 * The rb_node is only used inside the io scheduler, requests 161 * are pruned when moved to the dispatch queue. So let the 162 * completion_data share space with the rb_node. 163 */ 164 union { 165 struct rb_node rb_node; /* sort/lookup */ 166 struct bio_vec special_vec; 167 void *completion_data; 168 int error_count; /* for legacy drivers, don't use */ 169 }; 170 171 /* 172 * Three pointers are available for the IO schedulers, if they need 173 * more they have to dynamically allocate it. Flush requests are 174 * never put on the IO scheduler. So let the flush fields share 175 * space with the elevator data. 176 */ 177 union { 178 struct { 179 struct io_cq *icq; 180 void *priv[2]; 181 } elv; 182 183 struct { 184 unsigned int seq; 185 struct list_head list; 186 rq_end_io_fn *saved_end_io; 187 } flush; 188 }; 189 190 struct gendisk *rq_disk; 191 struct block_device *part; 192 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 193 /* Time that the first bio started allocating this request. */ 194 u64 alloc_time_ns; 195 #endif 196 /* Time that this request was allocated for this IO. */ 197 u64 start_time_ns; 198 /* Time that I/O was submitted to the device. */ 199 u64 io_start_time_ns; 200 201 #ifdef CONFIG_BLK_WBT 202 unsigned short wbt_flags; 203 #endif 204 /* 205 * rq sectors used for blk stats. It has the same value 206 * with blk_rq_sectors(rq), except that it never be zeroed 207 * by completion. 208 */ 209 unsigned short stats_sectors; 210 211 /* 212 * Number of scatter-gather DMA addr+len pairs after 213 * physical address coalescing is performed. 214 */ 215 unsigned short nr_phys_segments; 216 217 #if defined(CONFIG_BLK_DEV_INTEGRITY) 218 unsigned short nr_integrity_segments; 219 #endif 220 221 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 222 struct bio_crypt_ctx *crypt_ctx; 223 struct blk_ksm_keyslot *crypt_keyslot; 224 #endif 225 226 unsigned short write_hint; 227 unsigned short ioprio; 228 229 enum mq_rq_state state; 230 refcount_t ref; 231 232 unsigned int timeout; 233 unsigned long deadline; 234 235 union { 236 struct __call_single_data csd; 237 u64 fifo_time; 238 }; 239 240 /* 241 * completion callback. 242 */ 243 rq_end_io_fn *end_io; 244 void *end_io_data; 245 }; 246 247 static inline bool blk_op_is_scsi(unsigned int op) 248 { 249 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 250 } 251 252 static inline bool blk_op_is_private(unsigned int op) 253 { 254 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 255 } 256 257 static inline bool blk_rq_is_scsi(struct request *rq) 258 { 259 return blk_op_is_scsi(req_op(rq)); 260 } 261 262 static inline bool blk_rq_is_private(struct request *rq) 263 { 264 return blk_op_is_private(req_op(rq)); 265 } 266 267 static inline bool blk_rq_is_passthrough(struct request *rq) 268 { 269 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 270 } 271 272 static inline bool bio_is_passthrough(struct bio *bio) 273 { 274 unsigned op = bio_op(bio); 275 276 return blk_op_is_scsi(op) || blk_op_is_private(op); 277 } 278 279 static inline unsigned short req_get_ioprio(struct request *req) 280 { 281 return req->ioprio; 282 } 283 284 #include <linux/elevator.h> 285 286 struct blk_queue_ctx; 287 288 struct bio_vec; 289 290 enum blk_eh_timer_return { 291 BLK_EH_DONE, /* drivers has completed the command */ 292 BLK_EH_RESET_TIMER, /* reset timer and try again */ 293 }; 294 295 enum blk_queue_state { 296 Queue_down, 297 Queue_up, 298 }; 299 300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 302 303 #define BLK_SCSI_MAX_CMDS (256) 304 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 305 306 /* 307 * Zoned block device models (zoned limit). 308 * 309 * Note: This needs to be ordered from the least to the most severe 310 * restrictions for the inheritance in blk_stack_limits() to work. 311 */ 312 enum blk_zoned_model { 313 BLK_ZONED_NONE = 0, /* Regular block device */ 314 BLK_ZONED_HA, /* Host-aware zoned block device */ 315 BLK_ZONED_HM, /* Host-managed zoned block device */ 316 }; 317 318 struct queue_limits { 319 unsigned long bounce_pfn; 320 unsigned long seg_boundary_mask; 321 unsigned long virt_boundary_mask; 322 323 unsigned int max_hw_sectors; 324 unsigned int max_dev_sectors; 325 unsigned int chunk_sectors; 326 unsigned int max_sectors; 327 unsigned int max_segment_size; 328 unsigned int physical_block_size; 329 unsigned int logical_block_size; 330 unsigned int alignment_offset; 331 unsigned int io_min; 332 unsigned int io_opt; 333 unsigned int max_discard_sectors; 334 unsigned int max_hw_discard_sectors; 335 unsigned int max_write_same_sectors; 336 unsigned int max_write_zeroes_sectors; 337 unsigned int max_zone_append_sectors; 338 unsigned int discard_granularity; 339 unsigned int discard_alignment; 340 unsigned int zone_write_granularity; 341 342 unsigned short max_segments; 343 unsigned short max_integrity_segments; 344 unsigned short max_discard_segments; 345 346 unsigned char misaligned; 347 unsigned char discard_misaligned; 348 unsigned char raid_partial_stripes_expensive; 349 enum blk_zoned_model zoned; 350 }; 351 352 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 353 void *data); 354 355 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 356 357 #ifdef CONFIG_BLK_DEV_ZONED 358 359 #define BLK_ALL_ZONES ((unsigned int)-1) 360 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 361 unsigned int nr_zones, report_zones_cb cb, void *data); 362 unsigned int blkdev_nr_zones(struct gendisk *disk); 363 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 364 sector_t sectors, sector_t nr_sectors, 365 gfp_t gfp_mask); 366 int blk_revalidate_disk_zones(struct gendisk *disk, 367 void (*update_driver_data)(struct gendisk *disk)); 368 369 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 370 unsigned int cmd, unsigned long arg); 371 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 372 unsigned int cmd, unsigned long arg); 373 374 #else /* CONFIG_BLK_DEV_ZONED */ 375 376 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 377 { 378 return 0; 379 } 380 381 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 382 fmode_t mode, unsigned int cmd, 383 unsigned long arg) 384 { 385 return -ENOTTY; 386 } 387 388 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 389 fmode_t mode, unsigned int cmd, 390 unsigned long arg) 391 { 392 return -ENOTTY; 393 } 394 395 #endif /* CONFIG_BLK_DEV_ZONED */ 396 397 struct request_queue { 398 struct request *last_merge; 399 struct elevator_queue *elevator; 400 401 struct percpu_ref q_usage_counter; 402 403 struct blk_queue_stats *stats; 404 struct rq_qos *rq_qos; 405 406 const struct blk_mq_ops *mq_ops; 407 408 /* sw queues */ 409 struct blk_mq_ctx __percpu *queue_ctx; 410 411 unsigned int queue_depth; 412 413 /* hw dispatch queues */ 414 struct blk_mq_hw_ctx **queue_hw_ctx; 415 unsigned int nr_hw_queues; 416 417 struct backing_dev_info *backing_dev_info; 418 419 /* 420 * The queue owner gets to use this for whatever they like. 421 * ll_rw_blk doesn't touch it. 422 */ 423 void *queuedata; 424 425 /* 426 * various queue flags, see QUEUE_* below 427 */ 428 unsigned long queue_flags; 429 /* 430 * Number of contexts that have called blk_set_pm_only(). If this 431 * counter is above zero then only RQF_PM requests are processed. 432 */ 433 atomic_t pm_only; 434 435 /* 436 * ida allocated id for this queue. Used to index queues from 437 * ioctx. 438 */ 439 int id; 440 441 /* 442 * queue needs bounce pages for pages above this limit 443 */ 444 gfp_t bounce_gfp; 445 446 spinlock_t queue_lock; 447 448 /* 449 * queue kobject 450 */ 451 struct kobject kobj; 452 453 /* 454 * mq queue kobject 455 */ 456 struct kobject *mq_kobj; 457 458 #ifdef CONFIG_BLK_DEV_INTEGRITY 459 struct blk_integrity integrity; 460 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 461 462 #ifdef CONFIG_PM 463 struct device *dev; 464 enum rpm_status rpm_status; 465 #endif 466 467 /* 468 * queue settings 469 */ 470 unsigned long nr_requests; /* Max # of requests */ 471 472 unsigned int dma_pad_mask; 473 unsigned int dma_alignment; 474 475 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 476 /* Inline crypto capabilities */ 477 struct blk_keyslot_manager *ksm; 478 #endif 479 480 unsigned int rq_timeout; 481 int poll_nsec; 482 483 struct blk_stat_callback *poll_cb; 484 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 485 486 struct timer_list timeout; 487 struct work_struct timeout_work; 488 489 atomic_t nr_active_requests_shared_sbitmap; 490 491 struct list_head icq_list; 492 #ifdef CONFIG_BLK_CGROUP 493 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 494 struct blkcg_gq *root_blkg; 495 struct list_head blkg_list; 496 #endif 497 498 struct queue_limits limits; 499 500 unsigned int required_elevator_features; 501 502 #ifdef CONFIG_BLK_DEV_ZONED 503 /* 504 * Zoned block device information for request dispatch control. 505 * nr_zones is the total number of zones of the device. This is always 506 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 507 * bits which indicates if a zone is conventional (bit set) or 508 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 509 * bits which indicates if a zone is write locked, that is, if a write 510 * request targeting the zone was dispatched. All three fields are 511 * initialized by the low level device driver (e.g. scsi/sd.c). 512 * Stacking drivers (device mappers) may or may not initialize 513 * these fields. 514 * 515 * Reads of this information must be protected with blk_queue_enter() / 516 * blk_queue_exit(). Modifying this information is only allowed while 517 * no requests are being processed. See also blk_mq_freeze_queue() and 518 * blk_mq_unfreeze_queue(). 519 */ 520 unsigned int nr_zones; 521 unsigned long *conv_zones_bitmap; 522 unsigned long *seq_zones_wlock; 523 unsigned int max_open_zones; 524 unsigned int max_active_zones; 525 #endif /* CONFIG_BLK_DEV_ZONED */ 526 527 /* 528 * sg stuff 529 */ 530 unsigned int sg_timeout; 531 unsigned int sg_reserved_size; 532 int node; 533 struct mutex debugfs_mutex; 534 #ifdef CONFIG_BLK_DEV_IO_TRACE 535 struct blk_trace __rcu *blk_trace; 536 #endif 537 /* 538 * for flush operations 539 */ 540 struct blk_flush_queue *fq; 541 542 struct list_head requeue_list; 543 spinlock_t requeue_lock; 544 struct delayed_work requeue_work; 545 546 struct mutex sysfs_lock; 547 struct mutex sysfs_dir_lock; 548 549 /* 550 * for reusing dead hctx instance in case of updating 551 * nr_hw_queues 552 */ 553 struct list_head unused_hctx_list; 554 spinlock_t unused_hctx_lock; 555 556 int mq_freeze_depth; 557 558 #if defined(CONFIG_BLK_DEV_BSG) 559 struct bsg_class_device bsg_dev; 560 #endif 561 562 #ifdef CONFIG_BLK_DEV_THROTTLING 563 /* Throttle data */ 564 struct throtl_data *td; 565 #endif 566 struct rcu_head rcu_head; 567 wait_queue_head_t mq_freeze_wq; 568 /* 569 * Protect concurrent access to q_usage_counter by 570 * percpu_ref_kill() and percpu_ref_reinit(). 571 */ 572 struct mutex mq_freeze_lock; 573 574 struct blk_mq_tag_set *tag_set; 575 struct list_head tag_set_list; 576 struct bio_set bio_split; 577 578 struct dentry *debugfs_dir; 579 580 #ifdef CONFIG_BLK_DEBUG_FS 581 struct dentry *sched_debugfs_dir; 582 struct dentry *rqos_debugfs_dir; 583 #endif 584 585 bool mq_sysfs_init_done; 586 587 size_t cmd_size; 588 589 #define BLK_MAX_WRITE_HINTS 5 590 u64 write_hints[BLK_MAX_WRITE_HINTS]; 591 }; 592 593 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 594 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 595 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 596 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 597 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 598 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 599 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 600 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 601 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 602 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 603 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 604 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 605 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 606 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 607 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 608 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 609 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 610 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 611 #define QUEUE_FLAG_WC 17 /* Write back caching */ 612 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 613 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 614 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 615 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 616 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 617 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 618 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 619 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 620 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 621 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 622 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 623 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 624 625 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 626 (1 << QUEUE_FLAG_SAME_COMP) | \ 627 (1 << QUEUE_FLAG_NOWAIT)) 628 629 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 630 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 631 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 632 633 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 634 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 635 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 636 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 637 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 638 #define blk_queue_noxmerges(q) \ 639 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 640 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 641 #define blk_queue_stable_writes(q) \ 642 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 643 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 644 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 645 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 646 #define blk_queue_zone_resetall(q) \ 647 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 648 #define blk_queue_secure_erase(q) \ 649 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 650 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 651 #define blk_queue_scsi_passthrough(q) \ 652 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 653 #define blk_queue_pci_p2pdma(q) \ 654 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 655 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 656 #define blk_queue_rq_alloc_time(q) \ 657 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 658 #else 659 #define blk_queue_rq_alloc_time(q) false 660 #endif 661 662 #define blk_noretry_request(rq) \ 663 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 664 REQ_FAILFAST_DRIVER)) 665 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 666 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 667 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 668 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 669 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 670 671 extern void blk_set_pm_only(struct request_queue *q); 672 extern void blk_clear_pm_only(struct request_queue *q); 673 674 static inline bool blk_account_rq(struct request *rq) 675 { 676 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 677 } 678 679 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 680 681 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 682 683 #define rq_dma_dir(rq) \ 684 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 685 686 #define dma_map_bvec(dev, bv, dir, attrs) \ 687 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 688 (dir), (attrs)) 689 690 static inline bool queue_is_mq(struct request_queue *q) 691 { 692 return q->mq_ops; 693 } 694 695 #ifdef CONFIG_PM 696 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 697 { 698 return q->rpm_status; 699 } 700 #else 701 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 702 { 703 return RPM_ACTIVE; 704 } 705 #endif 706 707 static inline enum blk_zoned_model 708 blk_queue_zoned_model(struct request_queue *q) 709 { 710 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 711 return q->limits.zoned; 712 return BLK_ZONED_NONE; 713 } 714 715 static inline bool blk_queue_is_zoned(struct request_queue *q) 716 { 717 switch (blk_queue_zoned_model(q)) { 718 case BLK_ZONED_HA: 719 case BLK_ZONED_HM: 720 return true; 721 default: 722 return false; 723 } 724 } 725 726 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 727 { 728 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 729 } 730 731 #ifdef CONFIG_BLK_DEV_ZONED 732 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 733 { 734 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 735 } 736 737 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 738 sector_t sector) 739 { 740 if (!blk_queue_is_zoned(q)) 741 return 0; 742 return sector >> ilog2(q->limits.chunk_sectors); 743 } 744 745 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 746 sector_t sector) 747 { 748 if (!blk_queue_is_zoned(q)) 749 return false; 750 if (!q->conv_zones_bitmap) 751 return true; 752 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 753 } 754 755 static inline void blk_queue_max_open_zones(struct request_queue *q, 756 unsigned int max_open_zones) 757 { 758 q->max_open_zones = max_open_zones; 759 } 760 761 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 762 { 763 return q->max_open_zones; 764 } 765 766 static inline void blk_queue_max_active_zones(struct request_queue *q, 767 unsigned int max_active_zones) 768 { 769 q->max_active_zones = max_active_zones; 770 } 771 772 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 773 { 774 return q->max_active_zones; 775 } 776 #else /* CONFIG_BLK_DEV_ZONED */ 777 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 778 { 779 return 0; 780 } 781 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 782 sector_t sector) 783 { 784 return false; 785 } 786 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 787 sector_t sector) 788 { 789 return 0; 790 } 791 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 792 { 793 return 0; 794 } 795 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 796 { 797 return 0; 798 } 799 #endif /* CONFIG_BLK_DEV_ZONED */ 800 801 static inline bool rq_is_sync(struct request *rq) 802 { 803 return op_is_sync(rq->cmd_flags); 804 } 805 806 static inline bool rq_mergeable(struct request *rq) 807 { 808 if (blk_rq_is_passthrough(rq)) 809 return false; 810 811 if (req_op(rq) == REQ_OP_FLUSH) 812 return false; 813 814 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 815 return false; 816 817 if (req_op(rq) == REQ_OP_ZONE_APPEND) 818 return false; 819 820 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 821 return false; 822 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 823 return false; 824 825 return true; 826 } 827 828 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 829 { 830 if (bio_page(a) == bio_page(b) && 831 bio_offset(a) == bio_offset(b)) 832 return true; 833 834 return false; 835 } 836 837 static inline unsigned int blk_queue_depth(struct request_queue *q) 838 { 839 if (q->queue_depth) 840 return q->queue_depth; 841 842 return q->nr_requests; 843 } 844 845 extern unsigned long blk_max_low_pfn, blk_max_pfn; 846 847 /* 848 * standard bounce addresses: 849 * 850 * BLK_BOUNCE_HIGH : bounce all highmem pages 851 * BLK_BOUNCE_ANY : don't bounce anything 852 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 853 */ 854 855 #if BITS_PER_LONG == 32 856 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 857 #else 858 #define BLK_BOUNCE_HIGH -1ULL 859 #endif 860 #define BLK_BOUNCE_ANY (-1ULL) 861 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 862 863 /* 864 * default timeout for SG_IO if none specified 865 */ 866 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 867 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 868 869 struct rq_map_data { 870 struct page **pages; 871 int page_order; 872 int nr_entries; 873 unsigned long offset; 874 int null_mapped; 875 int from_user; 876 }; 877 878 struct req_iterator { 879 struct bvec_iter iter; 880 struct bio *bio; 881 }; 882 883 /* This should not be used directly - use rq_for_each_segment */ 884 #define for_each_bio(_bio) \ 885 for (; _bio; _bio = _bio->bi_next) 886 #define __rq_for_each_bio(_bio, rq) \ 887 if ((rq->bio)) \ 888 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 889 890 #define rq_for_each_segment(bvl, _rq, _iter) \ 891 __rq_for_each_bio(_iter.bio, _rq) \ 892 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 893 894 #define rq_for_each_bvec(bvl, _rq, _iter) \ 895 __rq_for_each_bio(_iter.bio, _rq) \ 896 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 897 898 #define rq_iter_last(bvec, _iter) \ 899 (_iter.bio->bi_next == NULL && \ 900 bio_iter_last(bvec, _iter.iter)) 901 902 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 903 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 904 #endif 905 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 906 extern void rq_flush_dcache_pages(struct request *rq); 907 #else 908 static inline void rq_flush_dcache_pages(struct request *rq) 909 { 910 } 911 #endif 912 913 extern int blk_register_queue(struct gendisk *disk); 914 extern void blk_unregister_queue(struct gendisk *disk); 915 blk_qc_t submit_bio_noacct(struct bio *bio); 916 extern void blk_rq_init(struct request_queue *q, struct request *rq); 917 extern void blk_put_request(struct request *); 918 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 919 blk_mq_req_flags_t flags); 920 extern int blk_lld_busy(struct request_queue *q); 921 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 922 struct bio_set *bs, gfp_t gfp_mask, 923 int (*bio_ctr)(struct bio *, struct bio *, void *), 924 void *data); 925 extern void blk_rq_unprep_clone(struct request *rq); 926 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 927 struct request *rq); 928 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 929 extern void blk_queue_split(struct bio **); 930 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 931 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 932 unsigned int, void __user *); 933 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 934 unsigned int, void __user *); 935 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 936 struct scsi_ioctl_command __user *); 937 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 938 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 939 940 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 941 extern void blk_queue_exit(struct request_queue *q); 942 extern void blk_sync_queue(struct request_queue *q); 943 extern int blk_rq_map_user(struct request_queue *, struct request *, 944 struct rq_map_data *, void __user *, unsigned long, 945 gfp_t); 946 extern int blk_rq_unmap_user(struct bio *); 947 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 948 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 949 struct rq_map_data *, const struct iov_iter *, 950 gfp_t); 951 extern void blk_execute_rq(struct gendisk *, struct request *, int); 952 extern void blk_execute_rq_nowait(struct gendisk *, 953 struct request *, int, rq_end_io_fn *); 954 955 /* Helper to convert REQ_OP_XXX to its string format XXX */ 956 extern const char *blk_op_str(unsigned int op); 957 958 int blk_status_to_errno(blk_status_t status); 959 blk_status_t errno_to_blk_status(int errno); 960 961 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 962 963 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 964 { 965 return bdev->bd_disk->queue; /* this is never NULL */ 966 } 967 968 /* 969 * The basic unit of block I/O is a sector. It is used in a number of contexts 970 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 971 * bytes. Variables of type sector_t represent an offset or size that is a 972 * multiple of 512 bytes. Hence these two constants. 973 */ 974 #ifndef SECTOR_SHIFT 975 #define SECTOR_SHIFT 9 976 #endif 977 #ifndef SECTOR_SIZE 978 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 979 #endif 980 981 /* 982 * blk_rq_pos() : the current sector 983 * blk_rq_bytes() : bytes left in the entire request 984 * blk_rq_cur_bytes() : bytes left in the current segment 985 * blk_rq_err_bytes() : bytes left till the next error boundary 986 * blk_rq_sectors() : sectors left in the entire request 987 * blk_rq_cur_sectors() : sectors left in the current segment 988 * blk_rq_stats_sectors() : sectors of the entire request used for stats 989 */ 990 static inline sector_t blk_rq_pos(const struct request *rq) 991 { 992 return rq->__sector; 993 } 994 995 static inline unsigned int blk_rq_bytes(const struct request *rq) 996 { 997 return rq->__data_len; 998 } 999 1000 static inline int blk_rq_cur_bytes(const struct request *rq) 1001 { 1002 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1003 } 1004 1005 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1006 1007 static inline unsigned int blk_rq_sectors(const struct request *rq) 1008 { 1009 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1010 } 1011 1012 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1013 { 1014 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1015 } 1016 1017 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1018 { 1019 return rq->stats_sectors; 1020 } 1021 1022 #ifdef CONFIG_BLK_DEV_ZONED 1023 1024 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1025 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1026 1027 static inline unsigned int blk_rq_zone_no(struct request *rq) 1028 { 1029 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1030 } 1031 1032 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1033 { 1034 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1035 } 1036 #endif /* CONFIG_BLK_DEV_ZONED */ 1037 1038 /* 1039 * Some commands like WRITE SAME have a payload or data transfer size which 1040 * is different from the size of the request. Any driver that supports such 1041 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1042 * calculate the data transfer size. 1043 */ 1044 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1045 { 1046 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1047 return rq->special_vec.bv_len; 1048 return blk_rq_bytes(rq); 1049 } 1050 1051 /* 1052 * Return the first full biovec in the request. The caller needs to check that 1053 * there are any bvecs before calling this helper. 1054 */ 1055 static inline struct bio_vec req_bvec(struct request *rq) 1056 { 1057 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1058 return rq->special_vec; 1059 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1060 } 1061 1062 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1063 int op) 1064 { 1065 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1066 return min(q->limits.max_discard_sectors, 1067 UINT_MAX >> SECTOR_SHIFT); 1068 1069 if (unlikely(op == REQ_OP_WRITE_SAME)) 1070 return q->limits.max_write_same_sectors; 1071 1072 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1073 return q->limits.max_write_zeroes_sectors; 1074 1075 return q->limits.max_sectors; 1076 } 1077 1078 /* 1079 * Return maximum size of a request at given offset. Only valid for 1080 * file system requests. 1081 */ 1082 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1083 sector_t offset, 1084 unsigned int chunk_sectors) 1085 { 1086 if (!chunk_sectors) { 1087 if (q->limits.chunk_sectors) 1088 chunk_sectors = q->limits.chunk_sectors; 1089 else 1090 return q->limits.max_sectors; 1091 } 1092 1093 if (likely(is_power_of_2(chunk_sectors))) 1094 chunk_sectors -= offset & (chunk_sectors - 1); 1095 else 1096 chunk_sectors -= sector_div(offset, chunk_sectors); 1097 1098 return min(q->limits.max_sectors, chunk_sectors); 1099 } 1100 1101 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1102 sector_t offset) 1103 { 1104 struct request_queue *q = rq->q; 1105 1106 if (blk_rq_is_passthrough(rq)) 1107 return q->limits.max_hw_sectors; 1108 1109 if (!q->limits.chunk_sectors || 1110 req_op(rq) == REQ_OP_DISCARD || 1111 req_op(rq) == REQ_OP_SECURE_ERASE) 1112 return blk_queue_get_max_sectors(q, req_op(rq)); 1113 1114 return min(blk_max_size_offset(q, offset, 0), 1115 blk_queue_get_max_sectors(q, req_op(rq))); 1116 } 1117 1118 static inline unsigned int blk_rq_count_bios(struct request *rq) 1119 { 1120 unsigned int nr_bios = 0; 1121 struct bio *bio; 1122 1123 __rq_for_each_bio(bio, rq) 1124 nr_bios++; 1125 1126 return nr_bios; 1127 } 1128 1129 void blk_steal_bios(struct bio_list *list, struct request *rq); 1130 1131 /* 1132 * Request completion related functions. 1133 * 1134 * blk_update_request() completes given number of bytes and updates 1135 * the request without completing it. 1136 */ 1137 extern bool blk_update_request(struct request *rq, blk_status_t error, 1138 unsigned int nr_bytes); 1139 1140 extern void blk_abort_request(struct request *); 1141 1142 /* 1143 * Access functions for manipulating queue properties 1144 */ 1145 extern void blk_cleanup_queue(struct request_queue *); 1146 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1147 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1148 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1149 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1150 extern void blk_queue_max_discard_segments(struct request_queue *, 1151 unsigned short); 1152 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1153 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1154 unsigned int max_discard_sectors); 1155 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1156 unsigned int max_write_same_sectors); 1157 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1158 unsigned int max_write_same_sectors); 1159 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1160 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1161 unsigned int max_zone_append_sectors); 1162 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1163 void blk_queue_zone_write_granularity(struct request_queue *q, 1164 unsigned int size); 1165 extern void blk_queue_alignment_offset(struct request_queue *q, 1166 unsigned int alignment); 1167 void blk_queue_update_readahead(struct request_queue *q); 1168 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1169 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1170 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1171 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1172 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1173 extern void blk_set_default_limits(struct queue_limits *lim); 1174 extern void blk_set_stacking_limits(struct queue_limits *lim); 1175 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1176 sector_t offset); 1177 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1178 sector_t offset); 1179 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1180 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1181 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1182 extern void blk_queue_dma_alignment(struct request_queue *, int); 1183 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1184 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1185 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1186 extern void blk_queue_required_elevator_features(struct request_queue *q, 1187 unsigned int features); 1188 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1189 struct device *dev); 1190 1191 /* 1192 * Number of physical segments as sent to the device. 1193 * 1194 * Normally this is the number of discontiguous data segments sent by the 1195 * submitter. But for data-less command like discard we might have no 1196 * actual data segments submitted, but the driver might have to add it's 1197 * own special payload. In that case we still return 1 here so that this 1198 * special payload will be mapped. 1199 */ 1200 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1201 { 1202 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1203 return 1; 1204 return rq->nr_phys_segments; 1205 } 1206 1207 /* 1208 * Number of discard segments (or ranges) the driver needs to fill in. 1209 * Each discard bio merged into a request is counted as one segment. 1210 */ 1211 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1212 { 1213 return max_t(unsigned short, rq->nr_phys_segments, 1); 1214 } 1215 1216 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1217 struct scatterlist *sglist, struct scatterlist **last_sg); 1218 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1219 struct scatterlist *sglist) 1220 { 1221 struct scatterlist *last_sg = NULL; 1222 1223 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1224 } 1225 extern void blk_dump_rq_flags(struct request *, char *); 1226 1227 bool __must_check blk_get_queue(struct request_queue *); 1228 struct request_queue *blk_alloc_queue(int node_id); 1229 extern void blk_put_queue(struct request_queue *); 1230 extern void blk_set_queue_dying(struct request_queue *); 1231 1232 #ifdef CONFIG_BLOCK 1233 /* 1234 * blk_plug permits building a queue of related requests by holding the I/O 1235 * fragments for a short period. This allows merging of sequential requests 1236 * into single larger request. As the requests are moved from a per-task list to 1237 * the device's request_queue in a batch, this results in improved scalability 1238 * as the lock contention for request_queue lock is reduced. 1239 * 1240 * It is ok not to disable preemption when adding the request to the plug list 1241 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1242 * the plug list when the task sleeps by itself. For details, please see 1243 * schedule() where blk_schedule_flush_plug() is called. 1244 */ 1245 struct blk_plug { 1246 struct list_head mq_list; /* blk-mq requests */ 1247 struct list_head cb_list; /* md requires an unplug callback */ 1248 unsigned short rq_count; 1249 bool multiple_queues; 1250 bool nowait; 1251 }; 1252 #define BLK_MAX_REQUEST_COUNT 16 1253 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1254 1255 struct blk_plug_cb; 1256 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1257 struct blk_plug_cb { 1258 struct list_head list; 1259 blk_plug_cb_fn callback; 1260 void *data; 1261 }; 1262 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1263 void *data, int size); 1264 extern void blk_start_plug(struct blk_plug *); 1265 extern void blk_finish_plug(struct blk_plug *); 1266 extern void blk_flush_plug_list(struct blk_plug *, bool); 1267 1268 static inline void blk_flush_plug(struct task_struct *tsk) 1269 { 1270 struct blk_plug *plug = tsk->plug; 1271 1272 if (plug) 1273 blk_flush_plug_list(plug, false); 1274 } 1275 1276 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1277 { 1278 struct blk_plug *plug = tsk->plug; 1279 1280 if (plug) 1281 blk_flush_plug_list(plug, true); 1282 } 1283 1284 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1285 { 1286 struct blk_plug *plug = tsk->plug; 1287 1288 return plug && 1289 (!list_empty(&plug->mq_list) || 1290 !list_empty(&plug->cb_list)); 1291 } 1292 1293 int blkdev_issue_flush(struct block_device *bdev); 1294 long nr_blockdev_pages(void); 1295 #else /* CONFIG_BLOCK */ 1296 struct blk_plug { 1297 }; 1298 1299 static inline void blk_start_plug(struct blk_plug *plug) 1300 { 1301 } 1302 1303 static inline void blk_finish_plug(struct blk_plug *plug) 1304 { 1305 } 1306 1307 static inline void blk_flush_plug(struct task_struct *task) 1308 { 1309 } 1310 1311 static inline void blk_schedule_flush_plug(struct task_struct *task) 1312 { 1313 } 1314 1315 1316 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1317 { 1318 return false; 1319 } 1320 1321 static inline int blkdev_issue_flush(struct block_device *bdev) 1322 { 1323 return 0; 1324 } 1325 1326 static inline long nr_blockdev_pages(void) 1327 { 1328 return 0; 1329 } 1330 #endif /* CONFIG_BLOCK */ 1331 1332 extern void blk_io_schedule(void); 1333 1334 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1335 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1336 1337 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1338 1339 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1340 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1341 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1342 sector_t nr_sects, gfp_t gfp_mask, int flags, 1343 struct bio **biop); 1344 1345 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1346 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1347 1348 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1349 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1350 unsigned flags); 1351 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1352 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1353 1354 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1355 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1356 { 1357 return blkdev_issue_discard(sb->s_bdev, 1358 block << (sb->s_blocksize_bits - 1359 SECTOR_SHIFT), 1360 nr_blocks << (sb->s_blocksize_bits - 1361 SECTOR_SHIFT), 1362 gfp_mask, flags); 1363 } 1364 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1365 sector_t nr_blocks, gfp_t gfp_mask) 1366 { 1367 return blkdev_issue_zeroout(sb->s_bdev, 1368 block << (sb->s_blocksize_bits - 1369 SECTOR_SHIFT), 1370 nr_blocks << (sb->s_blocksize_bits - 1371 SECTOR_SHIFT), 1372 gfp_mask, 0); 1373 } 1374 1375 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1376 1377 static inline bool bdev_is_partition(struct block_device *bdev) 1378 { 1379 return bdev->bd_partno; 1380 } 1381 1382 enum blk_default_limits { 1383 BLK_MAX_SEGMENTS = 128, 1384 BLK_SAFE_MAX_SECTORS = 255, 1385 BLK_DEF_MAX_SECTORS = 2560, 1386 BLK_MAX_SEGMENT_SIZE = 65536, 1387 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1388 }; 1389 1390 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1391 { 1392 return q->limits.seg_boundary_mask; 1393 } 1394 1395 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1396 { 1397 return q->limits.virt_boundary_mask; 1398 } 1399 1400 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1401 { 1402 return q->limits.max_sectors; 1403 } 1404 1405 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1406 { 1407 return q->limits.max_hw_sectors; 1408 } 1409 1410 static inline unsigned short queue_max_segments(const struct request_queue *q) 1411 { 1412 return q->limits.max_segments; 1413 } 1414 1415 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1416 { 1417 return q->limits.max_discard_segments; 1418 } 1419 1420 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1421 { 1422 return q->limits.max_segment_size; 1423 } 1424 1425 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1426 { 1427 1428 const struct queue_limits *l = &q->limits; 1429 1430 return min(l->max_zone_append_sectors, l->max_sectors); 1431 } 1432 1433 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1434 { 1435 int retval = 512; 1436 1437 if (q && q->limits.logical_block_size) 1438 retval = q->limits.logical_block_size; 1439 1440 return retval; 1441 } 1442 1443 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1444 { 1445 return queue_logical_block_size(bdev_get_queue(bdev)); 1446 } 1447 1448 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1449 { 1450 return q->limits.physical_block_size; 1451 } 1452 1453 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1454 { 1455 return queue_physical_block_size(bdev_get_queue(bdev)); 1456 } 1457 1458 static inline unsigned int queue_io_min(const struct request_queue *q) 1459 { 1460 return q->limits.io_min; 1461 } 1462 1463 static inline int bdev_io_min(struct block_device *bdev) 1464 { 1465 return queue_io_min(bdev_get_queue(bdev)); 1466 } 1467 1468 static inline unsigned int queue_io_opt(const struct request_queue *q) 1469 { 1470 return q->limits.io_opt; 1471 } 1472 1473 static inline int bdev_io_opt(struct block_device *bdev) 1474 { 1475 return queue_io_opt(bdev_get_queue(bdev)); 1476 } 1477 1478 static inline unsigned int 1479 queue_zone_write_granularity(const struct request_queue *q) 1480 { 1481 return q->limits.zone_write_granularity; 1482 } 1483 1484 static inline unsigned int 1485 bdev_zone_write_granularity(struct block_device *bdev) 1486 { 1487 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1488 } 1489 1490 static inline int queue_alignment_offset(const struct request_queue *q) 1491 { 1492 if (q->limits.misaligned) 1493 return -1; 1494 1495 return q->limits.alignment_offset; 1496 } 1497 1498 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1499 { 1500 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1501 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1502 << SECTOR_SHIFT; 1503 1504 return (granularity + lim->alignment_offset - alignment) % granularity; 1505 } 1506 1507 static inline int bdev_alignment_offset(struct block_device *bdev) 1508 { 1509 struct request_queue *q = bdev_get_queue(bdev); 1510 1511 if (q->limits.misaligned) 1512 return -1; 1513 if (bdev_is_partition(bdev)) 1514 return queue_limit_alignment_offset(&q->limits, 1515 bdev->bd_start_sect); 1516 return q->limits.alignment_offset; 1517 } 1518 1519 static inline int queue_discard_alignment(const struct request_queue *q) 1520 { 1521 if (q->limits.discard_misaligned) 1522 return -1; 1523 1524 return q->limits.discard_alignment; 1525 } 1526 1527 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1528 { 1529 unsigned int alignment, granularity, offset; 1530 1531 if (!lim->max_discard_sectors) 1532 return 0; 1533 1534 /* Why are these in bytes, not sectors? */ 1535 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1536 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1537 if (!granularity) 1538 return 0; 1539 1540 /* Offset of the partition start in 'granularity' sectors */ 1541 offset = sector_div(sector, granularity); 1542 1543 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1544 offset = (granularity + alignment - offset) % granularity; 1545 1546 /* Turn it back into bytes, gaah */ 1547 return offset << SECTOR_SHIFT; 1548 } 1549 1550 static inline int bdev_discard_alignment(struct block_device *bdev) 1551 { 1552 struct request_queue *q = bdev_get_queue(bdev); 1553 1554 if (bdev_is_partition(bdev)) 1555 return queue_limit_discard_alignment(&q->limits, 1556 bdev->bd_start_sect); 1557 return q->limits.discard_alignment; 1558 } 1559 1560 static inline unsigned int bdev_write_same(struct block_device *bdev) 1561 { 1562 struct request_queue *q = bdev_get_queue(bdev); 1563 1564 if (q) 1565 return q->limits.max_write_same_sectors; 1566 1567 return 0; 1568 } 1569 1570 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1571 { 1572 struct request_queue *q = bdev_get_queue(bdev); 1573 1574 if (q) 1575 return q->limits.max_write_zeroes_sectors; 1576 1577 return 0; 1578 } 1579 1580 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1581 { 1582 struct request_queue *q = bdev_get_queue(bdev); 1583 1584 if (q) 1585 return blk_queue_zoned_model(q); 1586 1587 return BLK_ZONED_NONE; 1588 } 1589 1590 static inline bool bdev_is_zoned(struct block_device *bdev) 1591 { 1592 struct request_queue *q = bdev_get_queue(bdev); 1593 1594 if (q) 1595 return blk_queue_is_zoned(q); 1596 1597 return false; 1598 } 1599 1600 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1601 { 1602 struct request_queue *q = bdev_get_queue(bdev); 1603 1604 if (q) 1605 return blk_queue_zone_sectors(q); 1606 return 0; 1607 } 1608 1609 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1610 { 1611 struct request_queue *q = bdev_get_queue(bdev); 1612 1613 if (q) 1614 return queue_max_open_zones(q); 1615 return 0; 1616 } 1617 1618 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1619 { 1620 struct request_queue *q = bdev_get_queue(bdev); 1621 1622 if (q) 1623 return queue_max_active_zones(q); 1624 return 0; 1625 } 1626 1627 static inline int queue_dma_alignment(const struct request_queue *q) 1628 { 1629 return q ? q->dma_alignment : 511; 1630 } 1631 1632 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1633 unsigned int len) 1634 { 1635 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1636 return !(addr & alignment) && !(len & alignment); 1637 } 1638 1639 /* assumes size > 256 */ 1640 static inline unsigned int blksize_bits(unsigned int size) 1641 { 1642 unsigned int bits = 8; 1643 do { 1644 bits++; 1645 size >>= 1; 1646 } while (size > 256); 1647 return bits; 1648 } 1649 1650 static inline unsigned int block_size(struct block_device *bdev) 1651 { 1652 return 1 << bdev->bd_inode->i_blkbits; 1653 } 1654 1655 int kblockd_schedule_work(struct work_struct *work); 1656 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1657 1658 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1659 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1660 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1661 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1662 1663 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1664 1665 enum blk_integrity_flags { 1666 BLK_INTEGRITY_VERIFY = 1 << 0, 1667 BLK_INTEGRITY_GENERATE = 1 << 1, 1668 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1669 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1670 }; 1671 1672 struct blk_integrity_iter { 1673 void *prot_buf; 1674 void *data_buf; 1675 sector_t seed; 1676 unsigned int data_size; 1677 unsigned short interval; 1678 const char *disk_name; 1679 }; 1680 1681 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1682 typedef void (integrity_prepare_fn) (struct request *); 1683 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1684 1685 struct blk_integrity_profile { 1686 integrity_processing_fn *generate_fn; 1687 integrity_processing_fn *verify_fn; 1688 integrity_prepare_fn *prepare_fn; 1689 integrity_complete_fn *complete_fn; 1690 const char *name; 1691 }; 1692 1693 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1694 extern void blk_integrity_unregister(struct gendisk *); 1695 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1696 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1697 struct scatterlist *); 1698 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1699 1700 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1701 { 1702 struct blk_integrity *bi = &disk->queue->integrity; 1703 1704 if (!bi->profile) 1705 return NULL; 1706 1707 return bi; 1708 } 1709 1710 static inline 1711 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1712 { 1713 return blk_get_integrity(bdev->bd_disk); 1714 } 1715 1716 static inline bool 1717 blk_integrity_queue_supports_integrity(struct request_queue *q) 1718 { 1719 return q->integrity.profile; 1720 } 1721 1722 static inline bool blk_integrity_rq(struct request *rq) 1723 { 1724 return rq->cmd_flags & REQ_INTEGRITY; 1725 } 1726 1727 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1728 unsigned int segs) 1729 { 1730 q->limits.max_integrity_segments = segs; 1731 } 1732 1733 static inline unsigned short 1734 queue_max_integrity_segments(const struct request_queue *q) 1735 { 1736 return q->limits.max_integrity_segments; 1737 } 1738 1739 /** 1740 * bio_integrity_intervals - Return number of integrity intervals for a bio 1741 * @bi: blk_integrity profile for device 1742 * @sectors: Size of the bio in 512-byte sectors 1743 * 1744 * Description: The block layer calculates everything in 512 byte 1745 * sectors but integrity metadata is done in terms of the data integrity 1746 * interval size of the storage device. Convert the block layer sectors 1747 * to the appropriate number of integrity intervals. 1748 */ 1749 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1750 unsigned int sectors) 1751 { 1752 return sectors >> (bi->interval_exp - 9); 1753 } 1754 1755 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1756 unsigned int sectors) 1757 { 1758 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1759 } 1760 1761 /* 1762 * Return the first bvec that contains integrity data. Only drivers that are 1763 * limited to a single integrity segment should use this helper. 1764 */ 1765 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1766 { 1767 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1768 return NULL; 1769 return rq->bio->bi_integrity->bip_vec; 1770 } 1771 1772 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1773 1774 struct bio; 1775 struct block_device; 1776 struct gendisk; 1777 struct blk_integrity; 1778 1779 static inline int blk_integrity_rq(struct request *rq) 1780 { 1781 return 0; 1782 } 1783 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1784 struct bio *b) 1785 { 1786 return 0; 1787 } 1788 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1789 struct bio *b, 1790 struct scatterlist *s) 1791 { 1792 return 0; 1793 } 1794 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1795 { 1796 return NULL; 1797 } 1798 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1799 { 1800 return NULL; 1801 } 1802 static inline bool 1803 blk_integrity_queue_supports_integrity(struct request_queue *q) 1804 { 1805 return false; 1806 } 1807 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1808 { 1809 return 0; 1810 } 1811 static inline void blk_integrity_register(struct gendisk *d, 1812 struct blk_integrity *b) 1813 { 1814 } 1815 static inline void blk_integrity_unregister(struct gendisk *d) 1816 { 1817 } 1818 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1819 unsigned int segs) 1820 { 1821 } 1822 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1823 { 1824 return 0; 1825 } 1826 1827 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1828 unsigned int sectors) 1829 { 1830 return 0; 1831 } 1832 1833 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1834 unsigned int sectors) 1835 { 1836 return 0; 1837 } 1838 1839 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1840 { 1841 return NULL; 1842 } 1843 1844 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1845 1846 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1847 1848 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1849 1850 void blk_ksm_unregister(struct request_queue *q); 1851 1852 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1853 1854 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1855 struct request_queue *q) 1856 { 1857 return true; 1858 } 1859 1860 static inline void blk_ksm_unregister(struct request_queue *q) { } 1861 1862 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1863 1864 1865 struct block_device_operations { 1866 blk_qc_t (*submit_bio) (struct bio *bio); 1867 int (*open) (struct block_device *, fmode_t); 1868 void (*release) (struct gendisk *, fmode_t); 1869 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1870 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1871 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1872 unsigned int (*check_events) (struct gendisk *disk, 1873 unsigned int clearing); 1874 void (*unlock_native_capacity) (struct gendisk *); 1875 int (*revalidate_disk) (struct gendisk *); 1876 int (*getgeo)(struct block_device *, struct hd_geometry *); 1877 int (*set_read_only)(struct block_device *bdev, bool ro); 1878 /* this callback is with swap_lock and sometimes page table lock held */ 1879 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1880 int (*report_zones)(struct gendisk *, sector_t sector, 1881 unsigned int nr_zones, report_zones_cb cb, void *data); 1882 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1883 struct module *owner; 1884 const struct pr_ops *pr_ops; 1885 }; 1886 1887 #ifdef CONFIG_COMPAT 1888 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1889 unsigned int, unsigned long); 1890 #else 1891 #define blkdev_compat_ptr_ioctl NULL 1892 #endif 1893 1894 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1895 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1896 struct writeback_control *); 1897 1898 #ifdef CONFIG_BLK_DEV_ZONED 1899 bool blk_req_needs_zone_write_lock(struct request *rq); 1900 bool blk_req_zone_write_trylock(struct request *rq); 1901 void __blk_req_zone_write_lock(struct request *rq); 1902 void __blk_req_zone_write_unlock(struct request *rq); 1903 1904 static inline void blk_req_zone_write_lock(struct request *rq) 1905 { 1906 if (blk_req_needs_zone_write_lock(rq)) 1907 __blk_req_zone_write_lock(rq); 1908 } 1909 1910 static inline void blk_req_zone_write_unlock(struct request *rq) 1911 { 1912 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1913 __blk_req_zone_write_unlock(rq); 1914 } 1915 1916 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1917 { 1918 return rq->q->seq_zones_wlock && 1919 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1920 } 1921 1922 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1923 { 1924 if (!blk_req_needs_zone_write_lock(rq)) 1925 return true; 1926 return !blk_req_zone_is_write_locked(rq); 1927 } 1928 #else 1929 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1930 { 1931 return false; 1932 } 1933 1934 static inline void blk_req_zone_write_lock(struct request *rq) 1935 { 1936 } 1937 1938 static inline void blk_req_zone_write_unlock(struct request *rq) 1939 { 1940 } 1941 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1942 { 1943 return false; 1944 } 1945 1946 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1947 { 1948 return true; 1949 } 1950 #endif /* CONFIG_BLK_DEV_ZONED */ 1951 1952 static inline void blk_wake_io_task(struct task_struct *waiter) 1953 { 1954 /* 1955 * If we're polling, the task itself is doing the completions. For 1956 * that case, we don't need to signal a wakeup, it's enough to just 1957 * mark us as RUNNING. 1958 */ 1959 if (waiter == current) 1960 __set_current_state(TASK_RUNNING); 1961 else 1962 wake_up_process(waiter); 1963 } 1964 1965 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1966 unsigned int op); 1967 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1968 unsigned long start_time); 1969 1970 unsigned long bio_start_io_acct(struct bio *bio); 1971 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1972 struct block_device *orig_bdev); 1973 1974 /** 1975 * bio_end_io_acct - end I/O accounting for bio based drivers 1976 * @bio: bio to end account for 1977 * @start: start time returned by bio_start_io_acct() 1978 */ 1979 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1980 { 1981 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1982 } 1983 1984 int bdev_read_only(struct block_device *bdev); 1985 int set_blocksize(struct block_device *bdev, int size); 1986 1987 const char *bdevname(struct block_device *bdev, char *buffer); 1988 int lookup_bdev(const char *pathname, dev_t *dev); 1989 1990 void blkdev_show(struct seq_file *seqf, off_t offset); 1991 1992 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1993 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1994 #ifdef CONFIG_BLOCK 1995 #define BLKDEV_MAJOR_MAX 512 1996 #else 1997 #define BLKDEV_MAJOR_MAX 0 1998 #endif 1999 2000 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 2001 void *holder); 2002 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 2003 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 2004 void bd_abort_claiming(struct block_device *bdev, void *holder); 2005 void blkdev_put(struct block_device *bdev, fmode_t mode); 2006 2007 /* just for blk-cgroup, don't use elsewhere */ 2008 struct block_device *blkdev_get_no_open(dev_t dev); 2009 void blkdev_put_no_open(struct block_device *bdev); 2010 2011 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 2012 void bdev_add(struct block_device *bdev, dev_t dev); 2013 struct block_device *I_BDEV(struct inode *inode); 2014 struct block_device *bdgrab(struct block_device *bdev); 2015 void bdput(struct block_device *); 2016 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2017 loff_t lend); 2018 2019 #ifdef CONFIG_BLOCK 2020 void invalidate_bdev(struct block_device *bdev); 2021 int sync_blockdev(struct block_device *bdev); 2022 #else 2023 static inline void invalidate_bdev(struct block_device *bdev) 2024 { 2025 } 2026 static inline int sync_blockdev(struct block_device *bdev) 2027 { 2028 return 0; 2029 } 2030 #endif 2031 int fsync_bdev(struct block_device *bdev); 2032 2033 int freeze_bdev(struct block_device *bdev); 2034 int thaw_bdev(struct block_device *bdev); 2035 2036 #endif /* _LINUX_BLKDEV_H */ 2037