xref: /linux-6.15/include/linux/blkdev.h (revision 1fc3d0ee)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* elevator knows about this request */
69 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83    "quiesce" state must be ignored. */
84 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error.  Ignored by the block layer */
88 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM			((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS		((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104    bio chain. */
105 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
112 
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116 
117 /*
118  * Request state for blk-mq.
119  */
120 enum mq_rq_state {
121 	MQ_RQ_IDLE		= 0,
122 	MQ_RQ_IN_FLIGHT		= 1,
123 	MQ_RQ_COMPLETE		= 2,
124 };
125 
126 /*
127  * Try to put the fields that are referenced together in the same cacheline.
128  *
129  * If you modify this structure, make sure to update blk_rq_init() and
130  * especially blk_mq_rq_ctx_init() to take care of the added fields.
131  */
132 struct request {
133 	struct request_queue *q;
134 	struct blk_mq_ctx *mq_ctx;
135 	struct blk_mq_hw_ctx *mq_hctx;
136 
137 	unsigned int cmd_flags;		/* op and common flags */
138 	req_flags_t rq_flags;
139 
140 	int tag;
141 	int internal_tag;
142 
143 	/* the following two fields are internal, NEVER access directly */
144 	unsigned int __data_len;	/* total data len */
145 	sector_t __sector;		/* sector cursor */
146 
147 	struct bio *bio;
148 	struct bio *biotail;
149 
150 	struct list_head queuelist;
151 
152 	/*
153 	 * The hash is used inside the scheduler, and killed once the
154 	 * request reaches the dispatch list. The ipi_list is only used
155 	 * to queue the request for softirq completion, which is long
156 	 * after the request has been unhashed (and even removed from
157 	 * the dispatch list).
158 	 */
159 	union {
160 		struct hlist_node hash;	/* merge hash */
161 		struct list_head ipi_list;
162 	};
163 
164 	/*
165 	 * The rb_node is only used inside the io scheduler, requests
166 	 * are pruned when moved to the dispatch queue. So let the
167 	 * completion_data share space with the rb_node.
168 	 */
169 	union {
170 		struct rb_node rb_node;	/* sort/lookup */
171 		struct bio_vec special_vec;
172 		void *completion_data;
173 		int error_count; /* for legacy drivers, don't use */
174 	};
175 
176 	/*
177 	 * Three pointers are available for the IO schedulers, if they need
178 	 * more they have to dynamically allocate it.  Flush requests are
179 	 * never put on the IO scheduler. So let the flush fields share
180 	 * space with the elevator data.
181 	 */
182 	union {
183 		struct {
184 			struct io_cq		*icq;
185 			void			*priv[2];
186 		} elv;
187 
188 		struct {
189 			unsigned int		seq;
190 			struct list_head	list;
191 			rq_end_io_fn		*saved_end_io;
192 		} flush;
193 	};
194 
195 	struct gendisk *rq_disk;
196 	struct hd_struct *part;
197 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
198 	/* Time that the first bio started allocating this request. */
199 	u64 alloc_time_ns;
200 #endif
201 	/* Time that this request was allocated for this IO. */
202 	u64 start_time_ns;
203 	/* Time that I/O was submitted to the device. */
204 	u64 io_start_time_ns;
205 
206 #ifdef CONFIG_BLK_WBT
207 	unsigned short wbt_flags;
208 #endif
209 	/*
210 	 * rq sectors used for blk stats. It has the same value
211 	 * with blk_rq_sectors(rq), except that it never be zeroed
212 	 * by completion.
213 	 */
214 	unsigned short stats_sectors;
215 
216 	/*
217 	 * Number of scatter-gather DMA addr+len pairs after
218 	 * physical address coalescing is performed.
219 	 */
220 	unsigned short nr_phys_segments;
221 
222 #if defined(CONFIG_BLK_DEV_INTEGRITY)
223 	unsigned short nr_integrity_segments;
224 #endif
225 
226 	unsigned short write_hint;
227 	unsigned short ioprio;
228 
229 	unsigned int extra_len;	/* length of alignment and padding */
230 
231 	enum mq_rq_state state;
232 	refcount_t ref;
233 
234 	unsigned int timeout;
235 	unsigned long deadline;
236 
237 	union {
238 		struct __call_single_data csd;
239 		u64 fifo_time;
240 	};
241 
242 	/*
243 	 * completion callback.
244 	 */
245 	rq_end_io_fn *end_io;
246 	void *end_io_data;
247 };
248 
249 static inline bool blk_op_is_scsi(unsigned int op)
250 {
251 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
252 }
253 
254 static inline bool blk_op_is_private(unsigned int op)
255 {
256 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
257 }
258 
259 static inline bool blk_rq_is_scsi(struct request *rq)
260 {
261 	return blk_op_is_scsi(req_op(rq));
262 }
263 
264 static inline bool blk_rq_is_private(struct request *rq)
265 {
266 	return blk_op_is_private(req_op(rq));
267 }
268 
269 static inline bool blk_rq_is_passthrough(struct request *rq)
270 {
271 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
272 }
273 
274 static inline bool bio_is_passthrough(struct bio *bio)
275 {
276 	unsigned op = bio_op(bio);
277 
278 	return blk_op_is_scsi(op) || blk_op_is_private(op);
279 }
280 
281 static inline unsigned short req_get_ioprio(struct request *req)
282 {
283 	return req->ioprio;
284 }
285 
286 #include <linux/elevator.h>
287 
288 struct blk_queue_ctx;
289 
290 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
291 
292 struct bio_vec;
293 typedef int (dma_drain_needed_fn)(struct request *);
294 
295 enum blk_eh_timer_return {
296 	BLK_EH_DONE,		/* drivers has completed the command */
297 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
298 };
299 
300 enum blk_queue_state {
301 	Queue_down,
302 	Queue_up,
303 };
304 
305 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
306 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
307 
308 #define BLK_SCSI_MAX_CMDS	(256)
309 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
310 
311 /*
312  * Zoned block device models (zoned limit).
313  */
314 enum blk_zoned_model {
315 	BLK_ZONED_NONE,	/* Regular block device */
316 	BLK_ZONED_HA,	/* Host-aware zoned block device */
317 	BLK_ZONED_HM,	/* Host-managed zoned block device */
318 };
319 
320 struct queue_limits {
321 	unsigned long		bounce_pfn;
322 	unsigned long		seg_boundary_mask;
323 	unsigned long		virt_boundary_mask;
324 
325 	unsigned int		max_hw_sectors;
326 	unsigned int		max_dev_sectors;
327 	unsigned int		chunk_sectors;
328 	unsigned int		max_sectors;
329 	unsigned int		max_segment_size;
330 	unsigned int		physical_block_size;
331 	unsigned int		alignment_offset;
332 	unsigned int		io_min;
333 	unsigned int		io_opt;
334 	unsigned int		max_discard_sectors;
335 	unsigned int		max_hw_discard_sectors;
336 	unsigned int		max_write_same_sectors;
337 	unsigned int		max_write_zeroes_sectors;
338 	unsigned int		discard_granularity;
339 	unsigned int		discard_alignment;
340 
341 	unsigned short		logical_block_size;
342 	unsigned short		max_segments;
343 	unsigned short		max_integrity_segments;
344 	unsigned short		max_discard_segments;
345 
346 	unsigned char		misaligned;
347 	unsigned char		discard_misaligned;
348 	unsigned char		raid_partial_stripes_expensive;
349 	enum blk_zoned_model	zoned;
350 };
351 
352 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
353 			       void *data);
354 
355 #ifdef CONFIG_BLK_DEV_ZONED
356 
357 #define BLK_ALL_ZONES  ((unsigned int)-1)
358 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
359 			unsigned int nr_zones, report_zones_cb cb, void *data);
360 
361 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
362 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
363 			    sector_t sectors, sector_t nr_sectors,
364 			    gfp_t gfp_mask);
365 extern int blk_revalidate_disk_zones(struct gendisk *disk);
366 
367 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
368 				     unsigned int cmd, unsigned long arg);
369 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
370 				  unsigned int cmd, unsigned long arg);
371 
372 #else /* CONFIG_BLK_DEV_ZONED */
373 
374 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
375 {
376 	return 0;
377 }
378 
379 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
380 {
381 	return 0;
382 }
383 
384 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
385 					    fmode_t mode, unsigned int cmd,
386 					    unsigned long arg)
387 {
388 	return -ENOTTY;
389 }
390 
391 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
392 					 fmode_t mode, unsigned int cmd,
393 					 unsigned long arg)
394 {
395 	return -ENOTTY;
396 }
397 
398 #endif /* CONFIG_BLK_DEV_ZONED */
399 
400 struct request_queue {
401 	struct request		*last_merge;
402 	struct elevator_queue	*elevator;
403 
404 	struct blk_queue_stats	*stats;
405 	struct rq_qos		*rq_qos;
406 
407 	make_request_fn		*make_request_fn;
408 	dma_drain_needed_fn	*dma_drain_needed;
409 
410 	const struct blk_mq_ops	*mq_ops;
411 
412 	/* sw queues */
413 	struct blk_mq_ctx __percpu	*queue_ctx;
414 
415 	unsigned int		queue_depth;
416 
417 	/* hw dispatch queues */
418 	struct blk_mq_hw_ctx	**queue_hw_ctx;
419 	unsigned int		nr_hw_queues;
420 
421 	struct backing_dev_info	*backing_dev_info;
422 
423 	/*
424 	 * The queue owner gets to use this for whatever they like.
425 	 * ll_rw_blk doesn't touch it.
426 	 */
427 	void			*queuedata;
428 
429 	/*
430 	 * various queue flags, see QUEUE_* below
431 	 */
432 	unsigned long		queue_flags;
433 	/*
434 	 * Number of contexts that have called blk_set_pm_only(). If this
435 	 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
436 	 * processed.
437 	 */
438 	atomic_t		pm_only;
439 
440 	/*
441 	 * ida allocated id for this queue.  Used to index queues from
442 	 * ioctx.
443 	 */
444 	int			id;
445 
446 	/*
447 	 * queue needs bounce pages for pages above this limit
448 	 */
449 	gfp_t			bounce_gfp;
450 
451 	spinlock_t		queue_lock;
452 
453 	/*
454 	 * queue kobject
455 	 */
456 	struct kobject kobj;
457 
458 	/*
459 	 * mq queue kobject
460 	 */
461 	struct kobject *mq_kobj;
462 
463 #ifdef  CONFIG_BLK_DEV_INTEGRITY
464 	struct blk_integrity integrity;
465 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
466 
467 #ifdef CONFIG_PM
468 	struct device		*dev;
469 	int			rpm_status;
470 	unsigned int		nr_pending;
471 #endif
472 
473 	/*
474 	 * queue settings
475 	 */
476 	unsigned long		nr_requests;	/* Max # of requests */
477 
478 	unsigned int		dma_drain_size;
479 	void			*dma_drain_buffer;
480 	unsigned int		dma_pad_mask;
481 	unsigned int		dma_alignment;
482 
483 	unsigned int		rq_timeout;
484 	int			poll_nsec;
485 
486 	struct blk_stat_callback	*poll_cb;
487 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
488 
489 	struct timer_list	timeout;
490 	struct work_struct	timeout_work;
491 
492 	struct list_head	icq_list;
493 #ifdef CONFIG_BLK_CGROUP
494 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
495 	struct blkcg_gq		*root_blkg;
496 	struct list_head	blkg_list;
497 #endif
498 
499 	struct queue_limits	limits;
500 
501 	unsigned int		required_elevator_features;
502 
503 #ifdef CONFIG_BLK_DEV_ZONED
504 	/*
505 	 * Zoned block device information for request dispatch control.
506 	 * nr_zones is the total number of zones of the device. This is always
507 	 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
508 	 * bits which indicates if a zone is conventional (bit clear) or
509 	 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
510 	 * bits which indicates if a zone is write locked, that is, if a write
511 	 * request targeting the zone was dispatched. All three fields are
512 	 * initialized by the low level device driver (e.g. scsi/sd.c).
513 	 * Stacking drivers (device mappers) may or may not initialize
514 	 * these fields.
515 	 *
516 	 * Reads of this information must be protected with blk_queue_enter() /
517 	 * blk_queue_exit(). Modifying this information is only allowed while
518 	 * no requests are being processed. See also blk_mq_freeze_queue() and
519 	 * blk_mq_unfreeze_queue().
520 	 */
521 	unsigned int		nr_zones;
522 	unsigned long		*seq_zones_bitmap;
523 	unsigned long		*seq_zones_wlock;
524 #endif /* CONFIG_BLK_DEV_ZONED */
525 
526 	/*
527 	 * sg stuff
528 	 */
529 	unsigned int		sg_timeout;
530 	unsigned int		sg_reserved_size;
531 	int			node;
532 #ifdef CONFIG_BLK_DEV_IO_TRACE
533 	struct blk_trace	*blk_trace;
534 	struct mutex		blk_trace_mutex;
535 #endif
536 	/*
537 	 * for flush operations
538 	 */
539 	struct blk_flush_queue	*fq;
540 
541 	struct list_head	requeue_list;
542 	spinlock_t		requeue_lock;
543 	struct delayed_work	requeue_work;
544 
545 	struct mutex		sysfs_lock;
546 	struct mutex		sysfs_dir_lock;
547 
548 	/*
549 	 * for reusing dead hctx instance in case of updating
550 	 * nr_hw_queues
551 	 */
552 	struct list_head	unused_hctx_list;
553 	spinlock_t		unused_hctx_lock;
554 
555 	int			mq_freeze_depth;
556 
557 #if defined(CONFIG_BLK_DEV_BSG)
558 	struct bsg_class_device bsg_dev;
559 #endif
560 
561 #ifdef CONFIG_BLK_DEV_THROTTLING
562 	/* Throttle data */
563 	struct throtl_data *td;
564 #endif
565 	struct rcu_head		rcu_head;
566 	wait_queue_head_t	mq_freeze_wq;
567 	/*
568 	 * Protect concurrent access to q_usage_counter by
569 	 * percpu_ref_kill() and percpu_ref_reinit().
570 	 */
571 	struct mutex		mq_freeze_lock;
572 	struct percpu_ref	q_usage_counter;
573 
574 	struct blk_mq_tag_set	*tag_set;
575 	struct list_head	tag_set_list;
576 	struct bio_set		bio_split;
577 
578 #ifdef CONFIG_BLK_DEBUG_FS
579 	struct dentry		*debugfs_dir;
580 	struct dentry		*sched_debugfs_dir;
581 	struct dentry		*rqos_debugfs_dir;
582 #endif
583 
584 	bool			mq_sysfs_init_done;
585 
586 	size_t			cmd_size;
587 
588 	struct work_struct	release_work;
589 
590 #define BLK_MAX_WRITE_HINTS	5
591 	u64			write_hints[BLK_MAX_WRITE_HINTS];
592 };
593 
594 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
595 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
596 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
597 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
598 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
599 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
600 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
601 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
602 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
603 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
604 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
605 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
606 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
607 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
608 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
609 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
610 #define QUEUE_FLAG_WC		17	/* Write back caching */
611 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
612 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
613 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
614 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
615 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
616 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
617 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
618 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
619 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
620 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
621 
622 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
623 				 (1 << QUEUE_FLAG_SAME_COMP))
624 
625 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
626 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
627 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
628 
629 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
630 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
631 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
632 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
633 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
634 #define blk_queue_noxmerges(q)	\
635 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
636 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
637 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
638 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
639 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
640 #define blk_queue_zone_resetall(q)	\
641 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
642 #define blk_queue_secure_erase(q) \
643 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
644 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
645 #define blk_queue_scsi_passthrough(q)	\
646 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
647 #define blk_queue_pci_p2pdma(q)	\
648 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
649 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
650 #define blk_queue_rq_alloc_time(q)	\
651 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
652 #else
653 #define blk_queue_rq_alloc_time(q)	false
654 #endif
655 
656 #define blk_noretry_request(rq) \
657 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
658 			     REQ_FAILFAST_DRIVER))
659 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
660 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
661 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
662 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
663 
664 extern void blk_set_pm_only(struct request_queue *q);
665 extern void blk_clear_pm_only(struct request_queue *q);
666 
667 static inline bool blk_account_rq(struct request *rq)
668 {
669 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
670 }
671 
672 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
673 
674 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
675 
676 #define rq_dma_dir(rq) \
677 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
678 
679 #define dma_map_bvec(dev, bv, dir, attrs) \
680 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
681 	(dir), (attrs))
682 
683 static inline bool queue_is_mq(struct request_queue *q)
684 {
685 	return q->mq_ops;
686 }
687 
688 static inline enum blk_zoned_model
689 blk_queue_zoned_model(struct request_queue *q)
690 {
691 	return q->limits.zoned;
692 }
693 
694 static inline bool blk_queue_is_zoned(struct request_queue *q)
695 {
696 	switch (blk_queue_zoned_model(q)) {
697 	case BLK_ZONED_HA:
698 	case BLK_ZONED_HM:
699 		return true;
700 	default:
701 		return false;
702 	}
703 }
704 
705 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
706 {
707 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
708 }
709 
710 #ifdef CONFIG_BLK_DEV_ZONED
711 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
712 {
713 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
714 }
715 
716 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
717 					     sector_t sector)
718 {
719 	if (!blk_queue_is_zoned(q))
720 		return 0;
721 	return sector >> ilog2(q->limits.chunk_sectors);
722 }
723 
724 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
725 					 sector_t sector)
726 {
727 	if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
728 		return false;
729 	return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
730 }
731 #else /* CONFIG_BLK_DEV_ZONED */
732 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
733 {
734 	return 0;
735 }
736 #endif /* CONFIG_BLK_DEV_ZONED */
737 
738 static inline bool rq_is_sync(struct request *rq)
739 {
740 	return op_is_sync(rq->cmd_flags);
741 }
742 
743 static inline bool rq_mergeable(struct request *rq)
744 {
745 	if (blk_rq_is_passthrough(rq))
746 		return false;
747 
748 	if (req_op(rq) == REQ_OP_FLUSH)
749 		return false;
750 
751 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
752 		return false;
753 
754 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
755 		return false;
756 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
757 		return false;
758 
759 	return true;
760 }
761 
762 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
763 {
764 	if (bio_page(a) == bio_page(b) &&
765 	    bio_offset(a) == bio_offset(b))
766 		return true;
767 
768 	return false;
769 }
770 
771 static inline unsigned int blk_queue_depth(struct request_queue *q)
772 {
773 	if (q->queue_depth)
774 		return q->queue_depth;
775 
776 	return q->nr_requests;
777 }
778 
779 extern unsigned long blk_max_low_pfn, blk_max_pfn;
780 
781 /*
782  * standard bounce addresses:
783  *
784  * BLK_BOUNCE_HIGH	: bounce all highmem pages
785  * BLK_BOUNCE_ANY	: don't bounce anything
786  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
787  */
788 
789 #if BITS_PER_LONG == 32
790 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
791 #else
792 #define BLK_BOUNCE_HIGH		-1ULL
793 #endif
794 #define BLK_BOUNCE_ANY		(-1ULL)
795 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
796 
797 /*
798  * default timeout for SG_IO if none specified
799  */
800 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
801 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
802 
803 struct rq_map_data {
804 	struct page **pages;
805 	int page_order;
806 	int nr_entries;
807 	unsigned long offset;
808 	int null_mapped;
809 	int from_user;
810 };
811 
812 struct req_iterator {
813 	struct bvec_iter iter;
814 	struct bio *bio;
815 };
816 
817 /* This should not be used directly - use rq_for_each_segment */
818 #define for_each_bio(_bio)		\
819 	for (; _bio; _bio = _bio->bi_next)
820 #define __rq_for_each_bio(_bio, rq)	\
821 	if ((rq->bio))			\
822 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
823 
824 #define rq_for_each_segment(bvl, _rq, _iter)			\
825 	__rq_for_each_bio(_iter.bio, _rq)			\
826 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
827 
828 #define rq_for_each_bvec(bvl, _rq, _iter)			\
829 	__rq_for_each_bio(_iter.bio, _rq)			\
830 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
831 
832 #define rq_iter_last(bvec, _iter)				\
833 		(_iter.bio->bi_next == NULL &&			\
834 		 bio_iter_last(bvec, _iter.iter))
835 
836 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
837 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
838 #endif
839 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
840 extern void rq_flush_dcache_pages(struct request *rq);
841 #else
842 static inline void rq_flush_dcache_pages(struct request *rq)
843 {
844 }
845 #endif
846 
847 extern int blk_register_queue(struct gendisk *disk);
848 extern void blk_unregister_queue(struct gendisk *disk);
849 extern blk_qc_t generic_make_request(struct bio *bio);
850 extern blk_qc_t direct_make_request(struct bio *bio);
851 extern void blk_rq_init(struct request_queue *q, struct request *rq);
852 extern void blk_put_request(struct request *);
853 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
854 				       blk_mq_req_flags_t flags);
855 extern int blk_lld_busy(struct request_queue *q);
856 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
857 			     struct bio_set *bs, gfp_t gfp_mask,
858 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
859 			     void *data);
860 extern void blk_rq_unprep_clone(struct request *rq);
861 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
862 				     struct request *rq);
863 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
864 extern void blk_queue_split(struct request_queue *, struct bio **);
865 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
866 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
867 			      unsigned int, void __user *);
868 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
869 			  unsigned int, void __user *);
870 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
871 			 struct scsi_ioctl_command __user *);
872 
873 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
874 extern void blk_queue_exit(struct request_queue *q);
875 extern void blk_sync_queue(struct request_queue *q);
876 extern int blk_rq_map_user(struct request_queue *, struct request *,
877 			   struct rq_map_data *, void __user *, unsigned long,
878 			   gfp_t);
879 extern int blk_rq_unmap_user(struct bio *);
880 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
881 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
882 			       struct rq_map_data *, const struct iov_iter *,
883 			       gfp_t);
884 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
885 			  struct request *, int);
886 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
887 				  struct request *, int, rq_end_io_fn *);
888 
889 /* Helper to convert REQ_OP_XXX to its string format XXX */
890 extern const char *blk_op_str(unsigned int op);
891 
892 int blk_status_to_errno(blk_status_t status);
893 blk_status_t errno_to_blk_status(int errno);
894 
895 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
896 
897 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
898 {
899 	return bdev->bd_disk->queue;	/* this is never NULL */
900 }
901 
902 /*
903  * The basic unit of block I/O is a sector. It is used in a number of contexts
904  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
905  * bytes. Variables of type sector_t represent an offset or size that is a
906  * multiple of 512 bytes. Hence these two constants.
907  */
908 #ifndef SECTOR_SHIFT
909 #define SECTOR_SHIFT 9
910 #endif
911 #ifndef SECTOR_SIZE
912 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
913 #endif
914 
915 /*
916  * blk_rq_pos()			: the current sector
917  * blk_rq_bytes()		: bytes left in the entire request
918  * blk_rq_cur_bytes()		: bytes left in the current segment
919  * blk_rq_err_bytes()		: bytes left till the next error boundary
920  * blk_rq_sectors()		: sectors left in the entire request
921  * blk_rq_cur_sectors()		: sectors left in the current segment
922  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
923  */
924 static inline sector_t blk_rq_pos(const struct request *rq)
925 {
926 	return rq->__sector;
927 }
928 
929 static inline unsigned int blk_rq_bytes(const struct request *rq)
930 {
931 	return rq->__data_len;
932 }
933 
934 static inline int blk_rq_cur_bytes(const struct request *rq)
935 {
936 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
937 }
938 
939 extern unsigned int blk_rq_err_bytes(const struct request *rq);
940 
941 static inline unsigned int blk_rq_sectors(const struct request *rq)
942 {
943 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
944 }
945 
946 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
947 {
948 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
949 }
950 
951 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
952 {
953 	return rq->stats_sectors;
954 }
955 
956 #ifdef CONFIG_BLK_DEV_ZONED
957 static inline unsigned int blk_rq_zone_no(struct request *rq)
958 {
959 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
960 }
961 
962 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
963 {
964 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
965 }
966 #endif /* CONFIG_BLK_DEV_ZONED */
967 
968 /*
969  * Some commands like WRITE SAME have a payload or data transfer size which
970  * is different from the size of the request.  Any driver that supports such
971  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
972  * calculate the data transfer size.
973  */
974 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
975 {
976 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
977 		return rq->special_vec.bv_len;
978 	return blk_rq_bytes(rq);
979 }
980 
981 /*
982  * Return the first full biovec in the request.  The caller needs to check that
983  * there are any bvecs before calling this helper.
984  */
985 static inline struct bio_vec req_bvec(struct request *rq)
986 {
987 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
988 		return rq->special_vec;
989 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
990 }
991 
992 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
993 						     int op)
994 {
995 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
996 		return min(q->limits.max_discard_sectors,
997 			   UINT_MAX >> SECTOR_SHIFT);
998 
999 	if (unlikely(op == REQ_OP_WRITE_SAME))
1000 		return q->limits.max_write_same_sectors;
1001 
1002 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1003 		return q->limits.max_write_zeroes_sectors;
1004 
1005 	return q->limits.max_sectors;
1006 }
1007 
1008 /*
1009  * Return maximum size of a request at given offset. Only valid for
1010  * file system requests.
1011  */
1012 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1013 					       sector_t offset)
1014 {
1015 	if (!q->limits.chunk_sectors)
1016 		return q->limits.max_sectors;
1017 
1018 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1019 			(offset & (q->limits.chunk_sectors - 1))));
1020 }
1021 
1022 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1023 						  sector_t offset)
1024 {
1025 	struct request_queue *q = rq->q;
1026 
1027 	if (blk_rq_is_passthrough(rq))
1028 		return q->limits.max_hw_sectors;
1029 
1030 	if (!q->limits.chunk_sectors ||
1031 	    req_op(rq) == REQ_OP_DISCARD ||
1032 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1033 		return blk_queue_get_max_sectors(q, req_op(rq));
1034 
1035 	return min(blk_max_size_offset(q, offset),
1036 			blk_queue_get_max_sectors(q, req_op(rq)));
1037 }
1038 
1039 static inline unsigned int blk_rq_count_bios(struct request *rq)
1040 {
1041 	unsigned int nr_bios = 0;
1042 	struct bio *bio;
1043 
1044 	__rq_for_each_bio(bio, rq)
1045 		nr_bios++;
1046 
1047 	return nr_bios;
1048 }
1049 
1050 void blk_steal_bios(struct bio_list *list, struct request *rq);
1051 
1052 /*
1053  * Request completion related functions.
1054  *
1055  * blk_update_request() completes given number of bytes and updates
1056  * the request without completing it.
1057  */
1058 extern bool blk_update_request(struct request *rq, blk_status_t error,
1059 			       unsigned int nr_bytes);
1060 
1061 extern void __blk_complete_request(struct request *);
1062 extern void blk_abort_request(struct request *);
1063 
1064 /*
1065  * Access functions for manipulating queue properties
1066  */
1067 extern void blk_cleanup_queue(struct request_queue *);
1068 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1069 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1070 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1071 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1072 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1073 extern void blk_queue_max_discard_segments(struct request_queue *,
1074 		unsigned short);
1075 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1076 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1077 		unsigned int max_discard_sectors);
1078 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1079 		unsigned int max_write_same_sectors);
1080 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1081 		unsigned int max_write_same_sectors);
1082 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1083 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1084 extern void blk_queue_alignment_offset(struct request_queue *q,
1085 				       unsigned int alignment);
1086 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1087 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1088 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1089 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1090 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1091 extern void blk_set_default_limits(struct queue_limits *lim);
1092 extern void blk_set_stacking_limits(struct queue_limits *lim);
1093 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1094 			    sector_t offset);
1095 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1096 			    sector_t offset);
1097 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1098 			      sector_t offset);
1099 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1100 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1101 extern int blk_queue_dma_drain(struct request_queue *q,
1102 			       dma_drain_needed_fn *dma_drain_needed,
1103 			       void *buf, unsigned int size);
1104 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1105 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1106 extern void blk_queue_dma_alignment(struct request_queue *, int);
1107 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1108 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1109 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1110 extern void blk_queue_required_elevator_features(struct request_queue *q,
1111 						 unsigned int features);
1112 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1113 					      struct device *dev);
1114 
1115 /*
1116  * Number of physical segments as sent to the device.
1117  *
1118  * Normally this is the number of discontiguous data segments sent by the
1119  * submitter.  But for data-less command like discard we might have no
1120  * actual data segments submitted, but the driver might have to add it's
1121  * own special payload.  In that case we still return 1 here so that this
1122  * special payload will be mapped.
1123  */
1124 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1125 {
1126 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1127 		return 1;
1128 	return rq->nr_phys_segments;
1129 }
1130 
1131 /*
1132  * Number of discard segments (or ranges) the driver needs to fill in.
1133  * Each discard bio merged into a request is counted as one segment.
1134  */
1135 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1136 {
1137 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1138 }
1139 
1140 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1141 extern void blk_dump_rq_flags(struct request *, char *);
1142 extern long nr_blockdev_pages(void);
1143 
1144 bool __must_check blk_get_queue(struct request_queue *);
1145 struct request_queue *blk_alloc_queue(gfp_t);
1146 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1147 extern void blk_put_queue(struct request_queue *);
1148 extern void blk_set_queue_dying(struct request_queue *);
1149 
1150 /*
1151  * blk_plug permits building a queue of related requests by holding the I/O
1152  * fragments for a short period. This allows merging of sequential requests
1153  * into single larger request. As the requests are moved from a per-task list to
1154  * the device's request_queue in a batch, this results in improved scalability
1155  * as the lock contention for request_queue lock is reduced.
1156  *
1157  * It is ok not to disable preemption when adding the request to the plug list
1158  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1159  * the plug list when the task sleeps by itself. For details, please see
1160  * schedule() where blk_schedule_flush_plug() is called.
1161  */
1162 struct blk_plug {
1163 	struct list_head mq_list; /* blk-mq requests */
1164 	struct list_head cb_list; /* md requires an unplug callback */
1165 	unsigned short rq_count;
1166 	bool multiple_queues;
1167 };
1168 #define BLK_MAX_REQUEST_COUNT 16
1169 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1170 
1171 struct blk_plug_cb;
1172 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1173 struct blk_plug_cb {
1174 	struct list_head list;
1175 	blk_plug_cb_fn callback;
1176 	void *data;
1177 };
1178 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1179 					     void *data, int size);
1180 extern void blk_start_plug(struct blk_plug *);
1181 extern void blk_finish_plug(struct blk_plug *);
1182 extern void blk_flush_plug_list(struct blk_plug *, bool);
1183 
1184 static inline void blk_flush_plug(struct task_struct *tsk)
1185 {
1186 	struct blk_plug *plug = tsk->plug;
1187 
1188 	if (plug)
1189 		blk_flush_plug_list(plug, false);
1190 }
1191 
1192 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1193 {
1194 	struct blk_plug *plug = tsk->plug;
1195 
1196 	if (plug)
1197 		blk_flush_plug_list(plug, true);
1198 }
1199 
1200 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1201 {
1202 	struct blk_plug *plug = tsk->plug;
1203 
1204 	return plug &&
1205 		 (!list_empty(&plug->mq_list) ||
1206 		 !list_empty(&plug->cb_list));
1207 }
1208 
1209 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1210 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1211 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1212 
1213 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1214 
1215 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1216 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1217 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1218 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1219 		struct bio **biop);
1220 
1221 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1222 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1223 
1224 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1225 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1226 		unsigned flags);
1227 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1228 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1229 
1230 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1231 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1232 {
1233 	return blkdev_issue_discard(sb->s_bdev,
1234 				    block << (sb->s_blocksize_bits -
1235 					      SECTOR_SHIFT),
1236 				    nr_blocks << (sb->s_blocksize_bits -
1237 						  SECTOR_SHIFT),
1238 				    gfp_mask, flags);
1239 }
1240 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1241 		sector_t nr_blocks, gfp_t gfp_mask)
1242 {
1243 	return blkdev_issue_zeroout(sb->s_bdev,
1244 				    block << (sb->s_blocksize_bits -
1245 					      SECTOR_SHIFT),
1246 				    nr_blocks << (sb->s_blocksize_bits -
1247 						  SECTOR_SHIFT),
1248 				    gfp_mask, 0);
1249 }
1250 
1251 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1252 
1253 enum blk_default_limits {
1254 	BLK_MAX_SEGMENTS	= 128,
1255 	BLK_SAFE_MAX_SECTORS	= 255,
1256 	BLK_DEF_MAX_SECTORS	= 2560,
1257 	BLK_MAX_SEGMENT_SIZE	= 65536,
1258 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1259 };
1260 
1261 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1262 {
1263 	return q->limits.seg_boundary_mask;
1264 }
1265 
1266 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1267 {
1268 	return q->limits.virt_boundary_mask;
1269 }
1270 
1271 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1272 {
1273 	return q->limits.max_sectors;
1274 }
1275 
1276 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1277 {
1278 	return q->limits.max_hw_sectors;
1279 }
1280 
1281 static inline unsigned short queue_max_segments(const struct request_queue *q)
1282 {
1283 	return q->limits.max_segments;
1284 }
1285 
1286 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1287 {
1288 	return q->limits.max_discard_segments;
1289 }
1290 
1291 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1292 {
1293 	return q->limits.max_segment_size;
1294 }
1295 
1296 static inline unsigned short queue_logical_block_size(const struct request_queue *q)
1297 {
1298 	int retval = 512;
1299 
1300 	if (q && q->limits.logical_block_size)
1301 		retval = q->limits.logical_block_size;
1302 
1303 	return retval;
1304 }
1305 
1306 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1307 {
1308 	return queue_logical_block_size(bdev_get_queue(bdev));
1309 }
1310 
1311 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1312 {
1313 	return q->limits.physical_block_size;
1314 }
1315 
1316 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1317 {
1318 	return queue_physical_block_size(bdev_get_queue(bdev));
1319 }
1320 
1321 static inline unsigned int queue_io_min(const struct request_queue *q)
1322 {
1323 	return q->limits.io_min;
1324 }
1325 
1326 static inline int bdev_io_min(struct block_device *bdev)
1327 {
1328 	return queue_io_min(bdev_get_queue(bdev));
1329 }
1330 
1331 static inline unsigned int queue_io_opt(const struct request_queue *q)
1332 {
1333 	return q->limits.io_opt;
1334 }
1335 
1336 static inline int bdev_io_opt(struct block_device *bdev)
1337 {
1338 	return queue_io_opt(bdev_get_queue(bdev));
1339 }
1340 
1341 static inline int queue_alignment_offset(const struct request_queue *q)
1342 {
1343 	if (q->limits.misaligned)
1344 		return -1;
1345 
1346 	return q->limits.alignment_offset;
1347 }
1348 
1349 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1350 {
1351 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1352 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1353 		<< SECTOR_SHIFT;
1354 
1355 	return (granularity + lim->alignment_offset - alignment) % granularity;
1356 }
1357 
1358 static inline int bdev_alignment_offset(struct block_device *bdev)
1359 {
1360 	struct request_queue *q = bdev_get_queue(bdev);
1361 
1362 	if (q->limits.misaligned)
1363 		return -1;
1364 
1365 	if (bdev != bdev->bd_contains)
1366 		return bdev->bd_part->alignment_offset;
1367 
1368 	return q->limits.alignment_offset;
1369 }
1370 
1371 static inline int queue_discard_alignment(const struct request_queue *q)
1372 {
1373 	if (q->limits.discard_misaligned)
1374 		return -1;
1375 
1376 	return q->limits.discard_alignment;
1377 }
1378 
1379 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1380 {
1381 	unsigned int alignment, granularity, offset;
1382 
1383 	if (!lim->max_discard_sectors)
1384 		return 0;
1385 
1386 	/* Why are these in bytes, not sectors? */
1387 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1388 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1389 	if (!granularity)
1390 		return 0;
1391 
1392 	/* Offset of the partition start in 'granularity' sectors */
1393 	offset = sector_div(sector, granularity);
1394 
1395 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1396 	offset = (granularity + alignment - offset) % granularity;
1397 
1398 	/* Turn it back into bytes, gaah */
1399 	return offset << SECTOR_SHIFT;
1400 }
1401 
1402 static inline int bdev_discard_alignment(struct block_device *bdev)
1403 {
1404 	struct request_queue *q = bdev_get_queue(bdev);
1405 
1406 	if (bdev != bdev->bd_contains)
1407 		return bdev->bd_part->discard_alignment;
1408 
1409 	return q->limits.discard_alignment;
1410 }
1411 
1412 static inline unsigned int bdev_write_same(struct block_device *bdev)
1413 {
1414 	struct request_queue *q = bdev_get_queue(bdev);
1415 
1416 	if (q)
1417 		return q->limits.max_write_same_sectors;
1418 
1419 	return 0;
1420 }
1421 
1422 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1423 {
1424 	struct request_queue *q = bdev_get_queue(bdev);
1425 
1426 	if (q)
1427 		return q->limits.max_write_zeroes_sectors;
1428 
1429 	return 0;
1430 }
1431 
1432 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1433 {
1434 	struct request_queue *q = bdev_get_queue(bdev);
1435 
1436 	if (q)
1437 		return blk_queue_zoned_model(q);
1438 
1439 	return BLK_ZONED_NONE;
1440 }
1441 
1442 static inline bool bdev_is_zoned(struct block_device *bdev)
1443 {
1444 	struct request_queue *q = bdev_get_queue(bdev);
1445 
1446 	if (q)
1447 		return blk_queue_is_zoned(q);
1448 
1449 	return false;
1450 }
1451 
1452 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1453 {
1454 	struct request_queue *q = bdev_get_queue(bdev);
1455 
1456 	if (q)
1457 		return blk_queue_zone_sectors(q);
1458 	return 0;
1459 }
1460 
1461 static inline int queue_dma_alignment(const struct request_queue *q)
1462 {
1463 	return q ? q->dma_alignment : 511;
1464 }
1465 
1466 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1467 				 unsigned int len)
1468 {
1469 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1470 	return !(addr & alignment) && !(len & alignment);
1471 }
1472 
1473 /* assumes size > 256 */
1474 static inline unsigned int blksize_bits(unsigned int size)
1475 {
1476 	unsigned int bits = 8;
1477 	do {
1478 		bits++;
1479 		size >>= 1;
1480 	} while (size > 256);
1481 	return bits;
1482 }
1483 
1484 static inline unsigned int block_size(struct block_device *bdev)
1485 {
1486 	return bdev->bd_block_size;
1487 }
1488 
1489 typedef struct {struct page *v;} Sector;
1490 
1491 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1492 
1493 static inline void put_dev_sector(Sector p)
1494 {
1495 	put_page(p.v);
1496 }
1497 
1498 int kblockd_schedule_work(struct work_struct *work);
1499 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1500 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1501 
1502 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1503 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1504 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1505 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1506 
1507 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1508 
1509 enum blk_integrity_flags {
1510 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1511 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1512 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1513 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1514 };
1515 
1516 struct blk_integrity_iter {
1517 	void			*prot_buf;
1518 	void			*data_buf;
1519 	sector_t		seed;
1520 	unsigned int		data_size;
1521 	unsigned short		interval;
1522 	const char		*disk_name;
1523 };
1524 
1525 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1526 typedef void (integrity_prepare_fn) (struct request *);
1527 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1528 
1529 struct blk_integrity_profile {
1530 	integrity_processing_fn		*generate_fn;
1531 	integrity_processing_fn		*verify_fn;
1532 	integrity_prepare_fn		*prepare_fn;
1533 	integrity_complete_fn		*complete_fn;
1534 	const char			*name;
1535 };
1536 
1537 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1538 extern void blk_integrity_unregister(struct gendisk *);
1539 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1540 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1541 				   struct scatterlist *);
1542 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1543 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1544 				   struct request *);
1545 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1546 				    struct bio *);
1547 
1548 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1549 {
1550 	struct blk_integrity *bi = &disk->queue->integrity;
1551 
1552 	if (!bi->profile)
1553 		return NULL;
1554 
1555 	return bi;
1556 }
1557 
1558 static inline
1559 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1560 {
1561 	return blk_get_integrity(bdev->bd_disk);
1562 }
1563 
1564 static inline bool blk_integrity_rq(struct request *rq)
1565 {
1566 	return rq->cmd_flags & REQ_INTEGRITY;
1567 }
1568 
1569 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1570 						    unsigned int segs)
1571 {
1572 	q->limits.max_integrity_segments = segs;
1573 }
1574 
1575 static inline unsigned short
1576 queue_max_integrity_segments(const struct request_queue *q)
1577 {
1578 	return q->limits.max_integrity_segments;
1579 }
1580 
1581 /**
1582  * bio_integrity_intervals - Return number of integrity intervals for a bio
1583  * @bi:		blk_integrity profile for device
1584  * @sectors:	Size of the bio in 512-byte sectors
1585  *
1586  * Description: The block layer calculates everything in 512 byte
1587  * sectors but integrity metadata is done in terms of the data integrity
1588  * interval size of the storage device.  Convert the block layer sectors
1589  * to the appropriate number of integrity intervals.
1590  */
1591 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1592 						   unsigned int sectors)
1593 {
1594 	return sectors >> (bi->interval_exp - 9);
1595 }
1596 
1597 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1598 					       unsigned int sectors)
1599 {
1600 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1601 }
1602 
1603 /*
1604  * Return the first bvec that contains integrity data.  Only drivers that are
1605  * limited to a single integrity segment should use this helper.
1606  */
1607 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1608 {
1609 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1610 		return NULL;
1611 	return rq->bio->bi_integrity->bip_vec;
1612 }
1613 
1614 #else /* CONFIG_BLK_DEV_INTEGRITY */
1615 
1616 struct bio;
1617 struct block_device;
1618 struct gendisk;
1619 struct blk_integrity;
1620 
1621 static inline int blk_integrity_rq(struct request *rq)
1622 {
1623 	return 0;
1624 }
1625 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1626 					    struct bio *b)
1627 {
1628 	return 0;
1629 }
1630 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1631 					  struct bio *b,
1632 					  struct scatterlist *s)
1633 {
1634 	return 0;
1635 }
1636 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1637 {
1638 	return NULL;
1639 }
1640 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1641 {
1642 	return NULL;
1643 }
1644 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1645 {
1646 	return 0;
1647 }
1648 static inline void blk_integrity_register(struct gendisk *d,
1649 					 struct blk_integrity *b)
1650 {
1651 }
1652 static inline void blk_integrity_unregister(struct gendisk *d)
1653 {
1654 }
1655 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1656 						    unsigned int segs)
1657 {
1658 }
1659 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1660 {
1661 	return 0;
1662 }
1663 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1664 					  struct request *r1,
1665 					  struct request *r2)
1666 {
1667 	return true;
1668 }
1669 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1670 					   struct request *r,
1671 					   struct bio *b)
1672 {
1673 	return true;
1674 }
1675 
1676 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1677 						   unsigned int sectors)
1678 {
1679 	return 0;
1680 }
1681 
1682 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1683 					       unsigned int sectors)
1684 {
1685 	return 0;
1686 }
1687 
1688 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1689 {
1690 	return NULL;
1691 }
1692 
1693 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1694 
1695 struct block_device_operations {
1696 	int (*open) (struct block_device *, fmode_t);
1697 	void (*release) (struct gendisk *, fmode_t);
1698 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1699 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1700 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1701 	unsigned int (*check_events) (struct gendisk *disk,
1702 				      unsigned int clearing);
1703 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1704 	int (*media_changed) (struct gendisk *);
1705 	void (*unlock_native_capacity) (struct gendisk *);
1706 	int (*revalidate_disk) (struct gendisk *);
1707 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1708 	/* this callback is with swap_lock and sometimes page table lock held */
1709 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1710 	int (*report_zones)(struct gendisk *, sector_t sector,
1711 			unsigned int nr_zones, report_zones_cb cb, void *data);
1712 	struct module *owner;
1713 	const struct pr_ops *pr_ops;
1714 };
1715 
1716 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1717 				 unsigned long);
1718 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1719 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1720 						struct writeback_control *);
1721 
1722 #ifdef CONFIG_BLK_DEV_ZONED
1723 bool blk_req_needs_zone_write_lock(struct request *rq);
1724 void __blk_req_zone_write_lock(struct request *rq);
1725 void __blk_req_zone_write_unlock(struct request *rq);
1726 
1727 static inline void blk_req_zone_write_lock(struct request *rq)
1728 {
1729 	if (blk_req_needs_zone_write_lock(rq))
1730 		__blk_req_zone_write_lock(rq);
1731 }
1732 
1733 static inline void blk_req_zone_write_unlock(struct request *rq)
1734 {
1735 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1736 		__blk_req_zone_write_unlock(rq);
1737 }
1738 
1739 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1740 {
1741 	return rq->q->seq_zones_wlock &&
1742 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1743 }
1744 
1745 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1746 {
1747 	if (!blk_req_needs_zone_write_lock(rq))
1748 		return true;
1749 	return !blk_req_zone_is_write_locked(rq);
1750 }
1751 #else
1752 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1753 {
1754 	return false;
1755 }
1756 
1757 static inline void blk_req_zone_write_lock(struct request *rq)
1758 {
1759 }
1760 
1761 static inline void blk_req_zone_write_unlock(struct request *rq)
1762 {
1763 }
1764 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1765 {
1766 	return false;
1767 }
1768 
1769 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1770 {
1771 	return true;
1772 }
1773 #endif /* CONFIG_BLK_DEV_ZONED */
1774 
1775 #else /* CONFIG_BLOCK */
1776 
1777 struct block_device;
1778 
1779 /*
1780  * stubs for when the block layer is configured out
1781  */
1782 #define buffer_heads_over_limit 0
1783 
1784 static inline long nr_blockdev_pages(void)
1785 {
1786 	return 0;
1787 }
1788 
1789 struct blk_plug {
1790 };
1791 
1792 static inline void blk_start_plug(struct blk_plug *plug)
1793 {
1794 }
1795 
1796 static inline void blk_finish_plug(struct blk_plug *plug)
1797 {
1798 }
1799 
1800 static inline void blk_flush_plug(struct task_struct *task)
1801 {
1802 }
1803 
1804 static inline void blk_schedule_flush_plug(struct task_struct *task)
1805 {
1806 }
1807 
1808 
1809 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1810 {
1811 	return false;
1812 }
1813 
1814 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1815 				     sector_t *error_sector)
1816 {
1817 	return 0;
1818 }
1819 
1820 #endif /* CONFIG_BLOCK */
1821 
1822 static inline void blk_wake_io_task(struct task_struct *waiter)
1823 {
1824 	/*
1825 	 * If we're polling, the task itself is doing the completions. For
1826 	 * that case, we don't need to signal a wakeup, it's enough to just
1827 	 * mark us as RUNNING.
1828 	 */
1829 	if (waiter == current)
1830 		__set_current_state(TASK_RUNNING);
1831 	else
1832 		wake_up_process(waiter);
1833 }
1834 
1835 #endif
1836