xref: /linux-6.15/include/linux/blk_types.h (revision aaa3e7fb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Block data types and constants.  Directly include this file only to
4  * break include dependency loop.
5  */
6 #ifndef __LINUX_BLK_TYPES_H
7 #define __LINUX_BLK_TYPES_H
8 
9 #include <linux/types.h>
10 #include <linux/bvec.h>
11 #include <linux/ktime.h>
12 
13 struct bio_set;
14 struct bio;
15 struct bio_integrity_payload;
16 struct page;
17 struct io_context;
18 struct cgroup_subsys_state;
19 typedef void (bio_end_io_t) (struct bio *);
20 struct bio_crypt_ctx;
21 
22 struct block_device {
23 	dev_t			bd_dev;  /* not a kdev_t - it's a search key */
24 	int			bd_openers;
25 	struct inode *		bd_inode;	/* will die */
26 	struct super_block *	bd_super;
27 	struct mutex		bd_mutex;	/* open/close mutex */
28 	void *			bd_claiming;
29 	void *			bd_holder;
30 	int			bd_holders;
31 	bool			bd_write_holder;
32 #ifdef CONFIG_SYSFS
33 	struct list_head	bd_holder_disks;
34 #endif
35 	struct block_device *	bd_contains;
36 	u8			bd_partno;
37 	struct hd_struct *	bd_part;
38 	/* number of times partitions within this device have been opened. */
39 	unsigned		bd_part_count;
40 	int			bd_invalidated;
41 	struct gendisk *	bd_disk;
42 	struct backing_dev_info *bd_bdi;
43 
44 	/* The counter of freeze processes */
45 	int			bd_fsfreeze_count;
46 	/* Mutex for freeze */
47 	struct mutex		bd_fsfreeze_mutex;
48 } __randomize_layout;
49 
50 /*
51  * Block error status values.  See block/blk-core:blk_errors for the details.
52  * Alpha cannot write a byte atomically, so we need to use 32-bit value.
53  */
54 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
55 typedef u32 __bitwise blk_status_t;
56 #else
57 typedef u8 __bitwise blk_status_t;
58 #endif
59 #define	BLK_STS_OK 0
60 #define BLK_STS_NOTSUPP		((__force blk_status_t)1)
61 #define BLK_STS_TIMEOUT		((__force blk_status_t)2)
62 #define BLK_STS_NOSPC		((__force blk_status_t)3)
63 #define BLK_STS_TRANSPORT	((__force blk_status_t)4)
64 #define BLK_STS_TARGET		((__force blk_status_t)5)
65 #define BLK_STS_NEXUS		((__force blk_status_t)6)
66 #define BLK_STS_MEDIUM		((__force blk_status_t)7)
67 #define BLK_STS_PROTECTION	((__force blk_status_t)8)
68 #define BLK_STS_RESOURCE	((__force blk_status_t)9)
69 #define BLK_STS_IOERR		((__force blk_status_t)10)
70 
71 /* hack for device mapper, don't use elsewhere: */
72 #define BLK_STS_DM_REQUEUE    ((__force blk_status_t)11)
73 
74 #define BLK_STS_AGAIN		((__force blk_status_t)12)
75 
76 /*
77  * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
78  * device related resources are unavailable, but the driver can guarantee
79  * that the queue will be rerun in the future once resources become
80  * available again. This is typically the case for device specific
81  * resources that are consumed for IO. If the driver fails allocating these
82  * resources, we know that inflight (or pending) IO will free these
83  * resource upon completion.
84  *
85  * This is different from BLK_STS_RESOURCE in that it explicitly references
86  * a device specific resource. For resources of wider scope, allocation
87  * failure can happen without having pending IO. This means that we can't
88  * rely on request completions freeing these resources, as IO may not be in
89  * flight. Examples of that are kernel memory allocations, DMA mappings, or
90  * any other system wide resources.
91  */
92 #define BLK_STS_DEV_RESOURCE	((__force blk_status_t)13)
93 
94 /*
95  * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
96  * related resources are unavailable, but the driver can guarantee the queue
97  * will be rerun in the future once the resources become available again.
98  *
99  * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
100  * a zone specific resource and IO to a different zone on the same device could
101  * still be served. Examples of that are zones that are write-locked, but a read
102  * to the same zone could be served.
103  */
104 #define BLK_STS_ZONE_RESOURCE	((__force blk_status_t)14)
105 
106 /**
107  * blk_path_error - returns true if error may be path related
108  * @error: status the request was completed with
109  *
110  * Description:
111  *     This classifies block error status into non-retryable errors and ones
112  *     that may be successful if retried on a failover path.
113  *
114  * Return:
115  *     %false - retrying failover path will not help
116  *     %true  - may succeed if retried
117  */
118 static inline bool blk_path_error(blk_status_t error)
119 {
120 	switch (error) {
121 	case BLK_STS_NOTSUPP:
122 	case BLK_STS_NOSPC:
123 	case BLK_STS_TARGET:
124 	case BLK_STS_NEXUS:
125 	case BLK_STS_MEDIUM:
126 	case BLK_STS_PROTECTION:
127 		return false;
128 	}
129 
130 	/* Anything else could be a path failure, so should be retried */
131 	return true;
132 }
133 
134 /*
135  * From most significant bit:
136  * 1 bit: reserved for other usage, see below
137  * 12 bits: original size of bio
138  * 51 bits: issue time of bio
139  */
140 #define BIO_ISSUE_RES_BITS      1
141 #define BIO_ISSUE_SIZE_BITS     12
142 #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
143 #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
144 #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
145 #define BIO_ISSUE_SIZE_MASK     \
146 	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
147 #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
148 
149 /* Reserved bit for blk-throtl */
150 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
151 
152 struct bio_issue {
153 	u64 value;
154 };
155 
156 static inline u64 __bio_issue_time(u64 time)
157 {
158 	return time & BIO_ISSUE_TIME_MASK;
159 }
160 
161 static inline u64 bio_issue_time(struct bio_issue *issue)
162 {
163 	return __bio_issue_time(issue->value);
164 }
165 
166 static inline sector_t bio_issue_size(struct bio_issue *issue)
167 {
168 	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
169 }
170 
171 static inline void bio_issue_init(struct bio_issue *issue,
172 				       sector_t size)
173 {
174 	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
175 	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
176 			(ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
177 			((u64)size << BIO_ISSUE_SIZE_SHIFT));
178 }
179 
180 /*
181  * main unit of I/O for the block layer and lower layers (ie drivers and
182  * stacking drivers)
183  */
184 struct bio {
185 	struct bio		*bi_next;	/* request queue link */
186 	struct gendisk		*bi_disk;
187 	unsigned int		bi_opf;		/* bottom bits req flags,
188 						 * top bits REQ_OP. Use
189 						 * accessors.
190 						 */
191 	unsigned short		bi_flags;	/* status, etc and bvec pool number */
192 	unsigned short		bi_ioprio;
193 	unsigned short		bi_write_hint;
194 	blk_status_t		bi_status;
195 	u8			bi_partno;
196 	atomic_t		__bi_remaining;
197 
198 	struct bvec_iter	bi_iter;
199 
200 	bio_end_io_t		*bi_end_io;
201 
202 	void			*bi_private;
203 #ifdef CONFIG_BLK_CGROUP
204 	/*
205 	 * Represents the association of the css and request_queue for the bio.
206 	 * If a bio goes direct to device, it will not have a blkg as it will
207 	 * not have a request_queue associated with it.  The reference is put
208 	 * on release of the bio.
209 	 */
210 	struct blkcg_gq		*bi_blkg;
211 	struct bio_issue	bi_issue;
212 #ifdef CONFIG_BLK_CGROUP_IOCOST
213 	u64			bi_iocost_cost;
214 #endif
215 #endif
216 
217 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
218 	struct bio_crypt_ctx	*bi_crypt_context;
219 #endif
220 
221 	union {
222 #if defined(CONFIG_BLK_DEV_INTEGRITY)
223 		struct bio_integrity_payload *bi_integrity; /* data integrity */
224 #endif
225 	};
226 
227 	unsigned short		bi_vcnt;	/* how many bio_vec's */
228 
229 	/*
230 	 * Everything starting with bi_max_vecs will be preserved by bio_reset()
231 	 */
232 
233 	unsigned short		bi_max_vecs;	/* max bvl_vecs we can hold */
234 
235 	atomic_t		__bi_cnt;	/* pin count */
236 
237 	struct bio_vec		*bi_io_vec;	/* the actual vec list */
238 
239 	struct bio_set		*bi_pool;
240 
241 	/*
242 	 * We can inline a number of vecs at the end of the bio, to avoid
243 	 * double allocations for a small number of bio_vecs. This member
244 	 * MUST obviously be kept at the very end of the bio.
245 	 */
246 	struct bio_vec		bi_inline_vecs[];
247 };
248 
249 #define BIO_RESET_BYTES		offsetof(struct bio, bi_max_vecs)
250 
251 /*
252  * bio flags
253  */
254 enum {
255 	BIO_NO_PAGE_REF,	/* don't put release vec pages */
256 	BIO_CLONED,		/* doesn't own data */
257 	BIO_BOUNCED,		/* bio is a bounce bio */
258 	BIO_USER_MAPPED,	/* contains user pages */
259 	BIO_NULL_MAPPED,	/* contains invalid user pages */
260 	BIO_WORKINGSET,		/* contains userspace workingset pages */
261 	BIO_QUIET,		/* Make BIO Quiet */
262 	BIO_CHAIN,		/* chained bio, ->bi_remaining in effect */
263 	BIO_REFFED,		/* bio has elevated ->bi_cnt */
264 	BIO_THROTTLED,		/* This bio has already been subjected to
265 				 * throttling rules. Don't do it again. */
266 	BIO_TRACE_COMPLETION,	/* bio_endio() should trace the final completion
267 				 * of this bio. */
268 	BIO_CGROUP_ACCT,	/* has been accounted to a cgroup */
269 	BIO_TRACKED,		/* set if bio goes through the rq_qos path */
270 	BIO_FLAG_LAST
271 };
272 
273 /* See BVEC_POOL_OFFSET below before adding new flags */
274 
275 /*
276  * We support 6 different bvec pools, the last one is magic in that it
277  * is backed by a mempool.
278  */
279 #define BVEC_POOL_NR		6
280 #define BVEC_POOL_MAX		(BVEC_POOL_NR - 1)
281 
282 /*
283  * Top 3 bits of bio flags indicate the pool the bvecs came from.  We add
284  * 1 to the actual index so that 0 indicates that there are no bvecs to be
285  * freed.
286  */
287 #define BVEC_POOL_BITS		(3)
288 #define BVEC_POOL_OFFSET	(16 - BVEC_POOL_BITS)
289 #define BVEC_POOL_IDX(bio)	((bio)->bi_flags >> BVEC_POOL_OFFSET)
290 #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1)
291 # error "BVEC_POOL_BITS is too small"
292 #endif
293 
294 /*
295  * Flags starting here get preserved by bio_reset() - this includes
296  * only BVEC_POOL_IDX()
297  */
298 #define BIO_RESET_BITS	BVEC_POOL_OFFSET
299 
300 typedef __u32 __bitwise blk_mq_req_flags_t;
301 
302 /*
303  * Operations and flags common to the bio and request structures.
304  * We use 8 bits for encoding the operation, and the remaining 24 for flags.
305  *
306  * The least significant bit of the operation number indicates the data
307  * transfer direction:
308  *
309  *   - if the least significant bit is set transfers are TO the device
310  *   - if the least significant bit is not set transfers are FROM the device
311  *
312  * If a operation does not transfer data the least significant bit has no
313  * meaning.
314  */
315 #define REQ_OP_BITS	8
316 #define REQ_OP_MASK	((1 << REQ_OP_BITS) - 1)
317 #define REQ_FLAG_BITS	24
318 
319 enum req_opf {
320 	/* read sectors from the device */
321 	REQ_OP_READ		= 0,
322 	/* write sectors to the device */
323 	REQ_OP_WRITE		= 1,
324 	/* flush the volatile write cache */
325 	REQ_OP_FLUSH		= 2,
326 	/* discard sectors */
327 	REQ_OP_DISCARD		= 3,
328 	/* securely erase sectors */
329 	REQ_OP_SECURE_ERASE	= 5,
330 	/* write the same sector many times */
331 	REQ_OP_WRITE_SAME	= 7,
332 	/* write the zero filled sector many times */
333 	REQ_OP_WRITE_ZEROES	= 9,
334 	/* Open a zone */
335 	REQ_OP_ZONE_OPEN	= 10,
336 	/* Close a zone */
337 	REQ_OP_ZONE_CLOSE	= 11,
338 	/* Transition a zone to full */
339 	REQ_OP_ZONE_FINISH	= 12,
340 	/* write data at the current zone write pointer */
341 	REQ_OP_ZONE_APPEND	= 13,
342 	/* reset a zone write pointer */
343 	REQ_OP_ZONE_RESET	= 15,
344 	/* reset all the zone present on the device */
345 	REQ_OP_ZONE_RESET_ALL	= 17,
346 
347 	/* SCSI passthrough using struct scsi_request */
348 	REQ_OP_SCSI_IN		= 32,
349 	REQ_OP_SCSI_OUT		= 33,
350 	/* Driver private requests */
351 	REQ_OP_DRV_IN		= 34,
352 	REQ_OP_DRV_OUT		= 35,
353 
354 	REQ_OP_LAST,
355 };
356 
357 enum req_flag_bits {
358 	__REQ_FAILFAST_DEV =	/* no driver retries of device errors */
359 		REQ_OP_BITS,
360 	__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
361 	__REQ_FAILFAST_DRIVER,	/* no driver retries of driver errors */
362 	__REQ_SYNC,		/* request is sync (sync write or read) */
363 	__REQ_META,		/* metadata io request */
364 	__REQ_PRIO,		/* boost priority in cfq */
365 	__REQ_NOMERGE,		/* don't touch this for merging */
366 	__REQ_IDLE,		/* anticipate more IO after this one */
367 	__REQ_INTEGRITY,	/* I/O includes block integrity payload */
368 	__REQ_FUA,		/* forced unit access */
369 	__REQ_PREFLUSH,		/* request for cache flush */
370 	__REQ_RAHEAD,		/* read ahead, can fail anytime */
371 	__REQ_BACKGROUND,	/* background IO */
372 	__REQ_NOWAIT,           /* Don't wait if request will block */
373 	/*
374 	 * When a shared kthread needs to issue a bio for a cgroup, doing
375 	 * so synchronously can lead to priority inversions as the kthread
376 	 * can be trapped waiting for that cgroup.  CGROUP_PUNT flag makes
377 	 * submit_bio() punt the actual issuing to a dedicated per-blkcg
378 	 * work item to avoid such priority inversions.
379 	 */
380 	__REQ_CGROUP_PUNT,
381 
382 	/* command specific flags for REQ_OP_WRITE_ZEROES: */
383 	__REQ_NOUNMAP,		/* do not free blocks when zeroing */
384 
385 	__REQ_HIPRI,
386 
387 	/* for driver use */
388 	__REQ_DRV,
389 	__REQ_SWAP,		/* swapping request. */
390 	__REQ_NR_BITS,		/* stops here */
391 };
392 
393 #define REQ_FAILFAST_DEV	(1ULL << __REQ_FAILFAST_DEV)
394 #define REQ_FAILFAST_TRANSPORT	(1ULL << __REQ_FAILFAST_TRANSPORT)
395 #define REQ_FAILFAST_DRIVER	(1ULL << __REQ_FAILFAST_DRIVER)
396 #define REQ_SYNC		(1ULL << __REQ_SYNC)
397 #define REQ_META		(1ULL << __REQ_META)
398 #define REQ_PRIO		(1ULL << __REQ_PRIO)
399 #define REQ_NOMERGE		(1ULL << __REQ_NOMERGE)
400 #define REQ_IDLE		(1ULL << __REQ_IDLE)
401 #define REQ_INTEGRITY		(1ULL << __REQ_INTEGRITY)
402 #define REQ_FUA			(1ULL << __REQ_FUA)
403 #define REQ_PREFLUSH		(1ULL << __REQ_PREFLUSH)
404 #define REQ_RAHEAD		(1ULL << __REQ_RAHEAD)
405 #define REQ_BACKGROUND		(1ULL << __REQ_BACKGROUND)
406 #define REQ_NOWAIT		(1ULL << __REQ_NOWAIT)
407 #define REQ_CGROUP_PUNT		(1ULL << __REQ_CGROUP_PUNT)
408 
409 #define REQ_NOUNMAP		(1ULL << __REQ_NOUNMAP)
410 #define REQ_HIPRI		(1ULL << __REQ_HIPRI)
411 
412 #define REQ_DRV			(1ULL << __REQ_DRV)
413 #define REQ_SWAP		(1ULL << __REQ_SWAP)
414 
415 #define REQ_FAILFAST_MASK \
416 	(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
417 
418 #define REQ_NOMERGE_FLAGS \
419 	(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
420 
421 enum stat_group {
422 	STAT_READ,
423 	STAT_WRITE,
424 	STAT_DISCARD,
425 	STAT_FLUSH,
426 
427 	NR_STAT_GROUPS
428 };
429 
430 #define bio_op(bio) \
431 	((bio)->bi_opf & REQ_OP_MASK)
432 #define req_op(req) \
433 	((req)->cmd_flags & REQ_OP_MASK)
434 
435 /* obsolete, don't use in new code */
436 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
437 		unsigned op_flags)
438 {
439 	bio->bi_opf = op | op_flags;
440 }
441 
442 static inline bool op_is_write(unsigned int op)
443 {
444 	return (op & 1);
445 }
446 
447 /*
448  * Check if the bio or request is one that needs special treatment in the
449  * flush state machine.
450  */
451 static inline bool op_is_flush(unsigned int op)
452 {
453 	return op & (REQ_FUA | REQ_PREFLUSH);
454 }
455 
456 /*
457  * Reads are always treated as synchronous, as are requests with the FUA or
458  * PREFLUSH flag.  Other operations may be marked as synchronous using the
459  * REQ_SYNC flag.
460  */
461 static inline bool op_is_sync(unsigned int op)
462 {
463 	return (op & REQ_OP_MASK) == REQ_OP_READ ||
464 		(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
465 }
466 
467 static inline bool op_is_discard(unsigned int op)
468 {
469 	return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
470 }
471 
472 /*
473  * Check if a bio or request operation is a zone management operation, with
474  * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
475  * due to its different handling in the block layer and device response in
476  * case of command failure.
477  */
478 static inline bool op_is_zone_mgmt(enum req_opf op)
479 {
480 	switch (op & REQ_OP_MASK) {
481 	case REQ_OP_ZONE_RESET:
482 	case REQ_OP_ZONE_OPEN:
483 	case REQ_OP_ZONE_CLOSE:
484 	case REQ_OP_ZONE_FINISH:
485 		return true;
486 	default:
487 		return false;
488 	}
489 }
490 
491 static inline int op_stat_group(unsigned int op)
492 {
493 	if (op_is_discard(op))
494 		return STAT_DISCARD;
495 	return op_is_write(op);
496 }
497 
498 typedef unsigned int blk_qc_t;
499 #define BLK_QC_T_NONE		-1U
500 #define BLK_QC_T_EAGAIN		-2U
501 #define BLK_QC_T_SHIFT		16
502 #define BLK_QC_T_INTERNAL	(1U << 31)
503 
504 static inline bool blk_qc_t_valid(blk_qc_t cookie)
505 {
506 	return cookie != BLK_QC_T_NONE && cookie != BLK_QC_T_EAGAIN;
507 }
508 
509 static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
510 {
511 	return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
512 }
513 
514 static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
515 {
516 	return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
517 }
518 
519 static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
520 {
521 	return (cookie & BLK_QC_T_INTERNAL) != 0;
522 }
523 
524 struct blk_rq_stat {
525 	u64 mean;
526 	u64 min;
527 	u64 max;
528 	u32 nr_samples;
529 	u64 batch;
530 };
531 
532 #endif /* __LINUX_BLK_TYPES_H */
533