1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/timer.h> 12 #include <linux/workqueue.h> 13 #include <linux/pagemap.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/bsg.h> 22 #include <linux/smp.h> 23 #include <linux/rcupdate.h> 24 #include <linux/percpu-refcount.h> 25 #include <linux/scatterlist.h> 26 #include <linux/blkzoned.h> 27 28 struct module; 29 struct scsi_ioctl_command; 30 31 struct request_queue; 32 struct elevator_queue; 33 struct blk_trace; 34 struct request; 35 struct sg_io_hdr; 36 struct bsg_job; 37 struct blkcg_gq; 38 struct blk_flush_queue; 39 struct pr_ops; 40 struct rq_qos; 41 struct blk_queue_stats; 42 struct blk_stat_callback; 43 struct blk_keyslot_manager; 44 45 #define BLKDEV_MIN_RQ 4 46 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 47 48 /* Must be consistent with blk_mq_poll_stats_bkt() */ 49 #define BLK_MQ_POLL_STATS_BKTS 16 50 51 /* Doing classic polling */ 52 #define BLK_MQ_POLL_CLASSIC -1 53 54 /* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58 #define BLKCG_MAX_POLS 5 59 60 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 61 62 /* 63 * request flags */ 64 typedef __u32 __bitwise req_flags_t; 65 66 /* elevator knows about this request */ 67 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 68 /* drive already may have started this one */ 69 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 70 /* may not be passed by ioscheduler */ 71 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 72 /* request for flush sequence */ 73 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 74 /* merge of different types, fail separately */ 75 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 76 /* track inflight for MQ */ 77 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 78 /* don't call prep for this one */ 79 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 80 /* set for "ide_preempt" requests and also for requests for which the SCSI 81 "quiesce" state must be ignored. */ 82 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 83 /* vaguely specified driver internal error. Ignored by the block layer */ 84 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 85 /* don't warn about errors */ 86 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 87 /* elevator private data attached */ 88 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 89 /* account into disk and partition IO statistics */ 90 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 91 /* request came from our alloc pool */ 92 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 93 /* runtime pm request */ 94 #define RQF_PM ((__force req_flags_t)(1 << 15)) 95 /* on IO scheduler merge hash */ 96 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 97 /* track IO completion time */ 98 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 99 /* Look at ->special_vec for the actual data payload instead of the 100 bio chain. */ 101 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 102 /* The per-zone write lock is held for this request */ 103 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 104 /* already slept for hybrid poll */ 105 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 106 /* ->timeout has been called, don't expire again */ 107 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 108 109 /* flags that prevent us from merging requests: */ 110 #define RQF_NOMERGE_FLAGS \ 111 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 112 113 /* 114 * Request state for blk-mq. 115 */ 116 enum mq_rq_state { 117 MQ_RQ_IDLE = 0, 118 MQ_RQ_IN_FLIGHT = 1, 119 MQ_RQ_COMPLETE = 2, 120 }; 121 122 /* 123 * Try to put the fields that are referenced together in the same cacheline. 124 * 125 * If you modify this structure, make sure to update blk_rq_init() and 126 * especially blk_mq_rq_ctx_init() to take care of the added fields. 127 */ 128 struct request { 129 struct request_queue *q; 130 struct blk_mq_ctx *mq_ctx; 131 struct blk_mq_hw_ctx *mq_hctx; 132 133 unsigned int cmd_flags; /* op and common flags */ 134 req_flags_t rq_flags; 135 136 int tag; 137 int internal_tag; 138 139 /* the following two fields are internal, NEVER access directly */ 140 unsigned int __data_len; /* total data len */ 141 sector_t __sector; /* sector cursor */ 142 143 struct bio *bio; 144 struct bio *biotail; 145 146 struct list_head queuelist; 147 148 /* 149 * The hash is used inside the scheduler, and killed once the 150 * request reaches the dispatch list. The ipi_list is only used 151 * to queue the request for softirq completion, which is long 152 * after the request has been unhashed (and even removed from 153 * the dispatch list). 154 */ 155 union { 156 struct hlist_node hash; /* merge hash */ 157 struct list_head ipi_list; 158 }; 159 160 /* 161 * The rb_node is only used inside the io scheduler, requests 162 * are pruned when moved to the dispatch queue. So let the 163 * completion_data share space with the rb_node. 164 */ 165 union { 166 struct rb_node rb_node; /* sort/lookup */ 167 struct bio_vec special_vec; 168 void *completion_data; 169 int error_count; /* for legacy drivers, don't use */ 170 }; 171 172 /* 173 * Three pointers are available for the IO schedulers, if they need 174 * more they have to dynamically allocate it. Flush requests are 175 * never put on the IO scheduler. So let the flush fields share 176 * space with the elevator data. 177 */ 178 union { 179 struct { 180 struct io_cq *icq; 181 void *priv[2]; 182 } elv; 183 184 struct { 185 unsigned int seq; 186 struct list_head list; 187 rq_end_io_fn *saved_end_io; 188 } flush; 189 }; 190 191 struct gendisk *rq_disk; 192 struct hd_struct *part; 193 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 194 /* Time that the first bio started allocating this request. */ 195 u64 alloc_time_ns; 196 #endif 197 /* Time that this request was allocated for this IO. */ 198 u64 start_time_ns; 199 /* Time that I/O was submitted to the device. */ 200 u64 io_start_time_ns; 201 202 #ifdef CONFIG_BLK_WBT 203 unsigned short wbt_flags; 204 #endif 205 /* 206 * rq sectors used for blk stats. It has the same value 207 * with blk_rq_sectors(rq), except that it never be zeroed 208 * by completion. 209 */ 210 unsigned short stats_sectors; 211 212 /* 213 * Number of scatter-gather DMA addr+len pairs after 214 * physical address coalescing is performed. 215 */ 216 unsigned short nr_phys_segments; 217 218 #if defined(CONFIG_BLK_DEV_INTEGRITY) 219 unsigned short nr_integrity_segments; 220 #endif 221 222 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 223 struct bio_crypt_ctx *crypt_ctx; 224 struct blk_ksm_keyslot *crypt_keyslot; 225 #endif 226 227 unsigned short write_hint; 228 unsigned short ioprio; 229 230 enum mq_rq_state state; 231 refcount_t ref; 232 233 unsigned int timeout; 234 unsigned long deadline; 235 236 union { 237 struct __call_single_data csd; 238 u64 fifo_time; 239 }; 240 241 /* 242 * completion callback. 243 */ 244 rq_end_io_fn *end_io; 245 void *end_io_data; 246 }; 247 248 static inline bool blk_op_is_scsi(unsigned int op) 249 { 250 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 251 } 252 253 static inline bool blk_op_is_private(unsigned int op) 254 { 255 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 256 } 257 258 static inline bool blk_rq_is_scsi(struct request *rq) 259 { 260 return blk_op_is_scsi(req_op(rq)); 261 } 262 263 static inline bool blk_rq_is_private(struct request *rq) 264 { 265 return blk_op_is_private(req_op(rq)); 266 } 267 268 static inline bool blk_rq_is_passthrough(struct request *rq) 269 { 270 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 271 } 272 273 static inline bool bio_is_passthrough(struct bio *bio) 274 { 275 unsigned op = bio_op(bio); 276 277 return blk_op_is_scsi(op) || blk_op_is_private(op); 278 } 279 280 static inline unsigned short req_get_ioprio(struct request *req) 281 { 282 return req->ioprio; 283 } 284 285 #include <linux/elevator.h> 286 287 struct blk_queue_ctx; 288 289 struct bio_vec; 290 291 enum blk_eh_timer_return { 292 BLK_EH_DONE, /* drivers has completed the command */ 293 BLK_EH_RESET_TIMER, /* reset timer and try again */ 294 }; 295 296 enum blk_queue_state { 297 Queue_down, 298 Queue_up, 299 }; 300 301 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 302 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 303 304 #define BLK_SCSI_MAX_CMDS (256) 305 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 306 307 /* 308 * Zoned block device models (zoned limit). 309 */ 310 enum blk_zoned_model { 311 BLK_ZONED_NONE, /* Regular block device */ 312 BLK_ZONED_HA, /* Host-aware zoned block device */ 313 BLK_ZONED_HM, /* Host-managed zoned block device */ 314 }; 315 316 struct queue_limits { 317 unsigned long bounce_pfn; 318 unsigned long seg_boundary_mask; 319 unsigned long virt_boundary_mask; 320 321 unsigned int max_hw_sectors; 322 unsigned int max_dev_sectors; 323 unsigned int chunk_sectors; 324 unsigned int max_sectors; 325 unsigned int max_segment_size; 326 unsigned int physical_block_size; 327 unsigned int logical_block_size; 328 unsigned int alignment_offset; 329 unsigned int io_min; 330 unsigned int io_opt; 331 unsigned int max_discard_sectors; 332 unsigned int max_hw_discard_sectors; 333 unsigned int max_write_same_sectors; 334 unsigned int max_write_zeroes_sectors; 335 unsigned int max_zone_append_sectors; 336 unsigned int discard_granularity; 337 unsigned int discard_alignment; 338 339 unsigned short max_segments; 340 unsigned short max_integrity_segments; 341 unsigned short max_discard_segments; 342 343 unsigned char misaligned; 344 unsigned char discard_misaligned; 345 unsigned char raid_partial_stripes_expensive; 346 enum blk_zoned_model zoned; 347 }; 348 349 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 350 void *data); 351 352 #ifdef CONFIG_BLK_DEV_ZONED 353 354 #define BLK_ALL_ZONES ((unsigned int)-1) 355 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 356 unsigned int nr_zones, report_zones_cb cb, void *data); 357 unsigned int blkdev_nr_zones(struct gendisk *disk); 358 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 359 sector_t sectors, sector_t nr_sectors, 360 gfp_t gfp_mask); 361 int blk_revalidate_disk_zones(struct gendisk *disk, 362 void (*update_driver_data)(struct gendisk *disk)); 363 364 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 365 unsigned int cmd, unsigned long arg); 366 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 367 unsigned int cmd, unsigned long arg); 368 369 #else /* CONFIG_BLK_DEV_ZONED */ 370 371 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 372 { 373 return 0; 374 } 375 376 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 377 fmode_t mode, unsigned int cmd, 378 unsigned long arg) 379 { 380 return -ENOTTY; 381 } 382 383 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 384 fmode_t mode, unsigned int cmd, 385 unsigned long arg) 386 { 387 return -ENOTTY; 388 } 389 390 #endif /* CONFIG_BLK_DEV_ZONED */ 391 392 struct request_queue { 393 struct request *last_merge; 394 struct elevator_queue *elevator; 395 396 struct blk_queue_stats *stats; 397 struct rq_qos *rq_qos; 398 399 const struct blk_mq_ops *mq_ops; 400 401 /* sw queues */ 402 struct blk_mq_ctx __percpu *queue_ctx; 403 404 unsigned int queue_depth; 405 406 /* hw dispatch queues */ 407 struct blk_mq_hw_ctx **queue_hw_ctx; 408 unsigned int nr_hw_queues; 409 410 struct backing_dev_info *backing_dev_info; 411 412 /* 413 * The queue owner gets to use this for whatever they like. 414 * ll_rw_blk doesn't touch it. 415 */ 416 void *queuedata; 417 418 /* 419 * various queue flags, see QUEUE_* below 420 */ 421 unsigned long queue_flags; 422 /* 423 * Number of contexts that have called blk_set_pm_only(). If this 424 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 425 * processed. 426 */ 427 atomic_t pm_only; 428 429 /* 430 * ida allocated id for this queue. Used to index queues from 431 * ioctx. 432 */ 433 int id; 434 435 /* 436 * queue needs bounce pages for pages above this limit 437 */ 438 gfp_t bounce_gfp; 439 440 spinlock_t queue_lock; 441 442 /* 443 * queue kobject 444 */ 445 struct kobject kobj; 446 447 /* 448 * mq queue kobject 449 */ 450 struct kobject *mq_kobj; 451 452 #ifdef CONFIG_BLK_DEV_INTEGRITY 453 struct blk_integrity integrity; 454 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 455 456 #ifdef CONFIG_PM 457 struct device *dev; 458 int rpm_status; 459 unsigned int nr_pending; 460 #endif 461 462 /* 463 * queue settings 464 */ 465 unsigned long nr_requests; /* Max # of requests */ 466 467 unsigned int dma_pad_mask; 468 unsigned int dma_alignment; 469 470 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 471 /* Inline crypto capabilities */ 472 struct blk_keyslot_manager *ksm; 473 #endif 474 475 unsigned int rq_timeout; 476 int poll_nsec; 477 478 struct blk_stat_callback *poll_cb; 479 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 480 481 struct timer_list timeout; 482 struct work_struct timeout_work; 483 484 struct list_head icq_list; 485 #ifdef CONFIG_BLK_CGROUP 486 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 487 struct blkcg_gq *root_blkg; 488 struct list_head blkg_list; 489 #endif 490 491 struct queue_limits limits; 492 493 unsigned int required_elevator_features; 494 495 #ifdef CONFIG_BLK_DEV_ZONED 496 /* 497 * Zoned block device information for request dispatch control. 498 * nr_zones is the total number of zones of the device. This is always 499 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 500 * bits which indicates if a zone is conventional (bit set) or 501 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 502 * bits which indicates if a zone is write locked, that is, if a write 503 * request targeting the zone was dispatched. All three fields are 504 * initialized by the low level device driver (e.g. scsi/sd.c). 505 * Stacking drivers (device mappers) may or may not initialize 506 * these fields. 507 * 508 * Reads of this information must be protected with blk_queue_enter() / 509 * blk_queue_exit(). Modifying this information is only allowed while 510 * no requests are being processed. See also blk_mq_freeze_queue() and 511 * blk_mq_unfreeze_queue(). 512 */ 513 unsigned int nr_zones; 514 unsigned long *conv_zones_bitmap; 515 unsigned long *seq_zones_wlock; 516 #endif /* CONFIG_BLK_DEV_ZONED */ 517 518 /* 519 * sg stuff 520 */ 521 unsigned int sg_timeout; 522 unsigned int sg_reserved_size; 523 int node; 524 struct mutex debugfs_mutex; 525 #ifdef CONFIG_BLK_DEV_IO_TRACE 526 struct blk_trace __rcu *blk_trace; 527 #endif 528 /* 529 * for flush operations 530 */ 531 struct blk_flush_queue *fq; 532 533 struct list_head requeue_list; 534 spinlock_t requeue_lock; 535 struct delayed_work requeue_work; 536 537 struct mutex sysfs_lock; 538 struct mutex sysfs_dir_lock; 539 540 /* 541 * for reusing dead hctx instance in case of updating 542 * nr_hw_queues 543 */ 544 struct list_head unused_hctx_list; 545 spinlock_t unused_hctx_lock; 546 547 int mq_freeze_depth; 548 549 #if defined(CONFIG_BLK_DEV_BSG) 550 struct bsg_class_device bsg_dev; 551 #endif 552 553 #ifdef CONFIG_BLK_DEV_THROTTLING 554 /* Throttle data */ 555 struct throtl_data *td; 556 #endif 557 struct rcu_head rcu_head; 558 wait_queue_head_t mq_freeze_wq; 559 /* 560 * Protect concurrent access to q_usage_counter by 561 * percpu_ref_kill() and percpu_ref_reinit(). 562 */ 563 struct mutex mq_freeze_lock; 564 struct percpu_ref q_usage_counter; 565 566 struct blk_mq_tag_set *tag_set; 567 struct list_head tag_set_list; 568 struct bio_set bio_split; 569 570 struct dentry *debugfs_dir; 571 572 #ifdef CONFIG_BLK_DEBUG_FS 573 struct dentry *sched_debugfs_dir; 574 struct dentry *rqos_debugfs_dir; 575 #endif 576 577 bool mq_sysfs_init_done; 578 579 size_t cmd_size; 580 581 #define BLK_MAX_WRITE_HINTS 5 582 u64 write_hints[BLK_MAX_WRITE_HINTS]; 583 }; 584 585 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 586 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 587 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 588 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 589 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 590 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 591 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 592 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 593 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 594 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 595 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 596 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 597 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 598 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 599 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 600 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 601 #define QUEUE_FLAG_WC 17 /* Write back caching */ 602 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 603 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 604 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 605 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 606 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 607 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 608 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 609 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 610 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 611 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 612 613 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 614 (1 << QUEUE_FLAG_SAME_COMP)) 615 616 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 617 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 618 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 619 620 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 621 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 622 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 623 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 624 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 625 #define blk_queue_noxmerges(q) \ 626 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 627 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 628 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 629 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 630 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 631 #define blk_queue_zone_resetall(q) \ 632 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 633 #define blk_queue_secure_erase(q) \ 634 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 635 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 636 #define blk_queue_scsi_passthrough(q) \ 637 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 638 #define blk_queue_pci_p2pdma(q) \ 639 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 640 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 641 #define blk_queue_rq_alloc_time(q) \ 642 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 643 #else 644 #define blk_queue_rq_alloc_time(q) false 645 #endif 646 647 #define blk_noretry_request(rq) \ 648 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 649 REQ_FAILFAST_DRIVER)) 650 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 651 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 652 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 653 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 654 655 extern void blk_set_pm_only(struct request_queue *q); 656 extern void blk_clear_pm_only(struct request_queue *q); 657 658 static inline bool blk_account_rq(struct request *rq) 659 { 660 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 661 } 662 663 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 664 665 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 666 667 #define rq_dma_dir(rq) \ 668 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 669 670 #define dma_map_bvec(dev, bv, dir, attrs) \ 671 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 672 (dir), (attrs)) 673 674 static inline bool queue_is_mq(struct request_queue *q) 675 { 676 return q->mq_ops; 677 } 678 679 static inline enum blk_zoned_model 680 blk_queue_zoned_model(struct request_queue *q) 681 { 682 return q->limits.zoned; 683 } 684 685 static inline bool blk_queue_is_zoned(struct request_queue *q) 686 { 687 switch (blk_queue_zoned_model(q)) { 688 case BLK_ZONED_HA: 689 case BLK_ZONED_HM: 690 return true; 691 default: 692 return false; 693 } 694 } 695 696 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 697 { 698 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 699 } 700 701 #ifdef CONFIG_BLK_DEV_ZONED 702 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 703 { 704 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 705 } 706 707 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 708 sector_t sector) 709 { 710 if (!blk_queue_is_zoned(q)) 711 return 0; 712 return sector >> ilog2(q->limits.chunk_sectors); 713 } 714 715 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 716 sector_t sector) 717 { 718 if (!blk_queue_is_zoned(q)) 719 return false; 720 if (!q->conv_zones_bitmap) 721 return true; 722 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 723 } 724 #else /* CONFIG_BLK_DEV_ZONED */ 725 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 726 { 727 return 0; 728 } 729 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 730 sector_t sector) 731 { 732 return false; 733 } 734 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 735 sector_t sector) 736 { 737 return 0; 738 } 739 #endif /* CONFIG_BLK_DEV_ZONED */ 740 741 static inline bool rq_is_sync(struct request *rq) 742 { 743 return op_is_sync(rq->cmd_flags); 744 } 745 746 static inline bool rq_mergeable(struct request *rq) 747 { 748 if (blk_rq_is_passthrough(rq)) 749 return false; 750 751 if (req_op(rq) == REQ_OP_FLUSH) 752 return false; 753 754 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 755 return false; 756 757 if (req_op(rq) == REQ_OP_ZONE_APPEND) 758 return false; 759 760 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 761 return false; 762 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 763 return false; 764 765 return true; 766 } 767 768 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 769 { 770 if (bio_page(a) == bio_page(b) && 771 bio_offset(a) == bio_offset(b)) 772 return true; 773 774 return false; 775 } 776 777 static inline unsigned int blk_queue_depth(struct request_queue *q) 778 { 779 if (q->queue_depth) 780 return q->queue_depth; 781 782 return q->nr_requests; 783 } 784 785 extern unsigned long blk_max_low_pfn, blk_max_pfn; 786 787 /* 788 * standard bounce addresses: 789 * 790 * BLK_BOUNCE_HIGH : bounce all highmem pages 791 * BLK_BOUNCE_ANY : don't bounce anything 792 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 793 */ 794 795 #if BITS_PER_LONG == 32 796 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 797 #else 798 #define BLK_BOUNCE_HIGH -1ULL 799 #endif 800 #define BLK_BOUNCE_ANY (-1ULL) 801 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 802 803 /* 804 * default timeout for SG_IO if none specified 805 */ 806 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 807 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 808 809 struct rq_map_data { 810 struct page **pages; 811 int page_order; 812 int nr_entries; 813 unsigned long offset; 814 int null_mapped; 815 int from_user; 816 }; 817 818 struct req_iterator { 819 struct bvec_iter iter; 820 struct bio *bio; 821 }; 822 823 /* This should not be used directly - use rq_for_each_segment */ 824 #define for_each_bio(_bio) \ 825 for (; _bio; _bio = _bio->bi_next) 826 #define __rq_for_each_bio(_bio, rq) \ 827 if ((rq->bio)) \ 828 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 829 830 #define rq_for_each_segment(bvl, _rq, _iter) \ 831 __rq_for_each_bio(_iter.bio, _rq) \ 832 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 833 834 #define rq_for_each_bvec(bvl, _rq, _iter) \ 835 __rq_for_each_bio(_iter.bio, _rq) \ 836 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 837 838 #define rq_iter_last(bvec, _iter) \ 839 (_iter.bio->bi_next == NULL && \ 840 bio_iter_last(bvec, _iter.iter)) 841 842 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 843 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 844 #endif 845 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 846 extern void rq_flush_dcache_pages(struct request *rq); 847 #else 848 static inline void rq_flush_dcache_pages(struct request *rq) 849 { 850 } 851 #endif 852 853 extern int blk_register_queue(struct gendisk *disk); 854 extern void blk_unregister_queue(struct gendisk *disk); 855 blk_qc_t submit_bio_noacct(struct bio *bio); 856 extern void blk_rq_init(struct request_queue *q, struct request *rq); 857 extern void blk_put_request(struct request *); 858 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 859 blk_mq_req_flags_t flags); 860 extern int blk_lld_busy(struct request_queue *q); 861 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 862 struct bio_set *bs, gfp_t gfp_mask, 863 int (*bio_ctr)(struct bio *, struct bio *, void *), 864 void *data); 865 extern void blk_rq_unprep_clone(struct request *rq); 866 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 867 struct request *rq); 868 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 869 extern void blk_queue_split(struct bio **); 870 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 871 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 872 unsigned int, void __user *); 873 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 874 unsigned int, void __user *); 875 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 876 struct scsi_ioctl_command __user *); 877 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 878 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 879 880 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 881 extern void blk_queue_exit(struct request_queue *q); 882 extern void blk_sync_queue(struct request_queue *q); 883 extern int blk_rq_map_user(struct request_queue *, struct request *, 884 struct rq_map_data *, void __user *, unsigned long, 885 gfp_t); 886 extern int blk_rq_unmap_user(struct bio *); 887 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 888 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 889 struct rq_map_data *, const struct iov_iter *, 890 gfp_t); 891 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 892 struct request *, int); 893 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 894 struct request *, int, rq_end_io_fn *); 895 896 /* Helper to convert REQ_OP_XXX to its string format XXX */ 897 extern const char *blk_op_str(unsigned int op); 898 899 int blk_status_to_errno(blk_status_t status); 900 blk_status_t errno_to_blk_status(int errno); 901 902 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 903 904 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 905 { 906 return bdev->bd_disk->queue; /* this is never NULL */ 907 } 908 909 /* 910 * The basic unit of block I/O is a sector. It is used in a number of contexts 911 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 912 * bytes. Variables of type sector_t represent an offset or size that is a 913 * multiple of 512 bytes. Hence these two constants. 914 */ 915 #ifndef SECTOR_SHIFT 916 #define SECTOR_SHIFT 9 917 #endif 918 #ifndef SECTOR_SIZE 919 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 920 #endif 921 922 /* 923 * blk_rq_pos() : the current sector 924 * blk_rq_bytes() : bytes left in the entire request 925 * blk_rq_cur_bytes() : bytes left in the current segment 926 * blk_rq_err_bytes() : bytes left till the next error boundary 927 * blk_rq_sectors() : sectors left in the entire request 928 * blk_rq_cur_sectors() : sectors left in the current segment 929 * blk_rq_stats_sectors() : sectors of the entire request used for stats 930 */ 931 static inline sector_t blk_rq_pos(const struct request *rq) 932 { 933 return rq->__sector; 934 } 935 936 static inline unsigned int blk_rq_bytes(const struct request *rq) 937 { 938 return rq->__data_len; 939 } 940 941 static inline int blk_rq_cur_bytes(const struct request *rq) 942 { 943 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 944 } 945 946 extern unsigned int blk_rq_err_bytes(const struct request *rq); 947 948 static inline unsigned int blk_rq_sectors(const struct request *rq) 949 { 950 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 951 } 952 953 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 954 { 955 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 956 } 957 958 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 959 { 960 return rq->stats_sectors; 961 } 962 963 #ifdef CONFIG_BLK_DEV_ZONED 964 965 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 966 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 967 968 static inline unsigned int blk_rq_zone_no(struct request *rq) 969 { 970 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 971 } 972 973 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 974 { 975 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 976 } 977 #endif /* CONFIG_BLK_DEV_ZONED */ 978 979 /* 980 * Some commands like WRITE SAME have a payload or data transfer size which 981 * is different from the size of the request. Any driver that supports such 982 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 983 * calculate the data transfer size. 984 */ 985 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 986 { 987 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 988 return rq->special_vec.bv_len; 989 return blk_rq_bytes(rq); 990 } 991 992 /* 993 * Return the first full biovec in the request. The caller needs to check that 994 * there are any bvecs before calling this helper. 995 */ 996 static inline struct bio_vec req_bvec(struct request *rq) 997 { 998 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 999 return rq->special_vec; 1000 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1001 } 1002 1003 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1004 int op) 1005 { 1006 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1007 return min(q->limits.max_discard_sectors, 1008 UINT_MAX >> SECTOR_SHIFT); 1009 1010 if (unlikely(op == REQ_OP_WRITE_SAME)) 1011 return q->limits.max_write_same_sectors; 1012 1013 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1014 return q->limits.max_write_zeroes_sectors; 1015 1016 return q->limits.max_sectors; 1017 } 1018 1019 /* 1020 * Return maximum size of a request at given offset. Only valid for 1021 * file system requests. 1022 */ 1023 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1024 sector_t offset) 1025 { 1026 if (!q->limits.chunk_sectors) 1027 return q->limits.max_sectors; 1028 1029 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1030 (offset & (q->limits.chunk_sectors - 1)))); 1031 } 1032 1033 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1034 sector_t offset) 1035 { 1036 struct request_queue *q = rq->q; 1037 1038 if (blk_rq_is_passthrough(rq)) 1039 return q->limits.max_hw_sectors; 1040 1041 if (!q->limits.chunk_sectors || 1042 req_op(rq) == REQ_OP_DISCARD || 1043 req_op(rq) == REQ_OP_SECURE_ERASE) 1044 return blk_queue_get_max_sectors(q, req_op(rq)); 1045 1046 return min(blk_max_size_offset(q, offset), 1047 blk_queue_get_max_sectors(q, req_op(rq))); 1048 } 1049 1050 static inline unsigned int blk_rq_count_bios(struct request *rq) 1051 { 1052 unsigned int nr_bios = 0; 1053 struct bio *bio; 1054 1055 __rq_for_each_bio(bio, rq) 1056 nr_bios++; 1057 1058 return nr_bios; 1059 } 1060 1061 void blk_steal_bios(struct bio_list *list, struct request *rq); 1062 1063 /* 1064 * Request completion related functions. 1065 * 1066 * blk_update_request() completes given number of bytes and updates 1067 * the request without completing it. 1068 */ 1069 extern bool blk_update_request(struct request *rq, blk_status_t error, 1070 unsigned int nr_bytes); 1071 1072 extern void blk_abort_request(struct request *); 1073 1074 /* 1075 * Access functions for manipulating queue properties 1076 */ 1077 extern void blk_cleanup_queue(struct request_queue *); 1078 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1079 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1080 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1081 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1082 extern void blk_queue_max_discard_segments(struct request_queue *, 1083 unsigned short); 1084 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1085 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1086 unsigned int max_discard_sectors); 1087 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1088 unsigned int max_write_same_sectors); 1089 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1090 unsigned int max_write_same_sectors); 1091 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1092 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1093 unsigned int max_zone_append_sectors); 1094 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1095 extern void blk_queue_alignment_offset(struct request_queue *q, 1096 unsigned int alignment); 1097 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1098 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1099 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1100 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1101 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1102 extern void blk_set_default_limits(struct queue_limits *lim); 1103 extern void blk_set_stacking_limits(struct queue_limits *lim); 1104 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1105 sector_t offset); 1106 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1107 sector_t offset); 1108 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1109 sector_t offset); 1110 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1111 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1112 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1113 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1114 extern void blk_queue_dma_alignment(struct request_queue *, int); 1115 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1116 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1117 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1118 extern void blk_queue_required_elevator_features(struct request_queue *q, 1119 unsigned int features); 1120 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1121 struct device *dev); 1122 1123 /* 1124 * Number of physical segments as sent to the device. 1125 * 1126 * Normally this is the number of discontiguous data segments sent by the 1127 * submitter. But for data-less command like discard we might have no 1128 * actual data segments submitted, but the driver might have to add it's 1129 * own special payload. In that case we still return 1 here so that this 1130 * special payload will be mapped. 1131 */ 1132 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1133 { 1134 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1135 return 1; 1136 return rq->nr_phys_segments; 1137 } 1138 1139 /* 1140 * Number of discard segments (or ranges) the driver needs to fill in. 1141 * Each discard bio merged into a request is counted as one segment. 1142 */ 1143 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1144 { 1145 return max_t(unsigned short, rq->nr_phys_segments, 1); 1146 } 1147 1148 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1149 struct scatterlist *sglist, struct scatterlist **last_sg); 1150 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1151 struct scatterlist *sglist) 1152 { 1153 struct scatterlist *last_sg = NULL; 1154 1155 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1156 } 1157 extern void blk_dump_rq_flags(struct request *, char *); 1158 1159 bool __must_check blk_get_queue(struct request_queue *); 1160 struct request_queue *blk_alloc_queue(int node_id); 1161 extern void blk_put_queue(struct request_queue *); 1162 extern void blk_set_queue_dying(struct request_queue *); 1163 1164 #ifdef CONFIG_BLOCK 1165 /* 1166 * blk_plug permits building a queue of related requests by holding the I/O 1167 * fragments for a short period. This allows merging of sequential requests 1168 * into single larger request. As the requests are moved from a per-task list to 1169 * the device's request_queue in a batch, this results in improved scalability 1170 * as the lock contention for request_queue lock is reduced. 1171 * 1172 * It is ok not to disable preemption when adding the request to the plug list 1173 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1174 * the plug list when the task sleeps by itself. For details, please see 1175 * schedule() where blk_schedule_flush_plug() is called. 1176 */ 1177 struct blk_plug { 1178 struct list_head mq_list; /* blk-mq requests */ 1179 struct list_head cb_list; /* md requires an unplug callback */ 1180 unsigned short rq_count; 1181 bool multiple_queues; 1182 }; 1183 #define BLK_MAX_REQUEST_COUNT 16 1184 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1185 1186 struct blk_plug_cb; 1187 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1188 struct blk_plug_cb { 1189 struct list_head list; 1190 blk_plug_cb_fn callback; 1191 void *data; 1192 }; 1193 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1194 void *data, int size); 1195 extern void blk_start_plug(struct blk_plug *); 1196 extern void blk_finish_plug(struct blk_plug *); 1197 extern void blk_flush_plug_list(struct blk_plug *, bool); 1198 1199 static inline void blk_flush_plug(struct task_struct *tsk) 1200 { 1201 struct blk_plug *plug = tsk->plug; 1202 1203 if (plug) 1204 blk_flush_plug_list(plug, false); 1205 } 1206 1207 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1208 { 1209 struct blk_plug *plug = tsk->plug; 1210 1211 if (plug) 1212 blk_flush_plug_list(plug, true); 1213 } 1214 1215 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1216 { 1217 struct blk_plug *plug = tsk->plug; 1218 1219 return plug && 1220 (!list_empty(&plug->mq_list) || 1221 !list_empty(&plug->cb_list)); 1222 } 1223 1224 int blkdev_issue_flush(struct block_device *, gfp_t); 1225 long nr_blockdev_pages(void); 1226 #else /* CONFIG_BLOCK */ 1227 struct blk_plug { 1228 }; 1229 1230 static inline void blk_start_plug(struct blk_plug *plug) 1231 { 1232 } 1233 1234 static inline void blk_finish_plug(struct blk_plug *plug) 1235 { 1236 } 1237 1238 static inline void blk_flush_plug(struct task_struct *task) 1239 { 1240 } 1241 1242 static inline void blk_schedule_flush_plug(struct task_struct *task) 1243 { 1244 } 1245 1246 1247 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1248 { 1249 return false; 1250 } 1251 1252 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1253 { 1254 return 0; 1255 } 1256 1257 static inline long nr_blockdev_pages(void) 1258 { 1259 return 0; 1260 } 1261 #endif /* CONFIG_BLOCK */ 1262 1263 extern void blk_io_schedule(void); 1264 1265 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1266 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1267 1268 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1269 1270 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1271 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1272 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1273 sector_t nr_sects, gfp_t gfp_mask, int flags, 1274 struct bio **biop); 1275 1276 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1277 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1278 1279 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1280 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1281 unsigned flags); 1282 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1283 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1284 1285 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1286 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1287 { 1288 return blkdev_issue_discard(sb->s_bdev, 1289 block << (sb->s_blocksize_bits - 1290 SECTOR_SHIFT), 1291 nr_blocks << (sb->s_blocksize_bits - 1292 SECTOR_SHIFT), 1293 gfp_mask, flags); 1294 } 1295 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1296 sector_t nr_blocks, gfp_t gfp_mask) 1297 { 1298 return blkdev_issue_zeroout(sb->s_bdev, 1299 block << (sb->s_blocksize_bits - 1300 SECTOR_SHIFT), 1301 nr_blocks << (sb->s_blocksize_bits - 1302 SECTOR_SHIFT), 1303 gfp_mask, 0); 1304 } 1305 1306 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1307 1308 enum blk_default_limits { 1309 BLK_MAX_SEGMENTS = 128, 1310 BLK_SAFE_MAX_SECTORS = 255, 1311 BLK_DEF_MAX_SECTORS = 2560, 1312 BLK_MAX_SEGMENT_SIZE = 65536, 1313 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1314 }; 1315 1316 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1317 { 1318 return q->limits.seg_boundary_mask; 1319 } 1320 1321 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1322 { 1323 return q->limits.virt_boundary_mask; 1324 } 1325 1326 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1327 { 1328 return q->limits.max_sectors; 1329 } 1330 1331 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1332 { 1333 return q->limits.max_hw_sectors; 1334 } 1335 1336 static inline unsigned short queue_max_segments(const struct request_queue *q) 1337 { 1338 return q->limits.max_segments; 1339 } 1340 1341 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1342 { 1343 return q->limits.max_discard_segments; 1344 } 1345 1346 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1347 { 1348 return q->limits.max_segment_size; 1349 } 1350 1351 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1352 { 1353 return q->limits.max_zone_append_sectors; 1354 } 1355 1356 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1357 { 1358 int retval = 512; 1359 1360 if (q && q->limits.logical_block_size) 1361 retval = q->limits.logical_block_size; 1362 1363 return retval; 1364 } 1365 1366 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1367 { 1368 return queue_logical_block_size(bdev_get_queue(bdev)); 1369 } 1370 1371 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1372 { 1373 return q->limits.physical_block_size; 1374 } 1375 1376 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1377 { 1378 return queue_physical_block_size(bdev_get_queue(bdev)); 1379 } 1380 1381 static inline unsigned int queue_io_min(const struct request_queue *q) 1382 { 1383 return q->limits.io_min; 1384 } 1385 1386 static inline int bdev_io_min(struct block_device *bdev) 1387 { 1388 return queue_io_min(bdev_get_queue(bdev)); 1389 } 1390 1391 static inline unsigned int queue_io_opt(const struct request_queue *q) 1392 { 1393 return q->limits.io_opt; 1394 } 1395 1396 static inline int bdev_io_opt(struct block_device *bdev) 1397 { 1398 return queue_io_opt(bdev_get_queue(bdev)); 1399 } 1400 1401 static inline int queue_alignment_offset(const struct request_queue *q) 1402 { 1403 if (q->limits.misaligned) 1404 return -1; 1405 1406 return q->limits.alignment_offset; 1407 } 1408 1409 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1410 { 1411 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1412 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1413 << SECTOR_SHIFT; 1414 1415 return (granularity + lim->alignment_offset - alignment) % granularity; 1416 } 1417 1418 static inline int bdev_alignment_offset(struct block_device *bdev) 1419 { 1420 struct request_queue *q = bdev_get_queue(bdev); 1421 1422 if (q->limits.misaligned) 1423 return -1; 1424 1425 if (bdev != bdev->bd_contains) 1426 return bdev->bd_part->alignment_offset; 1427 1428 return q->limits.alignment_offset; 1429 } 1430 1431 static inline int queue_discard_alignment(const struct request_queue *q) 1432 { 1433 if (q->limits.discard_misaligned) 1434 return -1; 1435 1436 return q->limits.discard_alignment; 1437 } 1438 1439 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1440 { 1441 unsigned int alignment, granularity, offset; 1442 1443 if (!lim->max_discard_sectors) 1444 return 0; 1445 1446 /* Why are these in bytes, not sectors? */ 1447 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1448 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1449 if (!granularity) 1450 return 0; 1451 1452 /* Offset of the partition start in 'granularity' sectors */ 1453 offset = sector_div(sector, granularity); 1454 1455 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1456 offset = (granularity + alignment - offset) % granularity; 1457 1458 /* Turn it back into bytes, gaah */ 1459 return offset << SECTOR_SHIFT; 1460 } 1461 1462 static inline int bdev_discard_alignment(struct block_device *bdev) 1463 { 1464 struct request_queue *q = bdev_get_queue(bdev); 1465 1466 if (bdev != bdev->bd_contains) 1467 return bdev->bd_part->discard_alignment; 1468 1469 return q->limits.discard_alignment; 1470 } 1471 1472 static inline unsigned int bdev_write_same(struct block_device *bdev) 1473 { 1474 struct request_queue *q = bdev_get_queue(bdev); 1475 1476 if (q) 1477 return q->limits.max_write_same_sectors; 1478 1479 return 0; 1480 } 1481 1482 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1483 { 1484 struct request_queue *q = bdev_get_queue(bdev); 1485 1486 if (q) 1487 return q->limits.max_write_zeroes_sectors; 1488 1489 return 0; 1490 } 1491 1492 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1493 { 1494 struct request_queue *q = bdev_get_queue(bdev); 1495 1496 if (q) 1497 return blk_queue_zoned_model(q); 1498 1499 return BLK_ZONED_NONE; 1500 } 1501 1502 static inline bool bdev_is_zoned(struct block_device *bdev) 1503 { 1504 struct request_queue *q = bdev_get_queue(bdev); 1505 1506 if (q) 1507 return blk_queue_is_zoned(q); 1508 1509 return false; 1510 } 1511 1512 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1513 { 1514 struct request_queue *q = bdev_get_queue(bdev); 1515 1516 if (q) 1517 return blk_queue_zone_sectors(q); 1518 return 0; 1519 } 1520 1521 static inline int queue_dma_alignment(const struct request_queue *q) 1522 { 1523 return q ? q->dma_alignment : 511; 1524 } 1525 1526 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1527 unsigned int len) 1528 { 1529 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1530 return !(addr & alignment) && !(len & alignment); 1531 } 1532 1533 /* assumes size > 256 */ 1534 static inline unsigned int blksize_bits(unsigned int size) 1535 { 1536 unsigned int bits = 8; 1537 do { 1538 bits++; 1539 size >>= 1; 1540 } while (size > 256); 1541 return bits; 1542 } 1543 1544 static inline unsigned int block_size(struct block_device *bdev) 1545 { 1546 return 1 << bdev->bd_inode->i_blkbits; 1547 } 1548 1549 int kblockd_schedule_work(struct work_struct *work); 1550 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1551 1552 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1553 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1554 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1555 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1556 1557 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1558 1559 enum blk_integrity_flags { 1560 BLK_INTEGRITY_VERIFY = 1 << 0, 1561 BLK_INTEGRITY_GENERATE = 1 << 1, 1562 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1563 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1564 }; 1565 1566 struct blk_integrity_iter { 1567 void *prot_buf; 1568 void *data_buf; 1569 sector_t seed; 1570 unsigned int data_size; 1571 unsigned short interval; 1572 const char *disk_name; 1573 }; 1574 1575 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1576 typedef void (integrity_prepare_fn) (struct request *); 1577 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1578 1579 struct blk_integrity_profile { 1580 integrity_processing_fn *generate_fn; 1581 integrity_processing_fn *verify_fn; 1582 integrity_prepare_fn *prepare_fn; 1583 integrity_complete_fn *complete_fn; 1584 const char *name; 1585 }; 1586 1587 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1588 extern void blk_integrity_unregister(struct gendisk *); 1589 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1590 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1591 struct scatterlist *); 1592 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1593 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1594 struct request *); 1595 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1596 struct bio *); 1597 1598 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1599 { 1600 struct blk_integrity *bi = &disk->queue->integrity; 1601 1602 if (!bi->profile) 1603 return NULL; 1604 1605 return bi; 1606 } 1607 1608 static inline 1609 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1610 { 1611 return blk_get_integrity(bdev->bd_disk); 1612 } 1613 1614 static inline bool 1615 blk_integrity_queue_supports_integrity(struct request_queue *q) 1616 { 1617 return q->integrity.profile; 1618 } 1619 1620 static inline bool blk_integrity_rq(struct request *rq) 1621 { 1622 return rq->cmd_flags & REQ_INTEGRITY; 1623 } 1624 1625 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1626 unsigned int segs) 1627 { 1628 q->limits.max_integrity_segments = segs; 1629 } 1630 1631 static inline unsigned short 1632 queue_max_integrity_segments(const struct request_queue *q) 1633 { 1634 return q->limits.max_integrity_segments; 1635 } 1636 1637 /** 1638 * bio_integrity_intervals - Return number of integrity intervals for a bio 1639 * @bi: blk_integrity profile for device 1640 * @sectors: Size of the bio in 512-byte sectors 1641 * 1642 * Description: The block layer calculates everything in 512 byte 1643 * sectors but integrity metadata is done in terms of the data integrity 1644 * interval size of the storage device. Convert the block layer sectors 1645 * to the appropriate number of integrity intervals. 1646 */ 1647 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1648 unsigned int sectors) 1649 { 1650 return sectors >> (bi->interval_exp - 9); 1651 } 1652 1653 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1654 unsigned int sectors) 1655 { 1656 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1657 } 1658 1659 /* 1660 * Return the first bvec that contains integrity data. Only drivers that are 1661 * limited to a single integrity segment should use this helper. 1662 */ 1663 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1664 { 1665 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1666 return NULL; 1667 return rq->bio->bi_integrity->bip_vec; 1668 } 1669 1670 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1671 1672 struct bio; 1673 struct block_device; 1674 struct gendisk; 1675 struct blk_integrity; 1676 1677 static inline int blk_integrity_rq(struct request *rq) 1678 { 1679 return 0; 1680 } 1681 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1682 struct bio *b) 1683 { 1684 return 0; 1685 } 1686 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1687 struct bio *b, 1688 struct scatterlist *s) 1689 { 1690 return 0; 1691 } 1692 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1693 { 1694 return NULL; 1695 } 1696 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1697 { 1698 return NULL; 1699 } 1700 static inline bool 1701 blk_integrity_queue_supports_integrity(struct request_queue *q) 1702 { 1703 return false; 1704 } 1705 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1706 { 1707 return 0; 1708 } 1709 static inline void blk_integrity_register(struct gendisk *d, 1710 struct blk_integrity *b) 1711 { 1712 } 1713 static inline void blk_integrity_unregister(struct gendisk *d) 1714 { 1715 } 1716 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1717 unsigned int segs) 1718 { 1719 } 1720 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1721 { 1722 return 0; 1723 } 1724 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1725 struct request *r1, 1726 struct request *r2) 1727 { 1728 return true; 1729 } 1730 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1731 struct request *r, 1732 struct bio *b) 1733 { 1734 return true; 1735 } 1736 1737 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1738 unsigned int sectors) 1739 { 1740 return 0; 1741 } 1742 1743 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1744 unsigned int sectors) 1745 { 1746 return 0; 1747 } 1748 1749 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1750 { 1751 return NULL; 1752 } 1753 1754 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1755 1756 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1757 1758 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1759 1760 void blk_ksm_unregister(struct request_queue *q); 1761 1762 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1763 1764 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1765 struct request_queue *q) 1766 { 1767 return true; 1768 } 1769 1770 static inline void blk_ksm_unregister(struct request_queue *q) { } 1771 1772 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1773 1774 1775 struct block_device_operations { 1776 blk_qc_t (*submit_bio) (struct bio *bio); 1777 int (*open) (struct block_device *, fmode_t); 1778 void (*release) (struct gendisk *, fmode_t); 1779 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1780 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1781 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1782 unsigned int (*check_events) (struct gendisk *disk, 1783 unsigned int clearing); 1784 void (*unlock_native_capacity) (struct gendisk *); 1785 int (*revalidate_disk) (struct gendisk *); 1786 int (*getgeo)(struct block_device *, struct hd_geometry *); 1787 /* this callback is with swap_lock and sometimes page table lock held */ 1788 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1789 int (*report_zones)(struct gendisk *, sector_t sector, 1790 unsigned int nr_zones, report_zones_cb cb, void *data); 1791 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1792 struct module *owner; 1793 const struct pr_ops *pr_ops; 1794 }; 1795 1796 #ifdef CONFIG_COMPAT 1797 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1798 unsigned int, unsigned long); 1799 #else 1800 #define blkdev_compat_ptr_ioctl NULL 1801 #endif 1802 1803 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1804 unsigned long); 1805 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1806 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1807 struct writeback_control *); 1808 1809 #ifdef CONFIG_BLK_DEV_ZONED 1810 bool blk_req_needs_zone_write_lock(struct request *rq); 1811 bool blk_req_zone_write_trylock(struct request *rq); 1812 void __blk_req_zone_write_lock(struct request *rq); 1813 void __blk_req_zone_write_unlock(struct request *rq); 1814 1815 static inline void blk_req_zone_write_lock(struct request *rq) 1816 { 1817 if (blk_req_needs_zone_write_lock(rq)) 1818 __blk_req_zone_write_lock(rq); 1819 } 1820 1821 static inline void blk_req_zone_write_unlock(struct request *rq) 1822 { 1823 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1824 __blk_req_zone_write_unlock(rq); 1825 } 1826 1827 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1828 { 1829 return rq->q->seq_zones_wlock && 1830 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1831 } 1832 1833 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1834 { 1835 if (!blk_req_needs_zone_write_lock(rq)) 1836 return true; 1837 return !blk_req_zone_is_write_locked(rq); 1838 } 1839 #else 1840 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1841 { 1842 return false; 1843 } 1844 1845 static inline void blk_req_zone_write_lock(struct request *rq) 1846 { 1847 } 1848 1849 static inline void blk_req_zone_write_unlock(struct request *rq) 1850 { 1851 } 1852 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1853 { 1854 return false; 1855 } 1856 1857 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1858 { 1859 return true; 1860 } 1861 #endif /* CONFIG_BLK_DEV_ZONED */ 1862 1863 static inline void blk_wake_io_task(struct task_struct *waiter) 1864 { 1865 /* 1866 * If we're polling, the task itself is doing the completions. For 1867 * that case, we don't need to signal a wakeup, it's enough to just 1868 * mark us as RUNNING. 1869 */ 1870 if (waiter == current) 1871 __set_current_state(TASK_RUNNING); 1872 else 1873 wake_up_process(waiter); 1874 } 1875 1876 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1877 unsigned int op); 1878 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1879 unsigned long start_time); 1880 1881 /** 1882 * bio_start_io_acct - start I/O accounting for bio based drivers 1883 * @bio: bio to start account for 1884 * 1885 * Returns the start time that should be passed back to bio_end_io_acct(). 1886 */ 1887 static inline unsigned long bio_start_io_acct(struct bio *bio) 1888 { 1889 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1890 } 1891 1892 /** 1893 * bio_end_io_acct - end I/O accounting for bio based drivers 1894 * @bio: bio to end account for 1895 * @start: start time returned by bio_start_io_acct() 1896 */ 1897 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1898 { 1899 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1900 } 1901 1902 int bdev_read_only(struct block_device *bdev); 1903 int set_blocksize(struct block_device *bdev, int size); 1904 1905 const char *bdevname(struct block_device *bdev, char *buffer); 1906 struct block_device *lookup_bdev(const char *); 1907 1908 void blkdev_show(struct seq_file *seqf, off_t offset); 1909 1910 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1911 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1912 #ifdef CONFIG_BLOCK 1913 #define BLKDEV_MAJOR_MAX 512 1914 #else 1915 #define BLKDEV_MAJOR_MAX 0 1916 #endif 1917 1918 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder); 1919 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1920 void *holder); 1921 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1922 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1923 void *holder); 1924 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1925 void *holder); 1926 void blkdev_put(struct block_device *bdev, fmode_t mode); 1927 1928 struct block_device *I_BDEV(struct inode *inode); 1929 struct block_device *bdget(dev_t); 1930 struct block_device *bdgrab(struct block_device *bdev); 1931 void bdput(struct block_device *); 1932 1933 #ifdef CONFIG_BLOCK 1934 void invalidate_bdev(struct block_device *bdev); 1935 int sync_blockdev(struct block_device *bdev); 1936 #else 1937 static inline void invalidate_bdev(struct block_device *bdev) 1938 { 1939 } 1940 static inline int sync_blockdev(struct block_device *bdev) 1941 { 1942 return 0; 1943 } 1944 #endif 1945 int fsync_bdev(struct block_device *bdev); 1946 1947 struct super_block *freeze_bdev(struct block_device *bdev); 1948 int thaw_bdev(struct block_device *bdev, struct super_block *sb); 1949 1950 #endif /* _LINUX_BLKDEV_H */ 1951