xref: /linux-6.15/include/linux/blk_types.h (revision c8a950d0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Block data types and constants.  Directly include this file only to
4  * break include dependency loop.
5  */
6 #ifndef __LINUX_BLK_TYPES_H
7 #define __LINUX_BLK_TYPES_H
8 
9 #include <linux/types.h>
10 #include <linux/bvec.h>
11 #include <linux/ktime.h>
12 
13 struct bio_set;
14 struct bio;
15 struct bio_integrity_payload;
16 struct page;
17 struct io_context;
18 struct cgroup_subsys_state;
19 typedef void (bio_end_io_t) (struct bio *);
20 struct bio_crypt_ctx;
21 
22 struct block_device {
23 	dev_t			bd_dev;
24 	int			bd_openers;
25 	struct inode *		bd_inode;	/* will die */
26 	struct super_block *	bd_super;
27 	struct mutex		bd_mutex;	/* open/close mutex */
28 	void *			bd_claiming;
29 	void *			bd_holder;
30 	int			bd_holders;
31 	bool			bd_write_holder;
32 #ifdef CONFIG_SYSFS
33 	struct list_head	bd_holder_disks;
34 #endif
35 	struct block_device *	bd_contains;
36 	u8			bd_partno;
37 	struct hd_struct *	bd_part;
38 	/* number of times partitions within this device have been opened. */
39 	unsigned		bd_part_count;
40 
41 	spinlock_t		bd_size_lock; /* for bd_inode->i_size updates */
42 	struct gendisk *	bd_disk;
43 	struct backing_dev_info *bd_bdi;
44 
45 	/* The counter of freeze processes */
46 	int			bd_fsfreeze_count;
47 	/* Mutex for freeze */
48 	struct mutex		bd_fsfreeze_mutex;
49 } __randomize_layout;
50 
51 /*
52  * Block error status values.  See block/blk-core:blk_errors for the details.
53  * Alpha cannot write a byte atomically, so we need to use 32-bit value.
54  */
55 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
56 typedef u32 __bitwise blk_status_t;
57 #else
58 typedef u8 __bitwise blk_status_t;
59 #endif
60 #define	BLK_STS_OK 0
61 #define BLK_STS_NOTSUPP		((__force blk_status_t)1)
62 #define BLK_STS_TIMEOUT		((__force blk_status_t)2)
63 #define BLK_STS_NOSPC		((__force blk_status_t)3)
64 #define BLK_STS_TRANSPORT	((__force blk_status_t)4)
65 #define BLK_STS_TARGET		((__force blk_status_t)5)
66 #define BLK_STS_NEXUS		((__force blk_status_t)6)
67 #define BLK_STS_MEDIUM		((__force blk_status_t)7)
68 #define BLK_STS_PROTECTION	((__force blk_status_t)8)
69 #define BLK_STS_RESOURCE	((__force blk_status_t)9)
70 #define BLK_STS_IOERR		((__force blk_status_t)10)
71 
72 /* hack for device mapper, don't use elsewhere: */
73 #define BLK_STS_DM_REQUEUE    ((__force blk_status_t)11)
74 
75 #define BLK_STS_AGAIN		((__force blk_status_t)12)
76 
77 /*
78  * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
79  * device related resources are unavailable, but the driver can guarantee
80  * that the queue will be rerun in the future once resources become
81  * available again. This is typically the case for device specific
82  * resources that are consumed for IO. If the driver fails allocating these
83  * resources, we know that inflight (or pending) IO will free these
84  * resource upon completion.
85  *
86  * This is different from BLK_STS_RESOURCE in that it explicitly references
87  * a device specific resource. For resources of wider scope, allocation
88  * failure can happen without having pending IO. This means that we can't
89  * rely on request completions freeing these resources, as IO may not be in
90  * flight. Examples of that are kernel memory allocations, DMA mappings, or
91  * any other system wide resources.
92  */
93 #define BLK_STS_DEV_RESOURCE	((__force blk_status_t)13)
94 
95 /*
96  * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
97  * related resources are unavailable, but the driver can guarantee the queue
98  * will be rerun in the future once the resources become available again.
99  *
100  * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
101  * a zone specific resource and IO to a different zone on the same device could
102  * still be served. Examples of that are zones that are write-locked, but a read
103  * to the same zone could be served.
104  */
105 #define BLK_STS_ZONE_RESOURCE	((__force blk_status_t)14)
106 
107 /**
108  * blk_path_error - returns true if error may be path related
109  * @error: status the request was completed with
110  *
111  * Description:
112  *     This classifies block error status into non-retryable errors and ones
113  *     that may be successful if retried on a failover path.
114  *
115  * Return:
116  *     %false - retrying failover path will not help
117  *     %true  - may succeed if retried
118  */
119 static inline bool blk_path_error(blk_status_t error)
120 {
121 	switch (error) {
122 	case BLK_STS_NOTSUPP:
123 	case BLK_STS_NOSPC:
124 	case BLK_STS_TARGET:
125 	case BLK_STS_NEXUS:
126 	case BLK_STS_MEDIUM:
127 	case BLK_STS_PROTECTION:
128 		return false;
129 	}
130 
131 	/* Anything else could be a path failure, so should be retried */
132 	return true;
133 }
134 
135 /*
136  * From most significant bit:
137  * 1 bit: reserved for other usage, see below
138  * 12 bits: original size of bio
139  * 51 bits: issue time of bio
140  */
141 #define BIO_ISSUE_RES_BITS      1
142 #define BIO_ISSUE_SIZE_BITS     12
143 #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
144 #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
145 #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
146 #define BIO_ISSUE_SIZE_MASK     \
147 	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
148 #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
149 
150 /* Reserved bit for blk-throtl */
151 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
152 
153 struct bio_issue {
154 	u64 value;
155 };
156 
157 static inline u64 __bio_issue_time(u64 time)
158 {
159 	return time & BIO_ISSUE_TIME_MASK;
160 }
161 
162 static inline u64 bio_issue_time(struct bio_issue *issue)
163 {
164 	return __bio_issue_time(issue->value);
165 }
166 
167 static inline sector_t bio_issue_size(struct bio_issue *issue)
168 {
169 	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
170 }
171 
172 static inline void bio_issue_init(struct bio_issue *issue,
173 				       sector_t size)
174 {
175 	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
176 	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
177 			(ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
178 			((u64)size << BIO_ISSUE_SIZE_SHIFT));
179 }
180 
181 /*
182  * main unit of I/O for the block layer and lower layers (ie drivers and
183  * stacking drivers)
184  */
185 struct bio {
186 	struct bio		*bi_next;	/* request queue link */
187 	struct gendisk		*bi_disk;
188 	unsigned int		bi_opf;		/* bottom bits req flags,
189 						 * top bits REQ_OP. Use
190 						 * accessors.
191 						 */
192 	unsigned short		bi_flags;	/* status, etc and bvec pool number */
193 	unsigned short		bi_ioprio;
194 	unsigned short		bi_write_hint;
195 	blk_status_t		bi_status;
196 	u8			bi_partno;
197 	atomic_t		__bi_remaining;
198 
199 	struct bvec_iter	bi_iter;
200 
201 	bio_end_io_t		*bi_end_io;
202 
203 	void			*bi_private;
204 #ifdef CONFIG_BLK_CGROUP
205 	/*
206 	 * Represents the association of the css and request_queue for the bio.
207 	 * If a bio goes direct to device, it will not have a blkg as it will
208 	 * not have a request_queue associated with it.  The reference is put
209 	 * on release of the bio.
210 	 */
211 	struct blkcg_gq		*bi_blkg;
212 	struct bio_issue	bi_issue;
213 #ifdef CONFIG_BLK_CGROUP_IOCOST
214 	u64			bi_iocost_cost;
215 #endif
216 #endif
217 
218 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
219 	struct bio_crypt_ctx	*bi_crypt_context;
220 #endif
221 
222 	union {
223 #if defined(CONFIG_BLK_DEV_INTEGRITY)
224 		struct bio_integrity_payload *bi_integrity; /* data integrity */
225 #endif
226 	};
227 
228 	unsigned short		bi_vcnt;	/* how many bio_vec's */
229 
230 	/*
231 	 * Everything starting with bi_max_vecs will be preserved by bio_reset()
232 	 */
233 
234 	unsigned short		bi_max_vecs;	/* max bvl_vecs we can hold */
235 
236 	atomic_t		__bi_cnt;	/* pin count */
237 
238 	struct bio_vec		*bi_io_vec;	/* the actual vec list */
239 
240 	struct bio_set		*bi_pool;
241 
242 	/*
243 	 * We can inline a number of vecs at the end of the bio, to avoid
244 	 * double allocations for a small number of bio_vecs. This member
245 	 * MUST obviously be kept at the very end of the bio.
246 	 */
247 	struct bio_vec		bi_inline_vecs[];
248 };
249 
250 #define BIO_RESET_BYTES		offsetof(struct bio, bi_max_vecs)
251 
252 /*
253  * bio flags
254  */
255 enum {
256 	BIO_NO_PAGE_REF,	/* don't put release vec pages */
257 	BIO_CLONED,		/* doesn't own data */
258 	BIO_BOUNCED,		/* bio is a bounce bio */
259 	BIO_WORKINGSET,		/* contains userspace workingset pages */
260 	BIO_QUIET,		/* Make BIO Quiet */
261 	BIO_CHAIN,		/* chained bio, ->bi_remaining in effect */
262 	BIO_REFFED,		/* bio has elevated ->bi_cnt */
263 	BIO_THROTTLED,		/* This bio has already been subjected to
264 				 * throttling rules. Don't do it again. */
265 	BIO_TRACE_COMPLETION,	/* bio_endio() should trace the final completion
266 				 * of this bio. */
267 	BIO_CGROUP_ACCT,	/* has been accounted to a cgroup */
268 	BIO_TRACKED,		/* set if bio goes through the rq_qos path */
269 	BIO_FLAG_LAST
270 };
271 
272 /* See BVEC_POOL_OFFSET below before adding new flags */
273 
274 /*
275  * We support 6 different bvec pools, the last one is magic in that it
276  * is backed by a mempool.
277  */
278 #define BVEC_POOL_NR		6
279 #define BVEC_POOL_MAX		(BVEC_POOL_NR - 1)
280 
281 /*
282  * Top 3 bits of bio flags indicate the pool the bvecs came from.  We add
283  * 1 to the actual index so that 0 indicates that there are no bvecs to be
284  * freed.
285  */
286 #define BVEC_POOL_BITS		(3)
287 #define BVEC_POOL_OFFSET	(16 - BVEC_POOL_BITS)
288 #define BVEC_POOL_IDX(bio)	((bio)->bi_flags >> BVEC_POOL_OFFSET)
289 #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1)
290 # error "BVEC_POOL_BITS is too small"
291 #endif
292 
293 /*
294  * Flags starting here get preserved by bio_reset() - this includes
295  * only BVEC_POOL_IDX()
296  */
297 #define BIO_RESET_BITS	BVEC_POOL_OFFSET
298 
299 typedef __u32 __bitwise blk_mq_req_flags_t;
300 
301 /*
302  * Operations and flags common to the bio and request structures.
303  * We use 8 bits for encoding the operation, and the remaining 24 for flags.
304  *
305  * The least significant bit of the operation number indicates the data
306  * transfer direction:
307  *
308  *   - if the least significant bit is set transfers are TO the device
309  *   - if the least significant bit is not set transfers are FROM the device
310  *
311  * If a operation does not transfer data the least significant bit has no
312  * meaning.
313  */
314 #define REQ_OP_BITS	8
315 #define REQ_OP_MASK	((1 << REQ_OP_BITS) - 1)
316 #define REQ_FLAG_BITS	24
317 
318 enum req_opf {
319 	/* read sectors from the device */
320 	REQ_OP_READ		= 0,
321 	/* write sectors to the device */
322 	REQ_OP_WRITE		= 1,
323 	/* flush the volatile write cache */
324 	REQ_OP_FLUSH		= 2,
325 	/* discard sectors */
326 	REQ_OP_DISCARD		= 3,
327 	/* securely erase sectors */
328 	REQ_OP_SECURE_ERASE	= 5,
329 	/* write the same sector many times */
330 	REQ_OP_WRITE_SAME	= 7,
331 	/* write the zero filled sector many times */
332 	REQ_OP_WRITE_ZEROES	= 9,
333 	/* Open a zone */
334 	REQ_OP_ZONE_OPEN	= 10,
335 	/* Close a zone */
336 	REQ_OP_ZONE_CLOSE	= 11,
337 	/* Transition a zone to full */
338 	REQ_OP_ZONE_FINISH	= 12,
339 	/* write data at the current zone write pointer */
340 	REQ_OP_ZONE_APPEND	= 13,
341 	/* reset a zone write pointer */
342 	REQ_OP_ZONE_RESET	= 15,
343 	/* reset all the zone present on the device */
344 	REQ_OP_ZONE_RESET_ALL	= 17,
345 
346 	/* SCSI passthrough using struct scsi_request */
347 	REQ_OP_SCSI_IN		= 32,
348 	REQ_OP_SCSI_OUT		= 33,
349 	/* Driver private requests */
350 	REQ_OP_DRV_IN		= 34,
351 	REQ_OP_DRV_OUT		= 35,
352 
353 	REQ_OP_LAST,
354 };
355 
356 enum req_flag_bits {
357 	__REQ_FAILFAST_DEV =	/* no driver retries of device errors */
358 		REQ_OP_BITS,
359 	__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
360 	__REQ_FAILFAST_DRIVER,	/* no driver retries of driver errors */
361 	__REQ_SYNC,		/* request is sync (sync write or read) */
362 	__REQ_META,		/* metadata io request */
363 	__REQ_PRIO,		/* boost priority in cfq */
364 	__REQ_NOMERGE,		/* don't touch this for merging */
365 	__REQ_IDLE,		/* anticipate more IO after this one */
366 	__REQ_INTEGRITY,	/* I/O includes block integrity payload */
367 	__REQ_FUA,		/* forced unit access */
368 	__REQ_PREFLUSH,		/* request for cache flush */
369 	__REQ_RAHEAD,		/* read ahead, can fail anytime */
370 	__REQ_BACKGROUND,	/* background IO */
371 	__REQ_NOWAIT,           /* Don't wait if request will block */
372 	/*
373 	 * When a shared kthread needs to issue a bio for a cgroup, doing
374 	 * so synchronously can lead to priority inversions as the kthread
375 	 * can be trapped waiting for that cgroup.  CGROUP_PUNT flag makes
376 	 * submit_bio() punt the actual issuing to a dedicated per-blkcg
377 	 * work item to avoid such priority inversions.
378 	 */
379 	__REQ_CGROUP_PUNT,
380 
381 	/* command specific flags for REQ_OP_WRITE_ZEROES: */
382 	__REQ_NOUNMAP,		/* do not free blocks when zeroing */
383 
384 	__REQ_HIPRI,
385 
386 	/* for driver use */
387 	__REQ_DRV,
388 	__REQ_SWAP,		/* swapping request. */
389 	__REQ_NR_BITS,		/* stops here */
390 };
391 
392 #define REQ_FAILFAST_DEV	(1ULL << __REQ_FAILFAST_DEV)
393 #define REQ_FAILFAST_TRANSPORT	(1ULL << __REQ_FAILFAST_TRANSPORT)
394 #define REQ_FAILFAST_DRIVER	(1ULL << __REQ_FAILFAST_DRIVER)
395 #define REQ_SYNC		(1ULL << __REQ_SYNC)
396 #define REQ_META		(1ULL << __REQ_META)
397 #define REQ_PRIO		(1ULL << __REQ_PRIO)
398 #define REQ_NOMERGE		(1ULL << __REQ_NOMERGE)
399 #define REQ_IDLE		(1ULL << __REQ_IDLE)
400 #define REQ_INTEGRITY		(1ULL << __REQ_INTEGRITY)
401 #define REQ_FUA			(1ULL << __REQ_FUA)
402 #define REQ_PREFLUSH		(1ULL << __REQ_PREFLUSH)
403 #define REQ_RAHEAD		(1ULL << __REQ_RAHEAD)
404 #define REQ_BACKGROUND		(1ULL << __REQ_BACKGROUND)
405 #define REQ_NOWAIT		(1ULL << __REQ_NOWAIT)
406 #define REQ_CGROUP_PUNT		(1ULL << __REQ_CGROUP_PUNT)
407 
408 #define REQ_NOUNMAP		(1ULL << __REQ_NOUNMAP)
409 #define REQ_HIPRI		(1ULL << __REQ_HIPRI)
410 
411 #define REQ_DRV			(1ULL << __REQ_DRV)
412 #define REQ_SWAP		(1ULL << __REQ_SWAP)
413 
414 #define REQ_FAILFAST_MASK \
415 	(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
416 
417 #define REQ_NOMERGE_FLAGS \
418 	(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
419 
420 enum stat_group {
421 	STAT_READ,
422 	STAT_WRITE,
423 	STAT_DISCARD,
424 	STAT_FLUSH,
425 
426 	NR_STAT_GROUPS
427 };
428 
429 #define bio_op(bio) \
430 	((bio)->bi_opf & REQ_OP_MASK)
431 #define req_op(req) \
432 	((req)->cmd_flags & REQ_OP_MASK)
433 
434 /* obsolete, don't use in new code */
435 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
436 		unsigned op_flags)
437 {
438 	bio->bi_opf = op | op_flags;
439 }
440 
441 static inline bool op_is_write(unsigned int op)
442 {
443 	return (op & 1);
444 }
445 
446 /*
447  * Check if the bio or request is one that needs special treatment in the
448  * flush state machine.
449  */
450 static inline bool op_is_flush(unsigned int op)
451 {
452 	return op & (REQ_FUA | REQ_PREFLUSH);
453 }
454 
455 /*
456  * Reads are always treated as synchronous, as are requests with the FUA or
457  * PREFLUSH flag.  Other operations may be marked as synchronous using the
458  * REQ_SYNC flag.
459  */
460 static inline bool op_is_sync(unsigned int op)
461 {
462 	return (op & REQ_OP_MASK) == REQ_OP_READ ||
463 		(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
464 }
465 
466 static inline bool op_is_discard(unsigned int op)
467 {
468 	return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
469 }
470 
471 /*
472  * Check if a bio or request operation is a zone management operation, with
473  * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
474  * due to its different handling in the block layer and device response in
475  * case of command failure.
476  */
477 static inline bool op_is_zone_mgmt(enum req_opf op)
478 {
479 	switch (op & REQ_OP_MASK) {
480 	case REQ_OP_ZONE_RESET:
481 	case REQ_OP_ZONE_OPEN:
482 	case REQ_OP_ZONE_CLOSE:
483 	case REQ_OP_ZONE_FINISH:
484 		return true;
485 	default:
486 		return false;
487 	}
488 }
489 
490 static inline int op_stat_group(unsigned int op)
491 {
492 	if (op_is_discard(op))
493 		return STAT_DISCARD;
494 	return op_is_write(op);
495 }
496 
497 typedef unsigned int blk_qc_t;
498 #define BLK_QC_T_NONE		-1U
499 #define BLK_QC_T_SHIFT		16
500 #define BLK_QC_T_INTERNAL	(1U << 31)
501 
502 static inline bool blk_qc_t_valid(blk_qc_t cookie)
503 {
504 	return cookie != BLK_QC_T_NONE;
505 }
506 
507 static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
508 {
509 	return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
510 }
511 
512 static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
513 {
514 	return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
515 }
516 
517 static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
518 {
519 	return (cookie & BLK_QC_T_INTERNAL) != 0;
520 }
521 
522 struct blk_rq_stat {
523 	u64 mean;
524 	u64 min;
525 	u64 max;
526 	u32 nr_samples;
527 	u64 batch;
528 };
529 
530 #endif /* __LINUX_BLK_TYPES_H */
531