1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Block data types and constants. Directly include this file only to 4 * break include dependency loop. 5 */ 6 #ifndef __LINUX_BLK_TYPES_H 7 #define __LINUX_BLK_TYPES_H 8 9 #include <linux/types.h> 10 #include <linux/bvec.h> 11 #include <linux/ktime.h> 12 13 struct bio_set; 14 struct bio; 15 struct bio_integrity_payload; 16 struct page; 17 struct block_device; 18 struct io_context; 19 struct cgroup_subsys_state; 20 typedef void (bio_end_io_t) (struct bio *); 21 22 /* 23 * Block error status values. See block/blk-core:blk_errors for the details. 24 * Alpha cannot write a byte atomically, so we need to use 32-bit value. 25 */ 26 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__) 27 typedef u32 __bitwise blk_status_t; 28 #else 29 typedef u8 __bitwise blk_status_t; 30 #endif 31 #define BLK_STS_OK 0 32 #define BLK_STS_NOTSUPP ((__force blk_status_t)1) 33 #define BLK_STS_TIMEOUT ((__force blk_status_t)2) 34 #define BLK_STS_NOSPC ((__force blk_status_t)3) 35 #define BLK_STS_TRANSPORT ((__force blk_status_t)4) 36 #define BLK_STS_TARGET ((__force blk_status_t)5) 37 #define BLK_STS_NEXUS ((__force blk_status_t)6) 38 #define BLK_STS_MEDIUM ((__force blk_status_t)7) 39 #define BLK_STS_PROTECTION ((__force blk_status_t)8) 40 #define BLK_STS_RESOURCE ((__force blk_status_t)9) 41 #define BLK_STS_IOERR ((__force blk_status_t)10) 42 43 /* hack for device mapper, don't use elsewhere: */ 44 #define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) 45 46 #define BLK_STS_AGAIN ((__force blk_status_t)12) 47 48 /* 49 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if 50 * device related resources are unavailable, but the driver can guarantee 51 * that the queue will be rerun in the future once resources become 52 * available again. This is typically the case for device specific 53 * resources that are consumed for IO. If the driver fails allocating these 54 * resources, we know that inflight (or pending) IO will free these 55 * resource upon completion. 56 * 57 * This is different from BLK_STS_RESOURCE in that it explicitly references 58 * a device specific resource. For resources of wider scope, allocation 59 * failure can happen without having pending IO. This means that we can't 60 * rely on request completions freeing these resources, as IO may not be in 61 * flight. Examples of that are kernel memory allocations, DMA mappings, or 62 * any other system wide resources. 63 */ 64 #define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) 65 66 /** 67 * blk_path_error - returns true if error may be path related 68 * @error: status the request was completed with 69 * 70 * Description: 71 * This classifies block error status into non-retryable errors and ones 72 * that may be successful if retried on a failover path. 73 * 74 * Return: 75 * %false - retrying failover path will not help 76 * %true - may succeed if retried 77 */ 78 static inline bool blk_path_error(blk_status_t error) 79 { 80 switch (error) { 81 case BLK_STS_NOTSUPP: 82 case BLK_STS_NOSPC: 83 case BLK_STS_TARGET: 84 case BLK_STS_NEXUS: 85 case BLK_STS_MEDIUM: 86 case BLK_STS_PROTECTION: 87 return false; 88 } 89 90 /* Anything else could be a path failure, so should be retried */ 91 return true; 92 } 93 94 /* 95 * From most significant bit: 96 * 1 bit: reserved for other usage, see below 97 * 12 bits: original size of bio 98 * 51 bits: issue time of bio 99 */ 100 #define BIO_ISSUE_RES_BITS 1 101 #define BIO_ISSUE_SIZE_BITS 12 102 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 103 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 104 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 105 #define BIO_ISSUE_SIZE_MASK \ 106 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 107 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 108 109 /* Reserved bit for blk-throtl */ 110 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 111 112 struct bio_issue { 113 u64 value; 114 }; 115 116 static inline u64 __bio_issue_time(u64 time) 117 { 118 return time & BIO_ISSUE_TIME_MASK; 119 } 120 121 static inline u64 bio_issue_time(struct bio_issue *issue) 122 { 123 return __bio_issue_time(issue->value); 124 } 125 126 static inline sector_t bio_issue_size(struct bio_issue *issue) 127 { 128 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 129 } 130 131 static inline void bio_issue_init(struct bio_issue *issue, 132 sector_t size) 133 { 134 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 135 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 136 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) | 137 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 138 } 139 140 /* 141 * main unit of I/O for the block layer and lower layers (ie drivers and 142 * stacking drivers) 143 */ 144 struct bio { 145 struct bio *bi_next; /* request queue link */ 146 struct gendisk *bi_disk; 147 unsigned int bi_opf; /* bottom bits req flags, 148 * top bits REQ_OP. Use 149 * accessors. 150 */ 151 unsigned short bi_flags; /* status, etc and bvec pool number */ 152 unsigned short bi_ioprio; 153 unsigned short bi_write_hint; 154 blk_status_t bi_status; 155 u8 bi_partno; 156 157 /* Number of segments in this BIO after 158 * physical address coalescing is performed. 159 */ 160 unsigned int bi_phys_segments; 161 162 /* 163 * To keep track of the max segment size, we account for the 164 * sizes of the first and last mergeable segments in this bio. 165 */ 166 unsigned int bi_seg_front_size; 167 unsigned int bi_seg_back_size; 168 169 struct bvec_iter bi_iter; 170 171 atomic_t __bi_remaining; 172 bio_end_io_t *bi_end_io; 173 174 void *bi_private; 175 #ifdef CONFIG_BLK_CGROUP 176 /* 177 * Represents the association of the css and request_queue for the bio. 178 * If a bio goes direct to device, it will not have a blkg as it will 179 * not have a request_queue associated with it. The reference is put 180 * on release of the bio. 181 */ 182 struct blkcg_gq *bi_blkg; 183 struct bio_issue bi_issue; 184 #endif 185 union { 186 #if defined(CONFIG_BLK_DEV_INTEGRITY) 187 struct bio_integrity_payload *bi_integrity; /* data integrity */ 188 #endif 189 }; 190 191 unsigned short bi_vcnt; /* how many bio_vec's */ 192 193 /* 194 * Everything starting with bi_max_vecs will be preserved by bio_reset() 195 */ 196 197 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ 198 199 atomic_t __bi_cnt; /* pin count */ 200 201 struct bio_vec *bi_io_vec; /* the actual vec list */ 202 203 struct bio_set *bi_pool; 204 205 /* 206 * We can inline a number of vecs at the end of the bio, to avoid 207 * double allocations for a small number of bio_vecs. This member 208 * MUST obviously be kept at the very end of the bio. 209 */ 210 struct bio_vec bi_inline_vecs[0]; 211 }; 212 213 #define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) 214 215 /* 216 * bio flags 217 */ 218 enum { 219 BIO_NO_PAGE_REF, /* don't put release vec pages */ 220 BIO_SEG_VALID, /* bi_phys_segments valid */ 221 BIO_CLONED, /* doesn't own data */ 222 BIO_BOUNCED, /* bio is a bounce bio */ 223 BIO_USER_MAPPED, /* contains user pages */ 224 BIO_NULL_MAPPED, /* contains invalid user pages */ 225 BIO_QUIET, /* Make BIO Quiet */ 226 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */ 227 BIO_REFFED, /* bio has elevated ->bi_cnt */ 228 BIO_THROTTLED, /* This bio has already been subjected to 229 * throttling rules. Don't do it again. */ 230 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion 231 * of this bio. */ 232 BIO_QUEUE_ENTERED, /* can use blk_queue_enter_live() */ 233 BIO_TRACKED, /* set if bio goes through the rq_qos path */ 234 BIO_FLAG_LAST 235 }; 236 237 /* See BVEC_POOL_OFFSET below before adding new flags */ 238 239 /* 240 * We support 6 different bvec pools, the last one is magic in that it 241 * is backed by a mempool. 242 */ 243 #define BVEC_POOL_NR 6 244 #define BVEC_POOL_MAX (BVEC_POOL_NR - 1) 245 246 /* 247 * Top 3 bits of bio flags indicate the pool the bvecs came from. We add 248 * 1 to the actual index so that 0 indicates that there are no bvecs to be 249 * freed. 250 */ 251 #define BVEC_POOL_BITS (3) 252 #define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS) 253 #define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET) 254 #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1) 255 # error "BVEC_POOL_BITS is too small" 256 #endif 257 258 /* 259 * Flags starting here get preserved by bio_reset() - this includes 260 * only BVEC_POOL_IDX() 261 */ 262 #define BIO_RESET_BITS BVEC_POOL_OFFSET 263 264 typedef __u32 __bitwise blk_mq_req_flags_t; 265 266 /* 267 * Operations and flags common to the bio and request structures. 268 * We use 8 bits for encoding the operation, and the remaining 24 for flags. 269 * 270 * The least significant bit of the operation number indicates the data 271 * transfer direction: 272 * 273 * - if the least significant bit is set transfers are TO the device 274 * - if the least significant bit is not set transfers are FROM the device 275 * 276 * If a operation does not transfer data the least significant bit has no 277 * meaning. 278 */ 279 #define REQ_OP_BITS 8 280 #define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1) 281 #define REQ_FLAG_BITS 24 282 283 enum req_opf { 284 /* read sectors from the device */ 285 REQ_OP_READ = 0, 286 /* write sectors to the device */ 287 REQ_OP_WRITE = 1, 288 /* flush the volatile write cache */ 289 REQ_OP_FLUSH = 2, 290 /* discard sectors */ 291 REQ_OP_DISCARD = 3, 292 /* securely erase sectors */ 293 REQ_OP_SECURE_ERASE = 5, 294 /* reset a zone write pointer */ 295 REQ_OP_ZONE_RESET = 6, 296 /* write the same sector many times */ 297 REQ_OP_WRITE_SAME = 7, 298 /* write the zero filled sector many times */ 299 REQ_OP_WRITE_ZEROES = 9, 300 301 /* SCSI passthrough using struct scsi_request */ 302 REQ_OP_SCSI_IN = 32, 303 REQ_OP_SCSI_OUT = 33, 304 /* Driver private requests */ 305 REQ_OP_DRV_IN = 34, 306 REQ_OP_DRV_OUT = 35, 307 308 REQ_OP_LAST, 309 }; 310 311 enum req_flag_bits { 312 __REQ_FAILFAST_DEV = /* no driver retries of device errors */ 313 REQ_OP_BITS, 314 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ 315 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ 316 __REQ_SYNC, /* request is sync (sync write or read) */ 317 __REQ_META, /* metadata io request */ 318 __REQ_PRIO, /* boost priority in cfq */ 319 __REQ_NOMERGE, /* don't touch this for merging */ 320 __REQ_IDLE, /* anticipate more IO after this one */ 321 __REQ_INTEGRITY, /* I/O includes block integrity payload */ 322 __REQ_FUA, /* forced unit access */ 323 __REQ_PREFLUSH, /* request for cache flush */ 324 __REQ_RAHEAD, /* read ahead, can fail anytime */ 325 __REQ_BACKGROUND, /* background IO */ 326 __REQ_NOWAIT, /* Don't wait if request will block */ 327 328 /* command specific flags for REQ_OP_WRITE_ZEROES: */ 329 __REQ_NOUNMAP, /* do not free blocks when zeroing */ 330 331 __REQ_HIPRI, 332 333 /* for driver use */ 334 __REQ_DRV, 335 __REQ_SWAP, /* swapping request. */ 336 __REQ_NR_BITS, /* stops here */ 337 }; 338 339 #define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV) 340 #define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT) 341 #define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER) 342 #define REQ_SYNC (1ULL << __REQ_SYNC) 343 #define REQ_META (1ULL << __REQ_META) 344 #define REQ_PRIO (1ULL << __REQ_PRIO) 345 #define REQ_NOMERGE (1ULL << __REQ_NOMERGE) 346 #define REQ_IDLE (1ULL << __REQ_IDLE) 347 #define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY) 348 #define REQ_FUA (1ULL << __REQ_FUA) 349 #define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH) 350 #define REQ_RAHEAD (1ULL << __REQ_RAHEAD) 351 #define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND) 352 #define REQ_NOWAIT (1ULL << __REQ_NOWAIT) 353 #define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP) 354 #define REQ_HIPRI (1ULL << __REQ_HIPRI) 355 356 #define REQ_DRV (1ULL << __REQ_DRV) 357 #define REQ_SWAP (1ULL << __REQ_SWAP) 358 359 #define REQ_FAILFAST_MASK \ 360 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) 361 362 #define REQ_NOMERGE_FLAGS \ 363 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) 364 365 enum stat_group { 366 STAT_READ, 367 STAT_WRITE, 368 STAT_DISCARD, 369 370 NR_STAT_GROUPS 371 }; 372 373 #define bio_op(bio) \ 374 ((bio)->bi_opf & REQ_OP_MASK) 375 #define req_op(req) \ 376 ((req)->cmd_flags & REQ_OP_MASK) 377 378 /* obsolete, don't use in new code */ 379 static inline void bio_set_op_attrs(struct bio *bio, unsigned op, 380 unsigned op_flags) 381 { 382 bio->bi_opf = op | op_flags; 383 } 384 385 static inline bool op_is_write(unsigned int op) 386 { 387 return (op & 1); 388 } 389 390 /* 391 * Check if the bio or request is one that needs special treatment in the 392 * flush state machine. 393 */ 394 static inline bool op_is_flush(unsigned int op) 395 { 396 return op & (REQ_FUA | REQ_PREFLUSH); 397 } 398 399 /* 400 * Reads are always treated as synchronous, as are requests with the FUA or 401 * PREFLUSH flag. Other operations may be marked as synchronous using the 402 * REQ_SYNC flag. 403 */ 404 static inline bool op_is_sync(unsigned int op) 405 { 406 return (op & REQ_OP_MASK) == REQ_OP_READ || 407 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); 408 } 409 410 static inline bool op_is_discard(unsigned int op) 411 { 412 return (op & REQ_OP_MASK) == REQ_OP_DISCARD; 413 } 414 415 static inline int op_stat_group(unsigned int op) 416 { 417 if (op_is_discard(op)) 418 return STAT_DISCARD; 419 return op_is_write(op); 420 } 421 422 typedef unsigned int blk_qc_t; 423 #define BLK_QC_T_NONE -1U 424 #define BLK_QC_T_SHIFT 16 425 #define BLK_QC_T_INTERNAL (1U << 31) 426 427 static inline bool blk_qc_t_valid(blk_qc_t cookie) 428 { 429 return cookie != BLK_QC_T_NONE; 430 } 431 432 static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie) 433 { 434 return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT; 435 } 436 437 static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie) 438 { 439 return cookie & ((1u << BLK_QC_T_SHIFT) - 1); 440 } 441 442 static inline bool blk_qc_t_is_internal(blk_qc_t cookie) 443 { 444 return (cookie & BLK_QC_T_INTERNAL) != 0; 445 } 446 447 struct blk_rq_stat { 448 u64 mean; 449 u64 min; 450 u64 max; 451 u32 nr_samples; 452 u64 batch; 453 }; 454 455 #endif /* __LINUX_BLK_TYPES_H */ 456