1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Block data types and constants. Directly include this file only to 4 * break include dependency loop. 5 */ 6 #ifndef __LINUX_BLK_TYPES_H 7 #define __LINUX_BLK_TYPES_H 8 9 #include <linux/types.h> 10 #include <linux/bvec.h> 11 #include <linux/device.h> 12 #include <linux/ktime.h> 13 14 struct bio_set; 15 struct bio; 16 struct bio_integrity_payload; 17 struct page; 18 struct io_context; 19 struct cgroup_subsys_state; 20 typedef void (bio_end_io_t) (struct bio *); 21 struct bio_crypt_ctx; 22 23 /* 24 * The basic unit of block I/O is a sector. It is used in a number of contexts 25 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 26 * bytes. Variables of type sector_t represent an offset or size that is a 27 * multiple of 512 bytes. Hence these two constants. 28 */ 29 #ifndef SECTOR_SHIFT 30 #define SECTOR_SHIFT 9 31 #endif 32 #ifndef SECTOR_SIZE 33 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 34 #endif 35 36 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 37 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 38 #define SECTOR_MASK (PAGE_SECTORS - 1) 39 40 struct block_device { 41 sector_t bd_start_sect; 42 sector_t bd_nr_sectors; 43 struct disk_stats __percpu *bd_stats; 44 unsigned long bd_stamp; 45 bool bd_read_only; /* read-only policy */ 46 dev_t bd_dev; 47 int bd_openers; 48 struct inode * bd_inode; /* will die */ 49 struct super_block * bd_super; 50 void * bd_claiming; 51 struct device bd_device; 52 void * bd_holder; 53 int bd_holders; 54 bool bd_write_holder; 55 struct kobject *bd_holder_dir; 56 u8 bd_partno; 57 spinlock_t bd_size_lock; /* for bd_inode->i_size updates */ 58 struct gendisk * bd_disk; 59 struct request_queue * bd_queue; 60 61 /* The counter of freeze processes */ 62 int bd_fsfreeze_count; 63 /* Mutex for freeze */ 64 struct mutex bd_fsfreeze_mutex; 65 struct super_block *bd_fsfreeze_sb; 66 67 struct partition_meta_info *bd_meta_info; 68 #ifdef CONFIG_FAIL_MAKE_REQUEST 69 bool bd_make_it_fail; 70 #endif 71 } __randomize_layout; 72 73 #define bdev_whole(_bdev) \ 74 ((_bdev)->bd_disk->part0) 75 76 #define dev_to_bdev(device) \ 77 container_of((device), struct block_device, bd_device) 78 79 #define bdev_kobj(_bdev) \ 80 (&((_bdev)->bd_device.kobj)) 81 82 /* 83 * Block error status values. See block/blk-core:blk_errors for the details. 84 * Alpha cannot write a byte atomically, so we need to use 32-bit value. 85 */ 86 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__) 87 typedef u32 __bitwise blk_status_t; 88 #else 89 typedef u8 __bitwise blk_status_t; 90 #endif 91 #define BLK_STS_OK 0 92 #define BLK_STS_NOTSUPP ((__force blk_status_t)1) 93 #define BLK_STS_TIMEOUT ((__force blk_status_t)2) 94 #define BLK_STS_NOSPC ((__force blk_status_t)3) 95 #define BLK_STS_TRANSPORT ((__force blk_status_t)4) 96 #define BLK_STS_TARGET ((__force blk_status_t)5) 97 #define BLK_STS_NEXUS ((__force blk_status_t)6) 98 #define BLK_STS_MEDIUM ((__force blk_status_t)7) 99 #define BLK_STS_PROTECTION ((__force blk_status_t)8) 100 #define BLK_STS_RESOURCE ((__force blk_status_t)9) 101 #define BLK_STS_IOERR ((__force blk_status_t)10) 102 103 /* hack for device mapper, don't use elsewhere: */ 104 #define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) 105 106 #define BLK_STS_AGAIN ((__force blk_status_t)12) 107 108 /* 109 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if 110 * device related resources are unavailable, but the driver can guarantee 111 * that the queue will be rerun in the future once resources become 112 * available again. This is typically the case for device specific 113 * resources that are consumed for IO. If the driver fails allocating these 114 * resources, we know that inflight (or pending) IO will free these 115 * resource upon completion. 116 * 117 * This is different from BLK_STS_RESOURCE in that it explicitly references 118 * a device specific resource. For resources of wider scope, allocation 119 * failure can happen without having pending IO. This means that we can't 120 * rely on request completions freeing these resources, as IO may not be in 121 * flight. Examples of that are kernel memory allocations, DMA mappings, or 122 * any other system wide resources. 123 */ 124 #define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) 125 126 /* 127 * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone 128 * related resources are unavailable, but the driver can guarantee the queue 129 * will be rerun in the future once the resources become available again. 130 * 131 * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references 132 * a zone specific resource and IO to a different zone on the same device could 133 * still be served. Examples of that are zones that are write-locked, but a read 134 * to the same zone could be served. 135 */ 136 #define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14) 137 138 /* 139 * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion 140 * path if the device returns a status indicating that too many zone resources 141 * are currently open. The same command should be successful if resubmitted 142 * after the number of open zones decreases below the device's limits, which is 143 * reported in the request_queue's max_open_zones. 144 */ 145 #define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15) 146 147 /* 148 * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion 149 * path if the device returns a status indicating that too many zone resources 150 * are currently active. The same command should be successful if resubmitted 151 * after the number of active zones decreases below the device's limits, which 152 * is reported in the request_queue's max_active_zones. 153 */ 154 #define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16) 155 156 /** 157 * blk_path_error - returns true if error may be path related 158 * @error: status the request was completed with 159 * 160 * Description: 161 * This classifies block error status into non-retryable errors and ones 162 * that may be successful if retried on a failover path. 163 * 164 * Return: 165 * %false - retrying failover path will not help 166 * %true - may succeed if retried 167 */ 168 static inline bool blk_path_error(blk_status_t error) 169 { 170 switch (error) { 171 case BLK_STS_NOTSUPP: 172 case BLK_STS_NOSPC: 173 case BLK_STS_TARGET: 174 case BLK_STS_NEXUS: 175 case BLK_STS_MEDIUM: 176 case BLK_STS_PROTECTION: 177 return false; 178 } 179 180 /* Anything else could be a path failure, so should be retried */ 181 return true; 182 } 183 184 /* 185 * From most significant bit: 186 * 1 bit: reserved for other usage, see below 187 * 12 bits: original size of bio 188 * 51 bits: issue time of bio 189 */ 190 #define BIO_ISSUE_RES_BITS 1 191 #define BIO_ISSUE_SIZE_BITS 12 192 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 193 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 194 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 195 #define BIO_ISSUE_SIZE_MASK \ 196 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 197 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 198 199 /* Reserved bit for blk-throtl */ 200 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 201 202 struct bio_issue { 203 u64 value; 204 }; 205 206 static inline u64 __bio_issue_time(u64 time) 207 { 208 return time & BIO_ISSUE_TIME_MASK; 209 } 210 211 static inline u64 bio_issue_time(struct bio_issue *issue) 212 { 213 return __bio_issue_time(issue->value); 214 } 215 216 static inline sector_t bio_issue_size(struct bio_issue *issue) 217 { 218 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 219 } 220 221 static inline void bio_issue_init(struct bio_issue *issue, 222 sector_t size) 223 { 224 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 225 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 226 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) | 227 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 228 } 229 230 typedef unsigned int blk_qc_t; 231 #define BLK_QC_T_NONE -1U 232 233 /* 234 * main unit of I/O for the block layer and lower layers (ie drivers and 235 * stacking drivers) 236 */ 237 struct bio { 238 struct bio *bi_next; /* request queue link */ 239 struct block_device *bi_bdev; 240 unsigned int bi_opf; /* bottom bits req flags, 241 * top bits REQ_OP. Use 242 * accessors. 243 */ 244 unsigned short bi_flags; /* BIO_* below */ 245 unsigned short bi_ioprio; 246 unsigned short bi_write_hint; 247 blk_status_t bi_status; 248 atomic_t __bi_remaining; 249 250 struct bvec_iter bi_iter; 251 252 blk_qc_t bi_cookie; 253 bio_end_io_t *bi_end_io; 254 void *bi_private; 255 #ifdef CONFIG_BLK_CGROUP 256 /* 257 * Represents the association of the css and request_queue for the bio. 258 * If a bio goes direct to device, it will not have a blkg as it will 259 * not have a request_queue associated with it. The reference is put 260 * on release of the bio. 261 */ 262 struct blkcg_gq *bi_blkg; 263 struct bio_issue bi_issue; 264 #ifdef CONFIG_BLK_CGROUP_IOCOST 265 u64 bi_iocost_cost; 266 #endif 267 #endif 268 269 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 270 struct bio_crypt_ctx *bi_crypt_context; 271 #endif 272 273 union { 274 #if defined(CONFIG_BLK_DEV_INTEGRITY) 275 struct bio_integrity_payload *bi_integrity; /* data integrity */ 276 #endif 277 }; 278 279 unsigned short bi_vcnt; /* how many bio_vec's */ 280 281 /* 282 * Everything starting with bi_max_vecs will be preserved by bio_reset() 283 */ 284 285 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ 286 287 atomic_t __bi_cnt; /* pin count */ 288 289 struct bio_vec *bi_io_vec; /* the actual vec list */ 290 291 struct bio_set *bi_pool; 292 293 /* 294 * We can inline a number of vecs at the end of the bio, to avoid 295 * double allocations for a small number of bio_vecs. This member 296 * MUST obviously be kept at the very end of the bio. 297 */ 298 struct bio_vec bi_inline_vecs[]; 299 }; 300 301 #define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) 302 #define BIO_MAX_SECTORS (UINT_MAX >> SECTOR_SHIFT) 303 304 /* 305 * bio flags 306 */ 307 enum { 308 BIO_NO_PAGE_REF, /* don't put release vec pages */ 309 BIO_CLONED, /* doesn't own data */ 310 BIO_BOUNCED, /* bio is a bounce bio */ 311 BIO_WORKINGSET, /* contains userspace workingset pages */ 312 BIO_QUIET, /* Make BIO Quiet */ 313 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */ 314 BIO_REFFED, /* bio has elevated ->bi_cnt */ 315 BIO_THROTTLED, /* This bio has already been subjected to 316 * throttling rules. Don't do it again. */ 317 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion 318 * of this bio. */ 319 BIO_CGROUP_ACCT, /* has been accounted to a cgroup */ 320 BIO_TRACKED, /* set if bio goes through the rq_qos path */ 321 BIO_REMAPPED, 322 BIO_ZONE_WRITE_LOCKED, /* Owns a zoned device zone write lock */ 323 BIO_PERCPU_CACHE, /* can participate in per-cpu alloc cache */ 324 BIO_FLAG_LAST 325 }; 326 327 typedef __u32 __bitwise blk_mq_req_flags_t; 328 329 /* 330 * Operations and flags common to the bio and request structures. 331 * We use 8 bits for encoding the operation, and the remaining 24 for flags. 332 * 333 * The least significant bit of the operation number indicates the data 334 * transfer direction: 335 * 336 * - if the least significant bit is set transfers are TO the device 337 * - if the least significant bit is not set transfers are FROM the device 338 * 339 * If a operation does not transfer data the least significant bit has no 340 * meaning. 341 */ 342 #define REQ_OP_BITS 8 343 #define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1) 344 #define REQ_FLAG_BITS 24 345 346 enum req_opf { 347 /* read sectors from the device */ 348 REQ_OP_READ = 0, 349 /* write sectors to the device */ 350 REQ_OP_WRITE = 1, 351 /* flush the volatile write cache */ 352 REQ_OP_FLUSH = 2, 353 /* discard sectors */ 354 REQ_OP_DISCARD = 3, 355 /* securely erase sectors */ 356 REQ_OP_SECURE_ERASE = 5, 357 /* write the same sector many times */ 358 REQ_OP_WRITE_SAME = 7, 359 /* write the zero filled sector many times */ 360 REQ_OP_WRITE_ZEROES = 9, 361 /* Open a zone */ 362 REQ_OP_ZONE_OPEN = 10, 363 /* Close a zone */ 364 REQ_OP_ZONE_CLOSE = 11, 365 /* Transition a zone to full */ 366 REQ_OP_ZONE_FINISH = 12, 367 /* write data at the current zone write pointer */ 368 REQ_OP_ZONE_APPEND = 13, 369 /* reset a zone write pointer */ 370 REQ_OP_ZONE_RESET = 15, 371 /* reset all the zone present on the device */ 372 REQ_OP_ZONE_RESET_ALL = 17, 373 374 /* Driver private requests */ 375 REQ_OP_DRV_IN = 34, 376 REQ_OP_DRV_OUT = 35, 377 378 REQ_OP_LAST, 379 }; 380 381 enum req_flag_bits { 382 __REQ_FAILFAST_DEV = /* no driver retries of device errors */ 383 REQ_OP_BITS, 384 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ 385 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ 386 __REQ_SYNC, /* request is sync (sync write or read) */ 387 __REQ_META, /* metadata io request */ 388 __REQ_PRIO, /* boost priority in cfq */ 389 __REQ_NOMERGE, /* don't touch this for merging */ 390 __REQ_IDLE, /* anticipate more IO after this one */ 391 __REQ_INTEGRITY, /* I/O includes block integrity payload */ 392 __REQ_FUA, /* forced unit access */ 393 __REQ_PREFLUSH, /* request for cache flush */ 394 __REQ_RAHEAD, /* read ahead, can fail anytime */ 395 __REQ_BACKGROUND, /* background IO */ 396 __REQ_NOWAIT, /* Don't wait if request will block */ 397 /* 398 * When a shared kthread needs to issue a bio for a cgroup, doing 399 * so synchronously can lead to priority inversions as the kthread 400 * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes 401 * submit_bio() punt the actual issuing to a dedicated per-blkcg 402 * work item to avoid such priority inversions. 403 */ 404 __REQ_CGROUP_PUNT, 405 406 /* command specific flags for REQ_OP_WRITE_ZEROES: */ 407 __REQ_NOUNMAP, /* do not free blocks when zeroing */ 408 409 __REQ_POLLED, /* caller polls for completion using bio_poll */ 410 411 /* for driver use */ 412 __REQ_DRV, 413 __REQ_SWAP, /* swapping request. */ 414 __REQ_NR_BITS, /* stops here */ 415 }; 416 417 #define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV) 418 #define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT) 419 #define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER) 420 #define REQ_SYNC (1ULL << __REQ_SYNC) 421 #define REQ_META (1ULL << __REQ_META) 422 #define REQ_PRIO (1ULL << __REQ_PRIO) 423 #define REQ_NOMERGE (1ULL << __REQ_NOMERGE) 424 #define REQ_IDLE (1ULL << __REQ_IDLE) 425 #define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY) 426 #define REQ_FUA (1ULL << __REQ_FUA) 427 #define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH) 428 #define REQ_RAHEAD (1ULL << __REQ_RAHEAD) 429 #define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND) 430 #define REQ_NOWAIT (1ULL << __REQ_NOWAIT) 431 #define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT) 432 433 #define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP) 434 #define REQ_POLLED (1ULL << __REQ_POLLED) 435 436 #define REQ_DRV (1ULL << __REQ_DRV) 437 #define REQ_SWAP (1ULL << __REQ_SWAP) 438 439 #define REQ_FAILFAST_MASK \ 440 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) 441 442 #define REQ_NOMERGE_FLAGS \ 443 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) 444 445 enum stat_group { 446 STAT_READ, 447 STAT_WRITE, 448 STAT_DISCARD, 449 STAT_FLUSH, 450 451 NR_STAT_GROUPS 452 }; 453 454 #define bio_op(bio) \ 455 ((bio)->bi_opf & REQ_OP_MASK) 456 457 /* obsolete, don't use in new code */ 458 static inline void bio_set_op_attrs(struct bio *bio, unsigned op, 459 unsigned op_flags) 460 { 461 bio->bi_opf = op | op_flags; 462 } 463 464 static inline bool op_is_write(unsigned int op) 465 { 466 return (op & 1); 467 } 468 469 /* 470 * Check if the bio or request is one that needs special treatment in the 471 * flush state machine. 472 */ 473 static inline bool op_is_flush(unsigned int op) 474 { 475 return op & (REQ_FUA | REQ_PREFLUSH); 476 } 477 478 /* 479 * Reads are always treated as synchronous, as are requests with the FUA or 480 * PREFLUSH flag. Other operations may be marked as synchronous using the 481 * REQ_SYNC flag. 482 */ 483 static inline bool op_is_sync(unsigned int op) 484 { 485 return (op & REQ_OP_MASK) == REQ_OP_READ || 486 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); 487 } 488 489 static inline bool op_is_discard(unsigned int op) 490 { 491 return (op & REQ_OP_MASK) == REQ_OP_DISCARD; 492 } 493 494 /* 495 * Check if a bio or request operation is a zone management operation, with 496 * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case 497 * due to its different handling in the block layer and device response in 498 * case of command failure. 499 */ 500 static inline bool op_is_zone_mgmt(enum req_opf op) 501 { 502 switch (op & REQ_OP_MASK) { 503 case REQ_OP_ZONE_RESET: 504 case REQ_OP_ZONE_OPEN: 505 case REQ_OP_ZONE_CLOSE: 506 case REQ_OP_ZONE_FINISH: 507 return true; 508 default: 509 return false; 510 } 511 } 512 513 static inline int op_stat_group(unsigned int op) 514 { 515 if (op_is_discard(op)) 516 return STAT_DISCARD; 517 return op_is_write(op); 518 } 519 520 struct blk_rq_stat { 521 u64 mean; 522 u64 min; 523 u64 max; 524 u32 nr_samples; 525 u64 batch; 526 }; 527 528 #endif /* __LINUX_BLK_TYPES_H */ 529