xref: /linux-6.15/include/linux/blk_types.h (revision 9dbbc3b9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Block data types and constants.  Directly include this file only to
4  * break include dependency loop.
5  */
6 #ifndef __LINUX_BLK_TYPES_H
7 #define __LINUX_BLK_TYPES_H
8 
9 #include <linux/types.h>
10 #include <linux/bvec.h>
11 #include <linux/device.h>
12 #include <linux/ktime.h>
13 
14 struct bio_set;
15 struct bio;
16 struct bio_integrity_payload;
17 struct page;
18 struct io_context;
19 struct cgroup_subsys_state;
20 typedef void (bio_end_io_t) (struct bio *);
21 struct bio_crypt_ctx;
22 
23 struct block_device {
24 	sector_t		bd_start_sect;
25 	struct disk_stats __percpu *bd_stats;
26 	unsigned long		bd_stamp;
27 	bool			bd_read_only;	/* read-only policy */
28 	dev_t			bd_dev;
29 	int			bd_openers;
30 	struct inode *		bd_inode;	/* will die */
31 	struct super_block *	bd_super;
32 	void *			bd_claiming;
33 	struct device		bd_device;
34 	void *			bd_holder;
35 	int			bd_holders;
36 	bool			bd_write_holder;
37 #ifdef CONFIG_SYSFS
38 	struct list_head	bd_holder_disks;
39 #endif
40 	struct kobject		*bd_holder_dir;
41 	u8			bd_partno;
42 	spinlock_t		bd_size_lock; /* for bd_inode->i_size updates */
43 	struct gendisk *	bd_disk;
44 	struct backing_dev_info *bd_bdi;
45 
46 	/* The counter of freeze processes */
47 	int			bd_fsfreeze_count;
48 	/* Mutex for freeze */
49 	struct mutex		bd_fsfreeze_mutex;
50 	struct super_block	*bd_fsfreeze_sb;
51 
52 	struct partition_meta_info *bd_meta_info;
53 #ifdef CONFIG_FAIL_MAKE_REQUEST
54 	bool			bd_make_it_fail;
55 #endif
56 } __randomize_layout;
57 
58 #define bdev_whole(_bdev) \
59 	((_bdev)->bd_disk->part0)
60 
61 #define dev_to_bdev(device) \
62 	container_of((device), struct block_device, bd_device)
63 
64 #define bdev_kobj(_bdev) \
65 	(&((_bdev)->bd_device.kobj))
66 
67 /*
68  * Block error status values.  See block/blk-core:blk_errors for the details.
69  * Alpha cannot write a byte atomically, so we need to use 32-bit value.
70  */
71 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
72 typedef u32 __bitwise blk_status_t;
73 #else
74 typedef u8 __bitwise blk_status_t;
75 #endif
76 #define	BLK_STS_OK 0
77 #define BLK_STS_NOTSUPP		((__force blk_status_t)1)
78 #define BLK_STS_TIMEOUT		((__force blk_status_t)2)
79 #define BLK_STS_NOSPC		((__force blk_status_t)3)
80 #define BLK_STS_TRANSPORT	((__force blk_status_t)4)
81 #define BLK_STS_TARGET		((__force blk_status_t)5)
82 #define BLK_STS_NEXUS		((__force blk_status_t)6)
83 #define BLK_STS_MEDIUM		((__force blk_status_t)7)
84 #define BLK_STS_PROTECTION	((__force blk_status_t)8)
85 #define BLK_STS_RESOURCE	((__force blk_status_t)9)
86 #define BLK_STS_IOERR		((__force blk_status_t)10)
87 
88 /* hack for device mapper, don't use elsewhere: */
89 #define BLK_STS_DM_REQUEUE    ((__force blk_status_t)11)
90 
91 #define BLK_STS_AGAIN		((__force blk_status_t)12)
92 
93 /*
94  * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
95  * device related resources are unavailable, but the driver can guarantee
96  * that the queue will be rerun in the future once resources become
97  * available again. This is typically the case for device specific
98  * resources that are consumed for IO. If the driver fails allocating these
99  * resources, we know that inflight (or pending) IO will free these
100  * resource upon completion.
101  *
102  * This is different from BLK_STS_RESOURCE in that it explicitly references
103  * a device specific resource. For resources of wider scope, allocation
104  * failure can happen without having pending IO. This means that we can't
105  * rely on request completions freeing these resources, as IO may not be in
106  * flight. Examples of that are kernel memory allocations, DMA mappings, or
107  * any other system wide resources.
108  */
109 #define BLK_STS_DEV_RESOURCE	((__force blk_status_t)13)
110 
111 /*
112  * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
113  * related resources are unavailable, but the driver can guarantee the queue
114  * will be rerun in the future once the resources become available again.
115  *
116  * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
117  * a zone specific resource and IO to a different zone on the same device could
118  * still be served. Examples of that are zones that are write-locked, but a read
119  * to the same zone could be served.
120  */
121 #define BLK_STS_ZONE_RESOURCE	((__force blk_status_t)14)
122 
123 /*
124  * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion
125  * path if the device returns a status indicating that too many zone resources
126  * are currently open. The same command should be successful if resubmitted
127  * after the number of open zones decreases below the device's limits, which is
128  * reported in the request_queue's max_open_zones.
129  */
130 #define BLK_STS_ZONE_OPEN_RESOURCE	((__force blk_status_t)15)
131 
132 /*
133  * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion
134  * path if the device returns a status indicating that too many zone resources
135  * are currently active. The same command should be successful if resubmitted
136  * after the number of active zones decreases below the device's limits, which
137  * is reported in the request_queue's max_active_zones.
138  */
139 #define BLK_STS_ZONE_ACTIVE_RESOURCE	((__force blk_status_t)16)
140 
141 /**
142  * blk_path_error - returns true if error may be path related
143  * @error: status the request was completed with
144  *
145  * Description:
146  *     This classifies block error status into non-retryable errors and ones
147  *     that may be successful if retried on a failover path.
148  *
149  * Return:
150  *     %false - retrying failover path will not help
151  *     %true  - may succeed if retried
152  */
153 static inline bool blk_path_error(blk_status_t error)
154 {
155 	switch (error) {
156 	case BLK_STS_NOTSUPP:
157 	case BLK_STS_NOSPC:
158 	case BLK_STS_TARGET:
159 	case BLK_STS_NEXUS:
160 	case BLK_STS_MEDIUM:
161 	case BLK_STS_PROTECTION:
162 		return false;
163 	}
164 
165 	/* Anything else could be a path failure, so should be retried */
166 	return true;
167 }
168 
169 /*
170  * From most significant bit:
171  * 1 bit: reserved for other usage, see below
172  * 12 bits: original size of bio
173  * 51 bits: issue time of bio
174  */
175 #define BIO_ISSUE_RES_BITS      1
176 #define BIO_ISSUE_SIZE_BITS     12
177 #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
178 #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
179 #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
180 #define BIO_ISSUE_SIZE_MASK     \
181 	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
182 #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
183 
184 /* Reserved bit for blk-throtl */
185 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
186 
187 struct bio_issue {
188 	u64 value;
189 };
190 
191 static inline u64 __bio_issue_time(u64 time)
192 {
193 	return time & BIO_ISSUE_TIME_MASK;
194 }
195 
196 static inline u64 bio_issue_time(struct bio_issue *issue)
197 {
198 	return __bio_issue_time(issue->value);
199 }
200 
201 static inline sector_t bio_issue_size(struct bio_issue *issue)
202 {
203 	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
204 }
205 
206 static inline void bio_issue_init(struct bio_issue *issue,
207 				       sector_t size)
208 {
209 	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
210 	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
211 			(ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
212 			((u64)size << BIO_ISSUE_SIZE_SHIFT));
213 }
214 
215 /*
216  * main unit of I/O for the block layer and lower layers (ie drivers and
217  * stacking drivers)
218  */
219 struct bio {
220 	struct bio		*bi_next;	/* request queue link */
221 	struct block_device	*bi_bdev;
222 	unsigned int		bi_opf;		/* bottom bits req flags,
223 						 * top bits REQ_OP. Use
224 						 * accessors.
225 						 */
226 	unsigned short		bi_flags;	/* BIO_* below */
227 	unsigned short		bi_ioprio;
228 	unsigned short		bi_write_hint;
229 	blk_status_t		bi_status;
230 	atomic_t		__bi_remaining;
231 
232 	struct bvec_iter	bi_iter;
233 
234 	bio_end_io_t		*bi_end_io;
235 
236 	void			*bi_private;
237 #ifdef CONFIG_BLK_CGROUP
238 	/*
239 	 * Represents the association of the css and request_queue for the bio.
240 	 * If a bio goes direct to device, it will not have a blkg as it will
241 	 * not have a request_queue associated with it.  The reference is put
242 	 * on release of the bio.
243 	 */
244 	struct blkcg_gq		*bi_blkg;
245 	struct bio_issue	bi_issue;
246 #ifdef CONFIG_BLK_CGROUP_IOCOST
247 	u64			bi_iocost_cost;
248 #endif
249 #endif
250 
251 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
252 	struct bio_crypt_ctx	*bi_crypt_context;
253 #endif
254 
255 	union {
256 #if defined(CONFIG_BLK_DEV_INTEGRITY)
257 		struct bio_integrity_payload *bi_integrity; /* data integrity */
258 #endif
259 	};
260 
261 	unsigned short		bi_vcnt;	/* how many bio_vec's */
262 
263 	/*
264 	 * Everything starting with bi_max_vecs will be preserved by bio_reset()
265 	 */
266 
267 	unsigned short		bi_max_vecs;	/* max bvl_vecs we can hold */
268 
269 	atomic_t		__bi_cnt;	/* pin count */
270 
271 	struct bio_vec		*bi_io_vec;	/* the actual vec list */
272 
273 	struct bio_set		*bi_pool;
274 
275 	/*
276 	 * We can inline a number of vecs at the end of the bio, to avoid
277 	 * double allocations for a small number of bio_vecs. This member
278 	 * MUST obviously be kept at the very end of the bio.
279 	 */
280 	struct bio_vec		bi_inline_vecs[];
281 };
282 
283 #define BIO_RESET_BYTES		offsetof(struct bio, bi_max_vecs)
284 
285 /*
286  * bio flags
287  */
288 enum {
289 	BIO_NO_PAGE_REF,	/* don't put release vec pages */
290 	BIO_CLONED,		/* doesn't own data */
291 	BIO_BOUNCED,		/* bio is a bounce bio */
292 	BIO_WORKINGSET,		/* contains userspace workingset pages */
293 	BIO_QUIET,		/* Make BIO Quiet */
294 	BIO_CHAIN,		/* chained bio, ->bi_remaining in effect */
295 	BIO_REFFED,		/* bio has elevated ->bi_cnt */
296 	BIO_THROTTLED,		/* This bio has already been subjected to
297 				 * throttling rules. Don't do it again. */
298 	BIO_TRACE_COMPLETION,	/* bio_endio() should trace the final completion
299 				 * of this bio. */
300 	BIO_CGROUP_ACCT,	/* has been accounted to a cgroup */
301 	BIO_TRACKED,		/* set if bio goes through the rq_qos path */
302 	BIO_REMAPPED,
303 	BIO_ZONE_WRITE_LOCKED,	/* Owns a zoned device zone write lock */
304 	BIO_FLAG_LAST
305 };
306 
307 typedef __u32 __bitwise blk_mq_req_flags_t;
308 
309 /*
310  * Operations and flags common to the bio and request structures.
311  * We use 8 bits for encoding the operation, and the remaining 24 for flags.
312  *
313  * The least significant bit of the operation number indicates the data
314  * transfer direction:
315  *
316  *   - if the least significant bit is set transfers are TO the device
317  *   - if the least significant bit is not set transfers are FROM the device
318  *
319  * If a operation does not transfer data the least significant bit has no
320  * meaning.
321  */
322 #define REQ_OP_BITS	8
323 #define REQ_OP_MASK	((1 << REQ_OP_BITS) - 1)
324 #define REQ_FLAG_BITS	24
325 
326 enum req_opf {
327 	/* read sectors from the device */
328 	REQ_OP_READ		= 0,
329 	/* write sectors to the device */
330 	REQ_OP_WRITE		= 1,
331 	/* flush the volatile write cache */
332 	REQ_OP_FLUSH		= 2,
333 	/* discard sectors */
334 	REQ_OP_DISCARD		= 3,
335 	/* securely erase sectors */
336 	REQ_OP_SECURE_ERASE	= 5,
337 	/* write the same sector many times */
338 	REQ_OP_WRITE_SAME	= 7,
339 	/* write the zero filled sector many times */
340 	REQ_OP_WRITE_ZEROES	= 9,
341 	/* Open a zone */
342 	REQ_OP_ZONE_OPEN	= 10,
343 	/* Close a zone */
344 	REQ_OP_ZONE_CLOSE	= 11,
345 	/* Transition a zone to full */
346 	REQ_OP_ZONE_FINISH	= 12,
347 	/* write data at the current zone write pointer */
348 	REQ_OP_ZONE_APPEND	= 13,
349 	/* reset a zone write pointer */
350 	REQ_OP_ZONE_RESET	= 15,
351 	/* reset all the zone present on the device */
352 	REQ_OP_ZONE_RESET_ALL	= 17,
353 
354 	/* SCSI passthrough using struct scsi_request */
355 	REQ_OP_SCSI_IN		= 32,
356 	REQ_OP_SCSI_OUT		= 33,
357 	/* Driver private requests */
358 	REQ_OP_DRV_IN		= 34,
359 	REQ_OP_DRV_OUT		= 35,
360 
361 	REQ_OP_LAST,
362 };
363 
364 enum req_flag_bits {
365 	__REQ_FAILFAST_DEV =	/* no driver retries of device errors */
366 		REQ_OP_BITS,
367 	__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
368 	__REQ_FAILFAST_DRIVER,	/* no driver retries of driver errors */
369 	__REQ_SYNC,		/* request is sync (sync write or read) */
370 	__REQ_META,		/* metadata io request */
371 	__REQ_PRIO,		/* boost priority in cfq */
372 	__REQ_NOMERGE,		/* don't touch this for merging */
373 	__REQ_IDLE,		/* anticipate more IO after this one */
374 	__REQ_INTEGRITY,	/* I/O includes block integrity payload */
375 	__REQ_FUA,		/* forced unit access */
376 	__REQ_PREFLUSH,		/* request for cache flush */
377 	__REQ_RAHEAD,		/* read ahead, can fail anytime */
378 	__REQ_BACKGROUND,	/* background IO */
379 	__REQ_NOWAIT,           /* Don't wait if request will block */
380 	/*
381 	 * When a shared kthread needs to issue a bio for a cgroup, doing
382 	 * so synchronously can lead to priority inversions as the kthread
383 	 * can be trapped waiting for that cgroup.  CGROUP_PUNT flag makes
384 	 * submit_bio() punt the actual issuing to a dedicated per-blkcg
385 	 * work item to avoid such priority inversions.
386 	 */
387 	__REQ_CGROUP_PUNT,
388 
389 	/* command specific flags for REQ_OP_WRITE_ZEROES: */
390 	__REQ_NOUNMAP,		/* do not free blocks when zeroing */
391 
392 	__REQ_HIPRI,
393 
394 	/* for driver use */
395 	__REQ_DRV,
396 	__REQ_SWAP,		/* swapping request. */
397 	__REQ_NR_BITS,		/* stops here */
398 };
399 
400 #define REQ_FAILFAST_DEV	(1ULL << __REQ_FAILFAST_DEV)
401 #define REQ_FAILFAST_TRANSPORT	(1ULL << __REQ_FAILFAST_TRANSPORT)
402 #define REQ_FAILFAST_DRIVER	(1ULL << __REQ_FAILFAST_DRIVER)
403 #define REQ_SYNC		(1ULL << __REQ_SYNC)
404 #define REQ_META		(1ULL << __REQ_META)
405 #define REQ_PRIO		(1ULL << __REQ_PRIO)
406 #define REQ_NOMERGE		(1ULL << __REQ_NOMERGE)
407 #define REQ_IDLE		(1ULL << __REQ_IDLE)
408 #define REQ_INTEGRITY		(1ULL << __REQ_INTEGRITY)
409 #define REQ_FUA			(1ULL << __REQ_FUA)
410 #define REQ_PREFLUSH		(1ULL << __REQ_PREFLUSH)
411 #define REQ_RAHEAD		(1ULL << __REQ_RAHEAD)
412 #define REQ_BACKGROUND		(1ULL << __REQ_BACKGROUND)
413 #define REQ_NOWAIT		(1ULL << __REQ_NOWAIT)
414 #define REQ_CGROUP_PUNT		(1ULL << __REQ_CGROUP_PUNT)
415 
416 #define REQ_NOUNMAP		(1ULL << __REQ_NOUNMAP)
417 #define REQ_HIPRI		(1ULL << __REQ_HIPRI)
418 
419 #define REQ_DRV			(1ULL << __REQ_DRV)
420 #define REQ_SWAP		(1ULL << __REQ_SWAP)
421 
422 #define REQ_FAILFAST_MASK \
423 	(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
424 
425 #define REQ_NOMERGE_FLAGS \
426 	(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
427 
428 enum stat_group {
429 	STAT_READ,
430 	STAT_WRITE,
431 	STAT_DISCARD,
432 	STAT_FLUSH,
433 
434 	NR_STAT_GROUPS
435 };
436 
437 #define bio_op(bio) \
438 	((bio)->bi_opf & REQ_OP_MASK)
439 #define req_op(req) \
440 	((req)->cmd_flags & REQ_OP_MASK)
441 
442 /* obsolete, don't use in new code */
443 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
444 		unsigned op_flags)
445 {
446 	bio->bi_opf = op | op_flags;
447 }
448 
449 static inline bool op_is_write(unsigned int op)
450 {
451 	return (op & 1);
452 }
453 
454 /*
455  * Check if the bio or request is one that needs special treatment in the
456  * flush state machine.
457  */
458 static inline bool op_is_flush(unsigned int op)
459 {
460 	return op & (REQ_FUA | REQ_PREFLUSH);
461 }
462 
463 /*
464  * Reads are always treated as synchronous, as are requests with the FUA or
465  * PREFLUSH flag.  Other operations may be marked as synchronous using the
466  * REQ_SYNC flag.
467  */
468 static inline bool op_is_sync(unsigned int op)
469 {
470 	return (op & REQ_OP_MASK) == REQ_OP_READ ||
471 		(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
472 }
473 
474 static inline bool op_is_discard(unsigned int op)
475 {
476 	return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
477 }
478 
479 /*
480  * Check if a bio or request operation is a zone management operation, with
481  * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
482  * due to its different handling in the block layer and device response in
483  * case of command failure.
484  */
485 static inline bool op_is_zone_mgmt(enum req_opf op)
486 {
487 	switch (op & REQ_OP_MASK) {
488 	case REQ_OP_ZONE_RESET:
489 	case REQ_OP_ZONE_OPEN:
490 	case REQ_OP_ZONE_CLOSE:
491 	case REQ_OP_ZONE_FINISH:
492 		return true;
493 	default:
494 		return false;
495 	}
496 }
497 
498 static inline int op_stat_group(unsigned int op)
499 {
500 	if (op_is_discard(op))
501 		return STAT_DISCARD;
502 	return op_is_write(op);
503 }
504 
505 typedef unsigned int blk_qc_t;
506 #define BLK_QC_T_NONE		-1U
507 #define BLK_QC_T_SHIFT		16
508 #define BLK_QC_T_INTERNAL	(1U << 31)
509 
510 static inline bool blk_qc_t_valid(blk_qc_t cookie)
511 {
512 	return cookie != BLK_QC_T_NONE;
513 }
514 
515 static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
516 {
517 	return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
518 }
519 
520 static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
521 {
522 	return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
523 }
524 
525 static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
526 {
527 	return (cookie & BLK_QC_T_INTERNAL) != 0;
528 }
529 
530 struct blk_rq_stat {
531 	u64 mean;
532 	u64 min;
533 	u64 max;
534 	u32 nr_samples;
535 	u64 batch;
536 };
537 
538 #endif /* __LINUX_BLK_TYPES_H */
539