1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/uuid.h> 26 #include <linux/xarray.h> 27 28 struct module; 29 struct request_queue; 30 struct elevator_queue; 31 struct blk_trace; 32 struct request; 33 struct sg_io_hdr; 34 struct blkcg_gq; 35 struct blk_flush_queue; 36 struct kiocb; 37 struct pr_ops; 38 struct rq_qos; 39 struct blk_queue_stats; 40 struct blk_stat_callback; 41 struct blk_crypto_profile; 42 43 extern const struct device_type disk_type; 44 extern struct device_type part_type; 45 extern struct class block_class; 46 47 /* 48 * Maximum number of blkcg policies allowed to be registered concurrently. 49 * Defined here to simplify include dependency. 50 */ 51 #define BLKCG_MAX_POLS 6 52 53 #define DISK_MAX_PARTS 256 54 #define DISK_NAME_LEN 32 55 56 #define PARTITION_META_INFO_VOLNAMELTH 64 57 /* 58 * Enough for the string representation of any kind of UUID plus NULL. 59 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 60 */ 61 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 62 63 struct partition_meta_info { 64 char uuid[PARTITION_META_INFO_UUIDLTH]; 65 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 66 }; 67 68 /** 69 * DOC: genhd capability flags 70 * 71 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 72 * removable media. When set, the device remains present even when media is not 73 * inserted. Shall not be set for devices which are removed entirely when the 74 * media is removed. 75 * 76 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 77 * doesn't appear in sysfs, and can't be opened from userspace or using 78 * blkdev_get*. Used for the underlying components of multipath devices. 79 * 80 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 81 * scan for partitions from add_disk, and users can't add partitions manually. 82 * 83 */ 84 enum { 85 GENHD_FL_REMOVABLE = 1 << 0, 86 GENHD_FL_HIDDEN = 1 << 1, 87 GENHD_FL_NO_PART = 1 << 2, 88 }; 89 90 enum { 91 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 92 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 93 }; 94 95 enum { 96 /* Poll even if events_poll_msecs is unset */ 97 DISK_EVENT_FLAG_POLL = 1 << 0, 98 /* Forward events to udev */ 99 DISK_EVENT_FLAG_UEVENT = 1 << 1, 100 /* Block event polling when open for exclusive write */ 101 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 102 }; 103 104 struct disk_events; 105 struct badblocks; 106 107 struct blk_integrity { 108 const struct blk_integrity_profile *profile; 109 unsigned char flags; 110 unsigned char tuple_size; 111 unsigned char interval_exp; 112 unsigned char tag_size; 113 }; 114 115 struct gendisk { 116 /* 117 * major/first_minor/minors should not be set by any new driver, the 118 * block core will take care of allocating them automatically. 119 */ 120 int major; 121 int first_minor; 122 int minors; 123 124 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 125 126 unsigned short events; /* supported events */ 127 unsigned short event_flags; /* flags related to event processing */ 128 129 struct xarray part_tbl; 130 struct block_device *part0; 131 132 const struct block_device_operations *fops; 133 struct request_queue *queue; 134 void *private_data; 135 136 struct bio_set bio_split; 137 138 int flags; 139 unsigned long state; 140 #define GD_NEED_PART_SCAN 0 141 #define GD_READ_ONLY 1 142 #define GD_DEAD 2 143 #define GD_NATIVE_CAPACITY 3 144 #define GD_ADDED 4 145 #define GD_SUPPRESS_PART_SCAN 5 146 #define GD_OWNS_QUEUE 6 147 148 struct mutex open_mutex; /* open/close mutex */ 149 unsigned open_partitions; /* number of open partitions */ 150 151 struct backing_dev_info *bdi; 152 struct kobject queue_kobj; /* the queue/ directory */ 153 struct kobject *slave_dir; 154 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 155 struct list_head slave_bdevs; 156 #endif 157 struct timer_rand_state *random; 158 atomic_t sync_io; /* RAID */ 159 struct disk_events *ev; 160 #ifdef CONFIG_BLK_DEV_INTEGRITY 161 struct kobject integrity_kobj; 162 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 163 164 #ifdef CONFIG_BLK_DEV_ZONED 165 /* 166 * Zoned block device information for request dispatch control. 167 * nr_zones is the total number of zones of the device. This is always 168 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 169 * bits which indicates if a zone is conventional (bit set) or 170 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 171 * bits which indicates if a zone is write locked, that is, if a write 172 * request targeting the zone was dispatched. 173 * 174 * Reads of this information must be protected with blk_queue_enter() / 175 * blk_queue_exit(). Modifying this information is only allowed while 176 * no requests are being processed. See also blk_mq_freeze_queue() and 177 * blk_mq_unfreeze_queue(). 178 */ 179 unsigned int nr_zones; 180 unsigned int max_open_zones; 181 unsigned int max_active_zones; 182 unsigned long *conv_zones_bitmap; 183 unsigned long *seq_zones_wlock; 184 #endif /* CONFIG_BLK_DEV_ZONED */ 185 186 #if IS_ENABLED(CONFIG_CDROM) 187 struct cdrom_device_info *cdi; 188 #endif 189 int node_id; 190 struct badblocks *bb; 191 struct lockdep_map lockdep_map; 192 u64 diskseq; 193 194 /* 195 * Independent sector access ranges. This is always NULL for 196 * devices that do not have multiple independent access ranges. 197 */ 198 struct blk_independent_access_ranges *ia_ranges; 199 }; 200 201 static inline bool disk_live(struct gendisk *disk) 202 { 203 return !inode_unhashed(disk->part0->bd_inode); 204 } 205 206 /** 207 * disk_openers - returns how many openers are there for a disk 208 * @disk: disk to check 209 * 210 * This returns the number of openers for a disk. Note that this value is only 211 * stable if disk->open_mutex is held. 212 * 213 * Note: Due to a quirk in the block layer open code, each open partition is 214 * only counted once even if there are multiple openers. 215 */ 216 static inline unsigned int disk_openers(struct gendisk *disk) 217 { 218 return atomic_read(&disk->part0->bd_openers); 219 } 220 221 /* 222 * The gendisk is refcounted by the part0 block_device, and the bd_device 223 * therein is also used for device model presentation in sysfs. 224 */ 225 #define dev_to_disk(device) \ 226 (dev_to_bdev(device)->bd_disk) 227 #define disk_to_dev(disk) \ 228 (&((disk)->part0->bd_device)) 229 230 #if IS_REACHABLE(CONFIG_CDROM) 231 #define disk_to_cdi(disk) ((disk)->cdi) 232 #else 233 #define disk_to_cdi(disk) NULL 234 #endif 235 236 static inline dev_t disk_devt(struct gendisk *disk) 237 { 238 return MKDEV(disk->major, disk->first_minor); 239 } 240 241 static inline int blk_validate_block_size(unsigned long bsize) 242 { 243 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 244 return -EINVAL; 245 246 return 0; 247 } 248 249 static inline bool blk_op_is_passthrough(blk_opf_t op) 250 { 251 op &= REQ_OP_MASK; 252 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 253 } 254 255 /* 256 * Zoned block device models (zoned limit). 257 * 258 * Note: This needs to be ordered from the least to the most severe 259 * restrictions for the inheritance in blk_stack_limits() to work. 260 */ 261 enum blk_zoned_model { 262 BLK_ZONED_NONE = 0, /* Regular block device */ 263 BLK_ZONED_HA, /* Host-aware zoned block device */ 264 BLK_ZONED_HM, /* Host-managed zoned block device */ 265 }; 266 267 /* 268 * BLK_BOUNCE_NONE: never bounce (default) 269 * BLK_BOUNCE_HIGH: bounce all highmem pages 270 */ 271 enum blk_bounce { 272 BLK_BOUNCE_NONE, 273 BLK_BOUNCE_HIGH, 274 }; 275 276 struct queue_limits { 277 enum blk_bounce bounce; 278 unsigned long seg_boundary_mask; 279 unsigned long virt_boundary_mask; 280 281 unsigned int max_hw_sectors; 282 unsigned int max_dev_sectors; 283 unsigned int chunk_sectors; 284 unsigned int max_sectors; 285 unsigned int max_user_sectors; 286 unsigned int max_segment_size; 287 unsigned int physical_block_size; 288 unsigned int logical_block_size; 289 unsigned int alignment_offset; 290 unsigned int io_min; 291 unsigned int io_opt; 292 unsigned int max_discard_sectors; 293 unsigned int max_hw_discard_sectors; 294 unsigned int max_secure_erase_sectors; 295 unsigned int max_write_zeroes_sectors; 296 unsigned int max_zone_append_sectors; 297 unsigned int discard_granularity; 298 unsigned int discard_alignment; 299 unsigned int zone_write_granularity; 300 301 unsigned short max_segments; 302 unsigned short max_integrity_segments; 303 unsigned short max_discard_segments; 304 305 unsigned char misaligned; 306 unsigned char discard_misaligned; 307 unsigned char raid_partial_stripes_expensive; 308 enum blk_zoned_model zoned; 309 310 /* 311 * Drivers that set dma_alignment to less than 511 must be prepared to 312 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 313 * due to possible offsets. 314 */ 315 unsigned int dma_alignment; 316 }; 317 318 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 319 void *data); 320 321 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 322 323 #ifdef CONFIG_BLK_DEV_ZONED 324 325 #define BLK_ALL_ZONES ((unsigned int)-1) 326 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 327 unsigned int nr_zones, report_zones_cb cb, void *data); 328 unsigned int bdev_nr_zones(struct block_device *bdev); 329 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 330 sector_t sectors, sector_t nr_sectors, 331 gfp_t gfp_mask); 332 int blk_revalidate_disk_zones(struct gendisk *disk, 333 void (*update_driver_data)(struct gendisk *disk)); 334 335 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 336 unsigned int cmd, unsigned long arg); 337 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 338 unsigned int cmd, unsigned long arg); 339 340 #else /* CONFIG_BLK_DEV_ZONED */ 341 342 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 343 { 344 return 0; 345 } 346 347 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 348 fmode_t mode, unsigned int cmd, 349 unsigned long arg) 350 { 351 return -ENOTTY; 352 } 353 354 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 355 fmode_t mode, unsigned int cmd, 356 unsigned long arg) 357 { 358 return -ENOTTY; 359 } 360 361 #endif /* CONFIG_BLK_DEV_ZONED */ 362 363 /* 364 * Independent access ranges: struct blk_independent_access_range describes 365 * a range of contiguous sectors that can be accessed using device command 366 * execution resources that are independent from the resources used for 367 * other access ranges. This is typically found with single-LUN multi-actuator 368 * HDDs where each access range is served by a different set of heads. 369 * The set of independent ranges supported by the device is defined using 370 * struct blk_independent_access_ranges. The independent ranges must not overlap 371 * and must include all sectors within the disk capacity (no sector holes 372 * allowed). 373 * For a device with multiple ranges, requests targeting sectors in different 374 * ranges can be executed in parallel. A request can straddle an access range 375 * boundary. 376 */ 377 struct blk_independent_access_range { 378 struct kobject kobj; 379 sector_t sector; 380 sector_t nr_sectors; 381 }; 382 383 struct blk_independent_access_ranges { 384 struct kobject kobj; 385 bool sysfs_registered; 386 unsigned int nr_ia_ranges; 387 struct blk_independent_access_range ia_range[]; 388 }; 389 390 struct request_queue { 391 struct request *last_merge; 392 struct elevator_queue *elevator; 393 394 struct percpu_ref q_usage_counter; 395 396 struct blk_queue_stats *stats; 397 struct rq_qos *rq_qos; 398 399 const struct blk_mq_ops *mq_ops; 400 401 /* sw queues */ 402 struct blk_mq_ctx __percpu *queue_ctx; 403 404 unsigned int queue_depth; 405 406 /* hw dispatch queues */ 407 struct xarray hctx_table; 408 unsigned int nr_hw_queues; 409 410 /* 411 * The queue owner gets to use this for whatever they like. 412 * ll_rw_blk doesn't touch it. 413 */ 414 void *queuedata; 415 416 /* 417 * various queue flags, see QUEUE_* below 418 */ 419 unsigned long queue_flags; 420 /* 421 * Number of contexts that have called blk_set_pm_only(). If this 422 * counter is above zero then only RQF_PM requests are processed. 423 */ 424 atomic_t pm_only; 425 426 /* 427 * ida allocated id for this queue. Used to index queues from 428 * ioctx. 429 */ 430 int id; 431 432 spinlock_t queue_lock; 433 434 struct gendisk *disk; 435 436 refcount_t refs; 437 438 /* 439 * mq queue kobject 440 */ 441 struct kobject *mq_kobj; 442 443 #ifdef CONFIG_BLK_DEV_INTEGRITY 444 struct blk_integrity integrity; 445 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 446 447 #ifdef CONFIG_PM 448 struct device *dev; 449 enum rpm_status rpm_status; 450 #endif 451 452 /* 453 * queue settings 454 */ 455 unsigned long nr_requests; /* Max # of requests */ 456 457 unsigned int dma_pad_mask; 458 459 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 460 struct blk_crypto_profile *crypto_profile; 461 struct kobject *crypto_kobject; 462 #endif 463 464 unsigned int rq_timeout; 465 466 struct timer_list timeout; 467 struct work_struct timeout_work; 468 469 atomic_t nr_active_requests_shared_tags; 470 471 struct blk_mq_tags *sched_shared_tags; 472 473 struct list_head icq_list; 474 #ifdef CONFIG_BLK_CGROUP 475 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 476 struct blkcg_gq *root_blkg; 477 struct list_head blkg_list; 478 struct mutex blkcg_mutex; 479 #endif 480 481 struct queue_limits limits; 482 483 unsigned int required_elevator_features; 484 485 int node; 486 #ifdef CONFIG_BLK_DEV_IO_TRACE 487 struct blk_trace __rcu *blk_trace; 488 #endif 489 /* 490 * for flush operations 491 */ 492 struct blk_flush_queue *fq; 493 494 struct list_head requeue_list; 495 spinlock_t requeue_lock; 496 struct delayed_work requeue_work; 497 498 struct mutex sysfs_lock; 499 struct mutex sysfs_dir_lock; 500 501 /* 502 * for reusing dead hctx instance in case of updating 503 * nr_hw_queues 504 */ 505 struct list_head unused_hctx_list; 506 spinlock_t unused_hctx_lock; 507 508 int mq_freeze_depth; 509 510 #ifdef CONFIG_BLK_DEV_THROTTLING 511 /* Throttle data */ 512 struct throtl_data *td; 513 #endif 514 struct rcu_head rcu_head; 515 wait_queue_head_t mq_freeze_wq; 516 /* 517 * Protect concurrent access to q_usage_counter by 518 * percpu_ref_kill() and percpu_ref_reinit(). 519 */ 520 struct mutex mq_freeze_lock; 521 522 int quiesce_depth; 523 524 struct blk_mq_tag_set *tag_set; 525 struct list_head tag_set_list; 526 527 struct dentry *debugfs_dir; 528 struct dentry *sched_debugfs_dir; 529 struct dentry *rqos_debugfs_dir; 530 /* 531 * Serializes all debugfs metadata operations using the above dentries. 532 */ 533 struct mutex debugfs_mutex; 534 535 bool mq_sysfs_init_done; 536 }; 537 538 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 539 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 540 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 541 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 542 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 543 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 544 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 545 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 546 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 547 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 548 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 549 #define QUEUE_FLAG_SYNCHRONOUS 11 /* always completes in submit context */ 550 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 551 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 552 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 553 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 554 #define QUEUE_FLAG_WC 17 /* Write back caching */ 555 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 556 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 557 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 558 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 559 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 560 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 561 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 562 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 563 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 564 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 565 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 566 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE 31 /* quiesce_tagset skip the queue*/ 567 568 #define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \ 569 (1UL << QUEUE_FLAG_SAME_COMP) | \ 570 (1UL << QUEUE_FLAG_NOWAIT)) 571 572 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 573 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 574 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 575 576 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 577 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 578 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 579 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 580 #define blk_queue_noxmerges(q) \ 581 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 582 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 583 #define blk_queue_stable_writes(q) \ 584 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 585 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 586 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 587 #define blk_queue_zone_resetall(q) \ 588 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 589 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 590 #define blk_queue_pci_p2pdma(q) \ 591 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 592 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 593 #define blk_queue_rq_alloc_time(q) \ 594 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 595 #else 596 #define blk_queue_rq_alloc_time(q) false 597 #endif 598 599 #define blk_noretry_request(rq) \ 600 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 601 REQ_FAILFAST_DRIVER)) 602 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 603 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 604 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 605 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 606 #define blk_queue_skip_tagset_quiesce(q) \ 607 test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags) 608 609 extern void blk_set_pm_only(struct request_queue *q); 610 extern void blk_clear_pm_only(struct request_queue *q); 611 612 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 613 614 #define dma_map_bvec(dev, bv, dir, attrs) \ 615 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 616 (dir), (attrs)) 617 618 static inline bool queue_is_mq(struct request_queue *q) 619 { 620 return q->mq_ops; 621 } 622 623 #ifdef CONFIG_PM 624 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 625 { 626 return q->rpm_status; 627 } 628 #else 629 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 630 { 631 return RPM_ACTIVE; 632 } 633 #endif 634 635 static inline enum blk_zoned_model 636 blk_queue_zoned_model(struct request_queue *q) 637 { 638 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 639 return q->limits.zoned; 640 return BLK_ZONED_NONE; 641 } 642 643 static inline bool blk_queue_is_zoned(struct request_queue *q) 644 { 645 switch (blk_queue_zoned_model(q)) { 646 case BLK_ZONED_HA: 647 case BLK_ZONED_HM: 648 return true; 649 default: 650 return false; 651 } 652 } 653 654 #ifdef CONFIG_BLK_DEV_ZONED 655 static inline unsigned int disk_nr_zones(struct gendisk *disk) 656 { 657 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0; 658 } 659 660 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 661 { 662 if (!blk_queue_is_zoned(disk->queue)) 663 return 0; 664 return sector >> ilog2(disk->queue->limits.chunk_sectors); 665 } 666 667 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 668 { 669 if (!blk_queue_is_zoned(disk->queue)) 670 return false; 671 if (!disk->conv_zones_bitmap) 672 return true; 673 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 674 } 675 676 static inline void disk_set_max_open_zones(struct gendisk *disk, 677 unsigned int max_open_zones) 678 { 679 disk->max_open_zones = max_open_zones; 680 } 681 682 static inline void disk_set_max_active_zones(struct gendisk *disk, 683 unsigned int max_active_zones) 684 { 685 disk->max_active_zones = max_active_zones; 686 } 687 688 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 689 { 690 return bdev->bd_disk->max_open_zones; 691 } 692 693 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 694 { 695 return bdev->bd_disk->max_active_zones; 696 } 697 698 #else /* CONFIG_BLK_DEV_ZONED */ 699 static inline unsigned int disk_nr_zones(struct gendisk *disk) 700 { 701 return 0; 702 } 703 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 704 { 705 return false; 706 } 707 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 708 { 709 return 0; 710 } 711 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 712 { 713 return 0; 714 } 715 716 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 717 { 718 return 0; 719 } 720 #endif /* CONFIG_BLK_DEV_ZONED */ 721 722 static inline unsigned int blk_queue_depth(struct request_queue *q) 723 { 724 if (q->queue_depth) 725 return q->queue_depth; 726 727 return q->nr_requests; 728 } 729 730 /* 731 * default timeout for SG_IO if none specified 732 */ 733 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 734 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 735 736 /* This should not be used directly - use rq_for_each_segment */ 737 #define for_each_bio(_bio) \ 738 for (; _bio; _bio = _bio->bi_next) 739 740 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 741 const struct attribute_group **groups); 742 static inline int __must_check add_disk(struct gendisk *disk) 743 { 744 return device_add_disk(NULL, disk, NULL); 745 } 746 void del_gendisk(struct gendisk *gp); 747 void invalidate_disk(struct gendisk *disk); 748 void set_disk_ro(struct gendisk *disk, bool read_only); 749 void disk_uevent(struct gendisk *disk, enum kobject_action action); 750 751 static inline int get_disk_ro(struct gendisk *disk) 752 { 753 return disk->part0->bd_read_only || 754 test_bit(GD_READ_ONLY, &disk->state); 755 } 756 757 static inline int bdev_read_only(struct block_device *bdev) 758 { 759 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 760 } 761 762 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 763 bool disk_force_media_change(struct gendisk *disk, unsigned int events); 764 765 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 766 void rand_initialize_disk(struct gendisk *disk); 767 768 static inline sector_t get_start_sect(struct block_device *bdev) 769 { 770 return bdev->bd_start_sect; 771 } 772 773 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 774 { 775 return bdev->bd_nr_sectors; 776 } 777 778 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 779 { 780 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 781 } 782 783 static inline sector_t get_capacity(struct gendisk *disk) 784 { 785 return bdev_nr_sectors(disk->part0); 786 } 787 788 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 789 { 790 return bdev_nr_sectors(sb->s_bdev) >> 791 (sb->s_blocksize_bits - SECTOR_SHIFT); 792 } 793 794 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 795 796 void put_disk(struct gendisk *disk); 797 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 798 799 /** 800 * blk_alloc_disk - allocate a gendisk structure 801 * @node_id: numa node to allocate on 802 * 803 * Allocate and pre-initialize a gendisk structure for use with BIO based 804 * drivers. 805 * 806 * Context: can sleep 807 */ 808 #define blk_alloc_disk(node_id) \ 809 ({ \ 810 static struct lock_class_key __key; \ 811 \ 812 __blk_alloc_disk(node_id, &__key); \ 813 }) 814 815 int __register_blkdev(unsigned int major, const char *name, 816 void (*probe)(dev_t devt)); 817 #define register_blkdev(major, name) \ 818 __register_blkdev(major, name, NULL) 819 void unregister_blkdev(unsigned int major, const char *name); 820 821 bool bdev_check_media_change(struct block_device *bdev); 822 int __invalidate_device(struct block_device *bdev, bool kill_dirty); 823 void set_capacity(struct gendisk *disk, sector_t size); 824 825 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 826 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 827 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 828 #else 829 static inline int bd_link_disk_holder(struct block_device *bdev, 830 struct gendisk *disk) 831 { 832 return 0; 833 } 834 static inline void bd_unlink_disk_holder(struct block_device *bdev, 835 struct gendisk *disk) 836 { 837 } 838 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 839 840 dev_t part_devt(struct gendisk *disk, u8 partno); 841 void inc_diskseq(struct gendisk *disk); 842 dev_t blk_lookup_devt(const char *name, int partno); 843 void blk_request_module(dev_t devt); 844 845 extern int blk_register_queue(struct gendisk *disk); 846 extern void blk_unregister_queue(struct gendisk *disk); 847 void submit_bio_noacct(struct bio *bio); 848 struct bio *bio_split_to_limits(struct bio *bio); 849 850 extern int blk_lld_busy(struct request_queue *q); 851 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 852 extern void blk_queue_exit(struct request_queue *q); 853 extern void blk_sync_queue(struct request_queue *q); 854 855 /* Helper to convert REQ_OP_XXX to its string format XXX */ 856 extern const char *blk_op_str(enum req_op op); 857 858 int blk_status_to_errno(blk_status_t status); 859 blk_status_t errno_to_blk_status(int errno); 860 861 /* only poll the hardware once, don't continue until a completion was found */ 862 #define BLK_POLL_ONESHOT (1 << 0) 863 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 864 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 865 unsigned int flags); 866 867 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 868 { 869 return bdev->bd_queue; /* this is never NULL */ 870 } 871 872 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 873 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 874 875 static inline unsigned int bio_zone_no(struct bio *bio) 876 { 877 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 878 } 879 880 static inline unsigned int bio_zone_is_seq(struct bio *bio) 881 { 882 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 883 } 884 885 /* 886 * Return how much of the chunk is left to be used for I/O at a given offset. 887 */ 888 static inline unsigned int blk_chunk_sectors_left(sector_t offset, 889 unsigned int chunk_sectors) 890 { 891 if (unlikely(!is_power_of_2(chunk_sectors))) 892 return chunk_sectors - sector_div(offset, chunk_sectors); 893 return chunk_sectors - (offset & (chunk_sectors - 1)); 894 } 895 896 /* 897 * Access functions for manipulating queue properties 898 */ 899 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 900 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 901 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 902 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 903 extern void blk_queue_max_discard_segments(struct request_queue *, 904 unsigned short); 905 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 906 unsigned int max_sectors); 907 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 908 extern void blk_queue_max_discard_sectors(struct request_queue *q, 909 unsigned int max_discard_sectors); 910 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 911 unsigned int max_write_same_sectors); 912 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 913 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 914 unsigned int max_zone_append_sectors); 915 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 916 void blk_queue_zone_write_granularity(struct request_queue *q, 917 unsigned int size); 918 extern void blk_queue_alignment_offset(struct request_queue *q, 919 unsigned int alignment); 920 void disk_update_readahead(struct gendisk *disk); 921 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 922 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 923 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 924 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 925 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 926 extern void blk_set_stacking_limits(struct queue_limits *lim); 927 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 928 sector_t offset); 929 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 930 sector_t offset); 931 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 932 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 933 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 934 extern void blk_queue_dma_alignment(struct request_queue *, int); 935 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 936 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 937 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 938 939 struct blk_independent_access_ranges * 940 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 941 void disk_set_independent_access_ranges(struct gendisk *disk, 942 struct blk_independent_access_ranges *iars); 943 944 /* 945 * Elevator features for blk_queue_required_elevator_features: 946 */ 947 /* Supports zoned block devices sequential write constraint */ 948 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 949 950 extern void blk_queue_required_elevator_features(struct request_queue *q, 951 unsigned int features); 952 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 953 struct device *dev); 954 955 bool __must_check blk_get_queue(struct request_queue *); 956 extern void blk_put_queue(struct request_queue *); 957 958 void blk_mark_disk_dead(struct gendisk *disk); 959 960 #ifdef CONFIG_BLOCK 961 /* 962 * blk_plug permits building a queue of related requests by holding the I/O 963 * fragments for a short period. This allows merging of sequential requests 964 * into single larger request. As the requests are moved from a per-task list to 965 * the device's request_queue in a batch, this results in improved scalability 966 * as the lock contention for request_queue lock is reduced. 967 * 968 * It is ok not to disable preemption when adding the request to the plug list 969 * or when attempting a merge. For details, please see schedule() where 970 * blk_flush_plug() is called. 971 */ 972 struct blk_plug { 973 struct request *mq_list; /* blk-mq requests */ 974 975 /* if ios_left is > 1, we can batch tag/rq allocations */ 976 struct request *cached_rq; 977 unsigned short nr_ios; 978 979 unsigned short rq_count; 980 981 bool multiple_queues; 982 bool has_elevator; 983 bool nowait; 984 985 struct list_head cb_list; /* md requires an unplug callback */ 986 }; 987 988 struct blk_plug_cb; 989 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 990 struct blk_plug_cb { 991 struct list_head list; 992 blk_plug_cb_fn callback; 993 void *data; 994 }; 995 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 996 void *data, int size); 997 extern void blk_start_plug(struct blk_plug *); 998 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 999 extern void blk_finish_plug(struct blk_plug *); 1000 1001 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1002 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1003 { 1004 if (plug) 1005 __blk_flush_plug(plug, async); 1006 } 1007 1008 int blkdev_issue_flush(struct block_device *bdev); 1009 long nr_blockdev_pages(void); 1010 #else /* CONFIG_BLOCK */ 1011 struct blk_plug { 1012 }; 1013 1014 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1015 unsigned short nr_ios) 1016 { 1017 } 1018 1019 static inline void blk_start_plug(struct blk_plug *plug) 1020 { 1021 } 1022 1023 static inline void blk_finish_plug(struct blk_plug *plug) 1024 { 1025 } 1026 1027 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1028 { 1029 } 1030 1031 static inline int blkdev_issue_flush(struct block_device *bdev) 1032 { 1033 return 0; 1034 } 1035 1036 static inline long nr_blockdev_pages(void) 1037 { 1038 return 0; 1039 } 1040 #endif /* CONFIG_BLOCK */ 1041 1042 extern void blk_io_schedule(void); 1043 1044 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1045 sector_t nr_sects, gfp_t gfp_mask); 1046 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1047 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1048 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1049 sector_t nr_sects, gfp_t gfp); 1050 1051 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1052 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1053 1054 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1055 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1056 unsigned flags); 1057 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1058 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1059 1060 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1061 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1062 { 1063 return blkdev_issue_discard(sb->s_bdev, 1064 block << (sb->s_blocksize_bits - 1065 SECTOR_SHIFT), 1066 nr_blocks << (sb->s_blocksize_bits - 1067 SECTOR_SHIFT), 1068 gfp_mask); 1069 } 1070 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1071 sector_t nr_blocks, gfp_t gfp_mask) 1072 { 1073 return blkdev_issue_zeroout(sb->s_bdev, 1074 block << (sb->s_blocksize_bits - 1075 SECTOR_SHIFT), 1076 nr_blocks << (sb->s_blocksize_bits - 1077 SECTOR_SHIFT), 1078 gfp_mask, 0); 1079 } 1080 1081 static inline bool bdev_is_partition(struct block_device *bdev) 1082 { 1083 return bdev->bd_partno; 1084 } 1085 1086 enum blk_default_limits { 1087 BLK_MAX_SEGMENTS = 128, 1088 BLK_SAFE_MAX_SECTORS = 255, 1089 BLK_MAX_SEGMENT_SIZE = 65536, 1090 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1091 }; 1092 1093 #define BLK_DEF_MAX_SECTORS 2560u 1094 1095 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1096 { 1097 return q->limits.seg_boundary_mask; 1098 } 1099 1100 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1101 { 1102 return q->limits.virt_boundary_mask; 1103 } 1104 1105 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1106 { 1107 return q->limits.max_sectors; 1108 } 1109 1110 static inline unsigned int queue_max_bytes(struct request_queue *q) 1111 { 1112 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1113 } 1114 1115 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1116 { 1117 return q->limits.max_hw_sectors; 1118 } 1119 1120 static inline unsigned short queue_max_segments(const struct request_queue *q) 1121 { 1122 return q->limits.max_segments; 1123 } 1124 1125 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1126 { 1127 return q->limits.max_discard_segments; 1128 } 1129 1130 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1131 { 1132 return q->limits.max_segment_size; 1133 } 1134 1135 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1136 { 1137 1138 const struct queue_limits *l = &q->limits; 1139 1140 return min(l->max_zone_append_sectors, l->max_sectors); 1141 } 1142 1143 static inline unsigned int 1144 bdev_max_zone_append_sectors(struct block_device *bdev) 1145 { 1146 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1147 } 1148 1149 static inline unsigned int bdev_max_segments(struct block_device *bdev) 1150 { 1151 return queue_max_segments(bdev_get_queue(bdev)); 1152 } 1153 1154 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1155 { 1156 int retval = 512; 1157 1158 if (q && q->limits.logical_block_size) 1159 retval = q->limits.logical_block_size; 1160 1161 return retval; 1162 } 1163 1164 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1165 { 1166 return queue_logical_block_size(bdev_get_queue(bdev)); 1167 } 1168 1169 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1170 { 1171 return q->limits.physical_block_size; 1172 } 1173 1174 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1175 { 1176 return queue_physical_block_size(bdev_get_queue(bdev)); 1177 } 1178 1179 static inline unsigned int queue_io_min(const struct request_queue *q) 1180 { 1181 return q->limits.io_min; 1182 } 1183 1184 static inline int bdev_io_min(struct block_device *bdev) 1185 { 1186 return queue_io_min(bdev_get_queue(bdev)); 1187 } 1188 1189 static inline unsigned int queue_io_opt(const struct request_queue *q) 1190 { 1191 return q->limits.io_opt; 1192 } 1193 1194 static inline int bdev_io_opt(struct block_device *bdev) 1195 { 1196 return queue_io_opt(bdev_get_queue(bdev)); 1197 } 1198 1199 static inline unsigned int 1200 queue_zone_write_granularity(const struct request_queue *q) 1201 { 1202 return q->limits.zone_write_granularity; 1203 } 1204 1205 static inline unsigned int 1206 bdev_zone_write_granularity(struct block_device *bdev) 1207 { 1208 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1209 } 1210 1211 int bdev_alignment_offset(struct block_device *bdev); 1212 unsigned int bdev_discard_alignment(struct block_device *bdev); 1213 1214 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1215 { 1216 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1217 } 1218 1219 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1220 { 1221 return bdev_get_queue(bdev)->limits.discard_granularity; 1222 } 1223 1224 static inline unsigned int 1225 bdev_max_secure_erase_sectors(struct block_device *bdev) 1226 { 1227 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1228 } 1229 1230 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1231 { 1232 struct request_queue *q = bdev_get_queue(bdev); 1233 1234 if (q) 1235 return q->limits.max_write_zeroes_sectors; 1236 1237 return 0; 1238 } 1239 1240 static inline bool bdev_nonrot(struct block_device *bdev) 1241 { 1242 return blk_queue_nonrot(bdev_get_queue(bdev)); 1243 } 1244 1245 static inline bool bdev_synchronous(struct block_device *bdev) 1246 { 1247 return test_bit(QUEUE_FLAG_SYNCHRONOUS, 1248 &bdev_get_queue(bdev)->queue_flags); 1249 } 1250 1251 static inline bool bdev_stable_writes(struct block_device *bdev) 1252 { 1253 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1254 &bdev_get_queue(bdev)->queue_flags); 1255 } 1256 1257 static inline bool bdev_write_cache(struct block_device *bdev) 1258 { 1259 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1260 } 1261 1262 static inline bool bdev_fua(struct block_device *bdev) 1263 { 1264 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1265 } 1266 1267 static inline bool bdev_nowait(struct block_device *bdev) 1268 { 1269 return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags); 1270 } 1271 1272 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1273 { 1274 return blk_queue_zoned_model(bdev_get_queue(bdev)); 1275 } 1276 1277 static inline bool bdev_is_zoned(struct block_device *bdev) 1278 { 1279 return blk_queue_is_zoned(bdev_get_queue(bdev)); 1280 } 1281 1282 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) 1283 { 1284 return disk_zone_no(bdev->bd_disk, sec); 1285 } 1286 1287 static inline bool bdev_op_is_zoned_write(struct block_device *bdev, 1288 blk_opf_t op) 1289 { 1290 if (!bdev_is_zoned(bdev)) 1291 return false; 1292 1293 return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES; 1294 } 1295 1296 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1297 { 1298 struct request_queue *q = bdev_get_queue(bdev); 1299 1300 if (!blk_queue_is_zoned(q)) 1301 return 0; 1302 return q->limits.chunk_sectors; 1303 } 1304 1305 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, 1306 sector_t sector) 1307 { 1308 return sector & (bdev_zone_sectors(bdev) - 1); 1309 } 1310 1311 static inline bool bdev_is_zone_start(struct block_device *bdev, 1312 sector_t sector) 1313 { 1314 return bdev_offset_from_zone_start(bdev, sector) == 0; 1315 } 1316 1317 static inline int queue_dma_alignment(const struct request_queue *q) 1318 { 1319 return q ? q->limits.dma_alignment : 511; 1320 } 1321 1322 static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1323 { 1324 return queue_dma_alignment(bdev_get_queue(bdev)); 1325 } 1326 1327 static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1328 struct iov_iter *iter) 1329 { 1330 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1331 bdev_logical_block_size(bdev) - 1); 1332 } 1333 1334 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1335 unsigned int len) 1336 { 1337 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1338 return !(addr & alignment) && !(len & alignment); 1339 } 1340 1341 /* assumes size > 256 */ 1342 static inline unsigned int blksize_bits(unsigned int size) 1343 { 1344 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1345 } 1346 1347 static inline unsigned int block_size(struct block_device *bdev) 1348 { 1349 return 1 << bdev->bd_inode->i_blkbits; 1350 } 1351 1352 int kblockd_schedule_work(struct work_struct *work); 1353 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1354 1355 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1356 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1357 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1358 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1359 1360 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1361 1362 bool blk_crypto_register(struct blk_crypto_profile *profile, 1363 struct request_queue *q); 1364 1365 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1366 1367 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1368 struct request_queue *q) 1369 { 1370 return true; 1371 } 1372 1373 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1374 1375 enum blk_unique_id { 1376 /* these match the Designator Types specified in SPC */ 1377 BLK_UID_T10 = 1, 1378 BLK_UID_EUI64 = 2, 1379 BLK_UID_NAA = 3, 1380 }; 1381 1382 #define NFL4_UFLG_MASK 0x0000003F 1383 1384 struct block_device_operations { 1385 void (*submit_bio)(struct bio *bio); 1386 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1387 unsigned int flags); 1388 int (*open) (struct block_device *, fmode_t); 1389 void (*release) (struct gendisk *, fmode_t); 1390 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1391 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1392 unsigned int (*check_events) (struct gendisk *disk, 1393 unsigned int clearing); 1394 void (*unlock_native_capacity) (struct gendisk *); 1395 int (*getgeo)(struct block_device *, struct hd_geometry *); 1396 int (*set_read_only)(struct block_device *bdev, bool ro); 1397 void (*free_disk)(struct gendisk *disk); 1398 /* this callback is with swap_lock and sometimes page table lock held */ 1399 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1400 int (*report_zones)(struct gendisk *, sector_t sector, 1401 unsigned int nr_zones, report_zones_cb cb, void *data); 1402 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1403 /* returns the length of the identifier or a negative errno: */ 1404 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1405 enum blk_unique_id id_type); 1406 struct module *owner; 1407 const struct pr_ops *pr_ops; 1408 1409 /* 1410 * Special callback for probing GPT entry at a given sector. 1411 * Needed by Android devices, used by GPT scanner and MMC blk 1412 * driver. 1413 */ 1414 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1415 }; 1416 1417 #ifdef CONFIG_COMPAT 1418 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1419 unsigned int, unsigned long); 1420 #else 1421 #define blkdev_compat_ptr_ioctl NULL 1422 #endif 1423 1424 static inline void blk_wake_io_task(struct task_struct *waiter) 1425 { 1426 /* 1427 * If we're polling, the task itself is doing the completions. For 1428 * that case, we don't need to signal a wakeup, it's enough to just 1429 * mark us as RUNNING. 1430 */ 1431 if (waiter == current) 1432 __set_current_state(TASK_RUNNING); 1433 else 1434 wake_up_process(waiter); 1435 } 1436 1437 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 1438 unsigned long start_time); 1439 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1440 unsigned int sectors, unsigned long start_time); 1441 1442 unsigned long bio_start_io_acct(struct bio *bio); 1443 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1444 struct block_device *orig_bdev); 1445 1446 /** 1447 * bio_end_io_acct - end I/O accounting for bio based drivers 1448 * @bio: bio to end account for 1449 * @start_time: start time returned by bio_start_io_acct() 1450 */ 1451 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1452 { 1453 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1454 } 1455 1456 int bdev_read_only(struct block_device *bdev); 1457 int set_blocksize(struct block_device *bdev, int size); 1458 1459 int lookup_bdev(const char *pathname, dev_t *dev); 1460 1461 void blkdev_show(struct seq_file *seqf, off_t offset); 1462 1463 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1464 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1465 #ifdef CONFIG_BLOCK 1466 #define BLKDEV_MAJOR_MAX 512 1467 #else 1468 #define BLKDEV_MAJOR_MAX 0 1469 #endif 1470 1471 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1472 void *holder); 1473 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1474 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1475 void bd_abort_claiming(struct block_device *bdev, void *holder); 1476 void blkdev_put(struct block_device *bdev, fmode_t mode); 1477 1478 /* just for blk-cgroup, don't use elsewhere */ 1479 struct block_device *blkdev_get_no_open(dev_t dev); 1480 void blkdev_put_no_open(struct block_device *bdev); 1481 1482 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1483 void bdev_add(struct block_device *bdev, dev_t dev); 1484 struct block_device *I_BDEV(struct inode *inode); 1485 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1486 loff_t lend); 1487 1488 #ifdef CONFIG_BLOCK 1489 void invalidate_bdev(struct block_device *bdev); 1490 int sync_blockdev(struct block_device *bdev); 1491 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1492 int sync_blockdev_nowait(struct block_device *bdev); 1493 void sync_bdevs(bool wait); 1494 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat); 1495 void printk_all_partitions(void); 1496 #else 1497 static inline void invalidate_bdev(struct block_device *bdev) 1498 { 1499 } 1500 static inline int sync_blockdev(struct block_device *bdev) 1501 { 1502 return 0; 1503 } 1504 static inline int sync_blockdev_nowait(struct block_device *bdev) 1505 { 1506 return 0; 1507 } 1508 static inline void sync_bdevs(bool wait) 1509 { 1510 } 1511 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat) 1512 { 1513 } 1514 static inline void printk_all_partitions(void) 1515 { 1516 } 1517 #endif /* CONFIG_BLOCK */ 1518 1519 int fsync_bdev(struct block_device *bdev); 1520 1521 int freeze_bdev(struct block_device *bdev); 1522 int thaw_bdev(struct block_device *bdev); 1523 1524 struct io_comp_batch { 1525 struct request *req_list; 1526 bool need_ts; 1527 void (*complete)(struct io_comp_batch *); 1528 }; 1529 1530 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1531 1532 #endif /* _LINUX_BLKDEV_H */ 1533