xref: /linux-6.15/include/linux/blk-mq.h (revision 8564c315)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 
12 struct blk_mq_tags;
13 struct blk_flush_queue;
14 
15 #define BLKDEV_MIN_RQ	4
16 #define BLKDEV_DEFAULT_RQ	128
17 
18 enum rq_end_io_ret {
19 	RQ_END_IO_NONE,
20 	RQ_END_IO_FREE,
21 };
22 
23 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
24 
25 /*
26  * request flags */
27 typedef __u32 __bitwise req_flags_t;
28 
29 /* drive already may have started this one */
30 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
31 /* request for flush sequence */
32 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
33 /* merge of different types, fail separately */
34 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
35 /* track inflight for MQ */
36 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
37 /* don't call prep for this one */
38 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
39 /* use hctx->sched_tags */
40 #define RQF_SCHED_TAGS		((__force req_flags_t)(1 << 8))
41 /* use an I/O scheduler for this request */
42 #define RQF_USE_SCHED		((__force req_flags_t)(1 << 9))
43 /* vaguely specified driver internal error.  Ignored by the block layer */
44 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
45 /* don't warn about errors */
46 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
47 /* account into disk and partition IO statistics */
48 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
49 /* runtime pm request */
50 #define RQF_PM			((__force req_flags_t)(1 << 15))
51 /* on IO scheduler merge hash */
52 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
53 /* track IO completion time */
54 #define RQF_STATS		((__force req_flags_t)(1 << 17))
55 /* Look at ->special_vec for the actual data payload instead of the
56    bio chain. */
57 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
58 /* The per-zone write lock is held for this request */
59 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
60 /* ->timeout has been called, don't expire again */
61 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
62 #define RQF_RESV		((__force req_flags_t)(1 << 23))
63 
64 /* flags that prevent us from merging requests: */
65 #define RQF_NOMERGE_FLAGS \
66 	(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
67 
68 enum mq_rq_state {
69 	MQ_RQ_IDLE		= 0,
70 	MQ_RQ_IN_FLIGHT		= 1,
71 	MQ_RQ_COMPLETE		= 2,
72 };
73 
74 /*
75  * Try to put the fields that are referenced together in the same cacheline.
76  *
77  * If you modify this structure, make sure to update blk_rq_init() and
78  * especially blk_mq_rq_ctx_init() to take care of the added fields.
79  */
80 struct request {
81 	struct request_queue *q;
82 	struct blk_mq_ctx *mq_ctx;
83 	struct blk_mq_hw_ctx *mq_hctx;
84 
85 	blk_opf_t cmd_flags;		/* op and common flags */
86 	req_flags_t rq_flags;
87 
88 	int tag;
89 	int internal_tag;
90 
91 	unsigned int timeout;
92 
93 	/* the following two fields are internal, NEVER access directly */
94 	unsigned int __data_len;	/* total data len */
95 	sector_t __sector;		/* sector cursor */
96 
97 	struct bio *bio;
98 	struct bio *biotail;
99 
100 	union {
101 		struct list_head queuelist;
102 		struct request *rq_next;
103 	};
104 
105 	struct block_device *part;
106 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
107 	/* Time that the first bio started allocating this request. */
108 	u64 alloc_time_ns;
109 #endif
110 	/* Time that this request was allocated for this IO. */
111 	u64 start_time_ns;
112 	/* Time that I/O was submitted to the device. */
113 	u64 io_start_time_ns;
114 
115 #ifdef CONFIG_BLK_WBT
116 	unsigned short wbt_flags;
117 #endif
118 	/*
119 	 * rq sectors used for blk stats. It has the same value
120 	 * with blk_rq_sectors(rq), except that it never be zeroed
121 	 * by completion.
122 	 */
123 	unsigned short stats_sectors;
124 
125 	/*
126 	 * Number of scatter-gather DMA addr+len pairs after
127 	 * physical address coalescing is performed.
128 	 */
129 	unsigned short nr_phys_segments;
130 
131 #ifdef CONFIG_BLK_DEV_INTEGRITY
132 	unsigned short nr_integrity_segments;
133 #endif
134 
135 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
136 	struct bio_crypt_ctx *crypt_ctx;
137 	struct blk_crypto_keyslot *crypt_keyslot;
138 #endif
139 
140 	unsigned short ioprio;
141 
142 	enum mq_rq_state state;
143 	atomic_t ref;
144 
145 	unsigned long deadline;
146 
147 	/*
148 	 * The hash is used inside the scheduler, and killed once the
149 	 * request reaches the dispatch list. The ipi_list is only used
150 	 * to queue the request for softirq completion, which is long
151 	 * after the request has been unhashed (and even removed from
152 	 * the dispatch list).
153 	 */
154 	union {
155 		struct hlist_node hash;	/* merge hash */
156 		struct llist_node ipi_list;
157 	};
158 
159 	/*
160 	 * The rb_node is only used inside the io scheduler, requests
161 	 * are pruned when moved to the dispatch queue. So let the
162 	 * completion_data share space with the rb_node.
163 	 */
164 	union {
165 		struct rb_node rb_node;	/* sort/lookup */
166 		struct bio_vec special_vec;
167 		void *completion_data;
168 	};
169 
170 	/*
171 	 * Three pointers are available for the IO schedulers, if they need
172 	 * more they have to dynamically allocate it.
173 	 */
174 	struct {
175 		struct io_cq		*icq;
176 		void			*priv[2];
177 	} elv;
178 
179 	struct {
180 		unsigned int		seq;
181 		struct list_head	list;
182 		rq_end_io_fn		*saved_end_io;
183 	} flush;
184 
185 	union {
186 		struct __call_single_data csd;
187 		u64 fifo_time;
188 	};
189 
190 	/*
191 	 * completion callback.
192 	 */
193 	rq_end_io_fn *end_io;
194 	void *end_io_data;
195 };
196 
197 static inline enum req_op req_op(const struct request *req)
198 {
199 	return req->cmd_flags & REQ_OP_MASK;
200 }
201 
202 static inline bool blk_rq_is_passthrough(struct request *rq)
203 {
204 	return blk_op_is_passthrough(rq->cmd_flags);
205 }
206 
207 static inline unsigned short req_get_ioprio(struct request *req)
208 {
209 	return req->ioprio;
210 }
211 
212 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
213 
214 #define rq_dma_dir(rq) \
215 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
216 
217 #define rq_list_add(listptr, rq)	do {		\
218 	(rq)->rq_next = *(listptr);			\
219 	*(listptr) = rq;				\
220 } while (0)
221 
222 #define rq_list_add_tail(lastpptr, rq)	do {		\
223 	(rq)->rq_next = NULL;				\
224 	**(lastpptr) = rq;				\
225 	*(lastpptr) = &rq->rq_next;			\
226 } while (0)
227 
228 #define rq_list_pop(listptr)				\
229 ({							\
230 	struct request *__req = NULL;			\
231 	if ((listptr) && *(listptr))	{		\
232 		__req = *(listptr);			\
233 		*(listptr) = __req->rq_next;		\
234 	}						\
235 	__req;						\
236 })
237 
238 #define rq_list_peek(listptr)				\
239 ({							\
240 	struct request *__req = NULL;			\
241 	if ((listptr) && *(listptr))			\
242 		__req = *(listptr);			\
243 	__req;						\
244 })
245 
246 #define rq_list_for_each(listptr, pos)			\
247 	for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
248 
249 #define rq_list_for_each_safe(listptr, pos, nxt)			\
250 	for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);	\
251 		pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
252 
253 #define rq_list_next(rq)	(rq)->rq_next
254 #define rq_list_empty(list)	((list) == (struct request *) NULL)
255 
256 /**
257  * rq_list_move() - move a struct request from one list to another
258  * @src: The source list @rq is currently in
259  * @dst: The destination list that @rq will be appended to
260  * @rq: The request to move
261  * @prev: The request preceding @rq in @src (NULL if @rq is the head)
262  */
263 static inline void rq_list_move(struct request **src, struct request **dst,
264 				struct request *rq, struct request *prev)
265 {
266 	if (prev)
267 		prev->rq_next = rq->rq_next;
268 	else
269 		*src = rq->rq_next;
270 	rq_list_add(dst, rq);
271 }
272 
273 /**
274  * enum blk_eh_timer_return - How the timeout handler should proceed
275  * @BLK_EH_DONE: The block driver completed the command or will complete it at
276  *	a later time.
277  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
278  *	request to complete.
279  */
280 enum blk_eh_timer_return {
281 	BLK_EH_DONE,
282 	BLK_EH_RESET_TIMER,
283 };
284 
285 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
286 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
287 
288 /**
289  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
290  * block device
291  */
292 struct blk_mq_hw_ctx {
293 	struct {
294 		/** @lock: Protects the dispatch list. */
295 		spinlock_t		lock;
296 		/**
297 		 * @dispatch: Used for requests that are ready to be
298 		 * dispatched to the hardware but for some reason (e.g. lack of
299 		 * resources) could not be sent to the hardware. As soon as the
300 		 * driver can send new requests, requests at this list will
301 		 * be sent first for a fairer dispatch.
302 		 */
303 		struct list_head	dispatch;
304 		 /**
305 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
306 		  * queue (active, scheduled to restart, stopped).
307 		  */
308 		unsigned long		state;
309 	} ____cacheline_aligned_in_smp;
310 
311 	/**
312 	 * @run_work: Used for scheduling a hardware queue run at a later time.
313 	 */
314 	struct delayed_work	run_work;
315 	/** @cpumask: Map of available CPUs where this hctx can run. */
316 	cpumask_var_t		cpumask;
317 	/**
318 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
319 	 * selection from @cpumask.
320 	 */
321 	int			next_cpu;
322 	/**
323 	 * @next_cpu_batch: Counter of how many works left in the batch before
324 	 * changing to the next CPU.
325 	 */
326 	int			next_cpu_batch;
327 
328 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
329 	unsigned long		flags;
330 
331 	/**
332 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
333 	 * queue. It's up to the IO scheduler how to use this pointer.
334 	 */
335 	void			*sched_data;
336 	/**
337 	 * @queue: Pointer to the request queue that owns this hardware context.
338 	 */
339 	struct request_queue	*queue;
340 	/** @fq: Queue of requests that need to perform a flush operation. */
341 	struct blk_flush_queue	*fq;
342 
343 	/**
344 	 * @driver_data: Pointer to data owned by the block driver that created
345 	 * this hctx
346 	 */
347 	void			*driver_data;
348 
349 	/**
350 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
351 	 * pending request in that software queue.
352 	 */
353 	struct sbitmap		ctx_map;
354 
355 	/**
356 	 * @dispatch_from: Software queue to be used when no scheduler was
357 	 * selected.
358 	 */
359 	struct blk_mq_ctx	*dispatch_from;
360 	/**
361 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
362 	 * decide if the hw_queue is busy using Exponential Weighted Moving
363 	 * Average algorithm.
364 	 */
365 	unsigned int		dispatch_busy;
366 
367 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
368 	unsigned short		type;
369 	/** @nr_ctx: Number of software queues. */
370 	unsigned short		nr_ctx;
371 	/** @ctxs: Array of software queues. */
372 	struct blk_mq_ctx	**ctxs;
373 
374 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
375 	spinlock_t		dispatch_wait_lock;
376 	/**
377 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
378 	 * available at the moment, to wait for another try in the future.
379 	 */
380 	wait_queue_entry_t	dispatch_wait;
381 
382 	/**
383 	 * @wait_index: Index of next available dispatch_wait queue to insert
384 	 * requests.
385 	 */
386 	atomic_t		wait_index;
387 
388 	/**
389 	 * @tags: Tags owned by the block driver. A tag at this set is only
390 	 * assigned when a request is dispatched from a hardware queue.
391 	 */
392 	struct blk_mq_tags	*tags;
393 	/**
394 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
395 	 * scheduler associated with a request queue, a tag is assigned when
396 	 * that request is allocated. Else, this member is not used.
397 	 */
398 	struct blk_mq_tags	*sched_tags;
399 
400 	/** @queued: Number of queued requests. */
401 	unsigned long		queued;
402 	/** @run: Number of dispatched requests. */
403 	unsigned long		run;
404 
405 	/** @numa_node: NUMA node the storage adapter has been connected to. */
406 	unsigned int		numa_node;
407 	/** @queue_num: Index of this hardware queue. */
408 	unsigned int		queue_num;
409 
410 	/**
411 	 * @nr_active: Number of active requests. Only used when a tag set is
412 	 * shared across request queues.
413 	 */
414 	atomic_t		nr_active;
415 
416 	/** @cpuhp_online: List to store request if CPU is going to die */
417 	struct hlist_node	cpuhp_online;
418 	/** @cpuhp_dead: List to store request if some CPU die. */
419 	struct hlist_node	cpuhp_dead;
420 	/** @kobj: Kernel object for sysfs. */
421 	struct kobject		kobj;
422 
423 #ifdef CONFIG_BLK_DEBUG_FS
424 	/**
425 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
426 	 * as cpu<cpu_number>.
427 	 */
428 	struct dentry		*debugfs_dir;
429 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
430 	struct dentry		*sched_debugfs_dir;
431 #endif
432 
433 	/**
434 	 * @hctx_list: if this hctx is not in use, this is an entry in
435 	 * q->unused_hctx_list.
436 	 */
437 	struct list_head	hctx_list;
438 };
439 
440 /**
441  * struct blk_mq_queue_map - Map software queues to hardware queues
442  * @mq_map:       CPU ID to hardware queue index map. This is an array
443  *	with nr_cpu_ids elements. Each element has a value in the range
444  *	[@queue_offset, @queue_offset + @nr_queues).
445  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
446  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
447  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
448  *	set of hardware queues.
449  */
450 struct blk_mq_queue_map {
451 	unsigned int *mq_map;
452 	unsigned int nr_queues;
453 	unsigned int queue_offset;
454 };
455 
456 /**
457  * enum hctx_type - Type of hardware queue
458  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
459  * @HCTX_TYPE_READ:	Just for READ I/O.
460  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
461  * @HCTX_MAX_TYPES:	Number of types of hctx.
462  */
463 enum hctx_type {
464 	HCTX_TYPE_DEFAULT,
465 	HCTX_TYPE_READ,
466 	HCTX_TYPE_POLL,
467 
468 	HCTX_MAX_TYPES,
469 };
470 
471 /**
472  * struct blk_mq_tag_set - tag set that can be shared between request queues
473  * @ops:	   Pointers to functions that implement block driver behavior.
474  * @map:	   One or more ctx -> hctx mappings. One map exists for each
475  *		   hardware queue type (enum hctx_type) that the driver wishes
476  *		   to support. There are no restrictions on maps being of the
477  *		   same size, and it's perfectly legal to share maps between
478  *		   types.
479  * @nr_maps:	   Number of elements in the @map array. A number in the range
480  *		   [1, HCTX_MAX_TYPES].
481  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
482  *		   owns this data structure.
483  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
484  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
485  *		   allocations.
486  * @cmd_size:	   Number of additional bytes to allocate per request. The block
487  *		   driver owns these additional bytes.
488  * @numa_node:	   NUMA node the storage adapter has been connected to.
489  * @timeout:	   Request processing timeout in jiffies.
490  * @flags:	   Zero or more BLK_MQ_F_* flags.
491  * @driver_data:   Pointer to data owned by the block driver that created this
492  *		   tag set.
493  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
494  *		   elements.
495  * @shared_tags:
496  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
497  *		   shared by all @tags.
498  * @tag_list_lock: Serializes tag_list accesses.
499  * @tag_list:	   List of the request queues that use this tag set. See also
500  *		   request_queue.tag_set_list.
501  * @srcu:	   Use as lock when type of the request queue is blocking
502  *		   (BLK_MQ_F_BLOCKING).
503  */
504 struct blk_mq_tag_set {
505 	const struct blk_mq_ops	*ops;
506 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
507 	unsigned int		nr_maps;
508 	unsigned int		nr_hw_queues;
509 	unsigned int		queue_depth;
510 	unsigned int		reserved_tags;
511 	unsigned int		cmd_size;
512 	int			numa_node;
513 	unsigned int		timeout;
514 	unsigned int		flags;
515 	void			*driver_data;
516 
517 	struct blk_mq_tags	**tags;
518 
519 	struct blk_mq_tags	*shared_tags;
520 
521 	struct mutex		tag_list_lock;
522 	struct list_head	tag_list;
523 	struct srcu_struct	*srcu;
524 };
525 
526 /**
527  * struct blk_mq_queue_data - Data about a request inserted in a queue
528  *
529  * @rq:   Request pointer.
530  * @last: If it is the last request in the queue.
531  */
532 struct blk_mq_queue_data {
533 	struct request *rq;
534 	bool last;
535 };
536 
537 typedef bool (busy_tag_iter_fn)(struct request *, void *);
538 
539 /**
540  * struct blk_mq_ops - Callback functions that implements block driver
541  * behaviour.
542  */
543 struct blk_mq_ops {
544 	/**
545 	 * @queue_rq: Queue a new request from block IO.
546 	 */
547 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
548 				 const struct blk_mq_queue_data *);
549 
550 	/**
551 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
552 	 * requests to hardware, it must define this function. In case of errors
553 	 * that make us stop issuing further requests, this hook serves the
554 	 * purpose of kicking the hardware (which the last request otherwise
555 	 * would have done).
556 	 */
557 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
558 
559 	/**
560 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
561 	 * that each request belongs to the same queue. If the driver doesn't
562 	 * empty the @rqlist completely, then the rest will be queued
563 	 * individually by the block layer upon return.
564 	 */
565 	void (*queue_rqs)(struct request **rqlist);
566 
567 	/**
568 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
569 	 * run, it is driver's responsibility to release the
570 	 * reserved budget. Also we have to handle failure case
571 	 * of .get_budget for avoiding I/O deadlock.
572 	 */
573 	int (*get_budget)(struct request_queue *);
574 
575 	/**
576 	 * @put_budget: Release the reserved budget.
577 	 */
578 	void (*put_budget)(struct request_queue *, int);
579 
580 	/**
581 	 * @set_rq_budget_token: store rq's budget token
582 	 */
583 	void (*set_rq_budget_token)(struct request *, int);
584 	/**
585 	 * @get_rq_budget_token: retrieve rq's budget token
586 	 */
587 	int (*get_rq_budget_token)(struct request *);
588 
589 	/**
590 	 * @timeout: Called on request timeout.
591 	 */
592 	enum blk_eh_timer_return (*timeout)(struct request *);
593 
594 	/**
595 	 * @poll: Called to poll for completion of a specific tag.
596 	 */
597 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
598 
599 	/**
600 	 * @complete: Mark the request as complete.
601 	 */
602 	void (*complete)(struct request *);
603 
604 	/**
605 	 * @init_hctx: Called when the block layer side of a hardware queue has
606 	 * been set up, allowing the driver to allocate/init matching
607 	 * structures.
608 	 */
609 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
610 	/**
611 	 * @exit_hctx: Ditto for exit/teardown.
612 	 */
613 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
614 
615 	/**
616 	 * @init_request: Called for every command allocated by the block layer
617 	 * to allow the driver to set up driver specific data.
618 	 *
619 	 * Tag greater than or equal to queue_depth is for setting up
620 	 * flush request.
621 	 */
622 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
623 			    unsigned int, unsigned int);
624 	/**
625 	 * @exit_request: Ditto for exit/teardown.
626 	 */
627 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
628 			     unsigned int);
629 
630 	/**
631 	 * @cleanup_rq: Called before freeing one request which isn't completed
632 	 * yet, and usually for freeing the driver private data.
633 	 */
634 	void (*cleanup_rq)(struct request *);
635 
636 	/**
637 	 * @busy: If set, returns whether or not this queue currently is busy.
638 	 */
639 	bool (*busy)(struct request_queue *);
640 
641 	/**
642 	 * @map_queues: This allows drivers specify their own queue mapping by
643 	 * overriding the setup-time function that builds the mq_map.
644 	 */
645 	void (*map_queues)(struct blk_mq_tag_set *set);
646 
647 #ifdef CONFIG_BLK_DEBUG_FS
648 	/**
649 	 * @show_rq: Used by the debugfs implementation to show driver-specific
650 	 * information about a request.
651 	 */
652 	void (*show_rq)(struct seq_file *m, struct request *rq);
653 #endif
654 };
655 
656 enum {
657 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
658 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
659 	/*
660 	 * Set when this device requires underlying blk-mq device for
661 	 * completing IO:
662 	 */
663 	BLK_MQ_F_STACKING	= 1 << 2,
664 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
665 	BLK_MQ_F_BLOCKING	= 1 << 5,
666 	/* Do not allow an I/O scheduler to be configured. */
667 	BLK_MQ_F_NO_SCHED	= 1 << 6,
668 	/*
669 	 * Select 'none' during queue registration in case of a single hwq
670 	 * or shared hwqs instead of 'mq-deadline'.
671 	 */
672 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
673 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
674 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
675 
676 	BLK_MQ_S_STOPPED	= 0,
677 	BLK_MQ_S_TAG_ACTIVE	= 1,
678 	BLK_MQ_S_SCHED_RESTART	= 2,
679 
680 	/* hw queue is inactive after all its CPUs become offline */
681 	BLK_MQ_S_INACTIVE	= 3,
682 
683 	BLK_MQ_MAX_DEPTH	= 10240,
684 
685 	BLK_MQ_CPU_WORK_BATCH	= 8,
686 };
687 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
688 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
689 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
690 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
691 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
692 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
693 
694 #define BLK_MQ_NO_HCTX_IDX	(-1U)
695 
696 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
697 		struct lock_class_key *lkclass);
698 #define blk_mq_alloc_disk(set, queuedata)				\
699 ({									\
700 	static struct lock_class_key __key;				\
701 									\
702 	__blk_mq_alloc_disk(set, queuedata, &__key);			\
703 })
704 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
705 		struct lock_class_key *lkclass);
706 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
707 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
708 		struct request_queue *q);
709 void blk_mq_destroy_queue(struct request_queue *);
710 
711 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
712 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
713 		const struct blk_mq_ops *ops, unsigned int queue_depth,
714 		unsigned int set_flags);
715 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
716 
717 void blk_mq_free_request(struct request *rq);
718 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
719 		unsigned int poll_flags);
720 
721 bool blk_mq_queue_inflight(struct request_queue *q);
722 
723 enum {
724 	/* return when out of requests */
725 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
726 	/* allocate from reserved pool */
727 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
728 	/* set RQF_PM */
729 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
730 };
731 
732 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
733 		blk_mq_req_flags_t flags);
734 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
735 		blk_opf_t opf, blk_mq_req_flags_t flags,
736 		unsigned int hctx_idx);
737 
738 /*
739  * Tag address space map.
740  */
741 struct blk_mq_tags {
742 	unsigned int nr_tags;
743 	unsigned int nr_reserved_tags;
744 	unsigned int active_queues;
745 
746 	struct sbitmap_queue bitmap_tags;
747 	struct sbitmap_queue breserved_tags;
748 
749 	struct request **rqs;
750 	struct request **static_rqs;
751 	struct list_head page_list;
752 
753 	/*
754 	 * used to clear request reference in rqs[] before freeing one
755 	 * request pool
756 	 */
757 	spinlock_t lock;
758 };
759 
760 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
761 					       unsigned int tag)
762 {
763 	if (tag < tags->nr_tags) {
764 		prefetch(tags->rqs[tag]);
765 		return tags->rqs[tag];
766 	}
767 
768 	return NULL;
769 }
770 
771 enum {
772 	BLK_MQ_UNIQUE_TAG_BITS = 16,
773 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
774 };
775 
776 u32 blk_mq_unique_tag(struct request *rq);
777 
778 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
779 {
780 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
781 }
782 
783 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
784 {
785 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
786 }
787 
788 /**
789  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
790  * @rq: target request.
791  */
792 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
793 {
794 	return READ_ONCE(rq->state);
795 }
796 
797 static inline int blk_mq_request_started(struct request *rq)
798 {
799 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
800 }
801 
802 static inline int blk_mq_request_completed(struct request *rq)
803 {
804 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
805 }
806 
807 /*
808  *
809  * Set the state to complete when completing a request from inside ->queue_rq.
810  * This is used by drivers that want to ensure special complete actions that
811  * need access to the request are called on failure, e.g. by nvme for
812  * multipathing.
813  */
814 static inline void blk_mq_set_request_complete(struct request *rq)
815 {
816 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
817 }
818 
819 /*
820  * Complete the request directly instead of deferring it to softirq or
821  * completing it another CPU. Useful in preemptible instead of an interrupt.
822  */
823 static inline void blk_mq_complete_request_direct(struct request *rq,
824 		   void (*complete)(struct request *rq))
825 {
826 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
827 	complete(rq);
828 }
829 
830 void blk_mq_start_request(struct request *rq);
831 void blk_mq_end_request(struct request *rq, blk_status_t error);
832 void __blk_mq_end_request(struct request *rq, blk_status_t error);
833 void blk_mq_end_request_batch(struct io_comp_batch *ib);
834 
835 /*
836  * Only need start/end time stamping if we have iostat or
837  * blk stats enabled, or using an IO scheduler.
838  */
839 static inline bool blk_mq_need_time_stamp(struct request *rq)
840 {
841 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
842 }
843 
844 static inline bool blk_mq_is_reserved_rq(struct request *rq)
845 {
846 	return rq->rq_flags & RQF_RESV;
847 }
848 
849 /*
850  * Batched completions only work when there is no I/O error and no special
851  * ->end_io handler.
852  */
853 static inline bool blk_mq_add_to_batch(struct request *req,
854 				       struct io_comp_batch *iob, int ioerror,
855 				       void (*complete)(struct io_comp_batch *))
856 {
857 	/*
858 	 * blk_mq_end_request_batch() can't end request allocated from
859 	 * sched tags
860 	 */
861 	if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
862 			(req->end_io && !blk_rq_is_passthrough(req)))
863 		return false;
864 
865 	if (!iob->complete)
866 		iob->complete = complete;
867 	else if (iob->complete != complete)
868 		return false;
869 	iob->need_ts |= blk_mq_need_time_stamp(req);
870 	rq_list_add(&iob->req_list, req);
871 	return true;
872 }
873 
874 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
875 void blk_mq_kick_requeue_list(struct request_queue *q);
876 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
877 void blk_mq_complete_request(struct request *rq);
878 bool blk_mq_complete_request_remote(struct request *rq);
879 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
880 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
881 void blk_mq_stop_hw_queues(struct request_queue *q);
882 void blk_mq_start_hw_queues(struct request_queue *q);
883 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
884 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
885 void blk_mq_quiesce_queue(struct request_queue *q);
886 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
887 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
888 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
889 void blk_mq_unquiesce_queue(struct request_queue *q);
890 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
891 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
892 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
893 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
894 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
895 		busy_tag_iter_fn *fn, void *priv);
896 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
897 void blk_mq_freeze_queue(struct request_queue *q);
898 void blk_mq_unfreeze_queue(struct request_queue *q);
899 void blk_freeze_queue_start(struct request_queue *q);
900 void blk_mq_freeze_queue_wait(struct request_queue *q);
901 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
902 				     unsigned long timeout);
903 
904 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
905 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
906 
907 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
908 
909 unsigned int blk_mq_rq_cpu(struct request *rq);
910 
911 bool __blk_should_fake_timeout(struct request_queue *q);
912 static inline bool blk_should_fake_timeout(struct request_queue *q)
913 {
914 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
915 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
916 		return __blk_should_fake_timeout(q);
917 	return false;
918 }
919 
920 /**
921  * blk_mq_rq_from_pdu - cast a PDU to a request
922  * @pdu: the PDU (Protocol Data Unit) to be casted
923  *
924  * Return: request
925  *
926  * Driver command data is immediately after the request. So subtract request
927  * size to get back to the original request.
928  */
929 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
930 {
931 	return pdu - sizeof(struct request);
932 }
933 
934 /**
935  * blk_mq_rq_to_pdu - cast a request to a PDU
936  * @rq: the request to be casted
937  *
938  * Return: pointer to the PDU
939  *
940  * Driver command data is immediately after the request. So add request to get
941  * the PDU.
942  */
943 static inline void *blk_mq_rq_to_pdu(struct request *rq)
944 {
945 	return rq + 1;
946 }
947 
948 #define queue_for_each_hw_ctx(q, hctx, i)				\
949 	xa_for_each(&(q)->hctx_table, (i), (hctx))
950 
951 #define hctx_for_each_ctx(hctx, ctx, i)					\
952 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
953 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
954 
955 static inline void blk_mq_cleanup_rq(struct request *rq)
956 {
957 	if (rq->q->mq_ops->cleanup_rq)
958 		rq->q->mq_ops->cleanup_rq(rq);
959 }
960 
961 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
962 		unsigned int nr_segs)
963 {
964 	rq->nr_phys_segments = nr_segs;
965 	rq->__data_len = bio->bi_iter.bi_size;
966 	rq->bio = rq->biotail = bio;
967 	rq->ioprio = bio_prio(bio);
968 }
969 
970 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
971 		struct lock_class_key *key);
972 
973 static inline bool rq_is_sync(struct request *rq)
974 {
975 	return op_is_sync(rq->cmd_flags);
976 }
977 
978 void blk_rq_init(struct request_queue *q, struct request *rq);
979 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
980 		struct bio_set *bs, gfp_t gfp_mask,
981 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
982 void blk_rq_unprep_clone(struct request *rq);
983 blk_status_t blk_insert_cloned_request(struct request *rq);
984 
985 struct rq_map_data {
986 	struct page **pages;
987 	unsigned long offset;
988 	unsigned short page_order;
989 	unsigned short nr_entries;
990 	bool null_mapped;
991 	bool from_user;
992 };
993 
994 int blk_rq_map_user(struct request_queue *, struct request *,
995 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
996 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
997 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
998 int blk_rq_map_user_iov(struct request_queue *, struct request *,
999 		struct rq_map_data *, const struct iov_iter *, gfp_t);
1000 int blk_rq_unmap_user(struct bio *);
1001 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1002 		unsigned int, gfp_t);
1003 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1004 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1005 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1006 bool blk_rq_is_poll(struct request *rq);
1007 
1008 struct req_iterator {
1009 	struct bvec_iter iter;
1010 	struct bio *bio;
1011 };
1012 
1013 #define __rq_for_each_bio(_bio, rq)	\
1014 	if ((rq->bio))			\
1015 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1016 
1017 #define rq_for_each_segment(bvl, _rq, _iter)			\
1018 	__rq_for_each_bio(_iter.bio, _rq)			\
1019 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1020 
1021 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1022 	__rq_for_each_bio(_iter.bio, _rq)			\
1023 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1024 
1025 #define rq_iter_last(bvec, _iter)				\
1026 		(_iter.bio->bi_next == NULL &&			\
1027 		 bio_iter_last(bvec, _iter.iter))
1028 
1029 /*
1030  * blk_rq_pos()			: the current sector
1031  * blk_rq_bytes()		: bytes left in the entire request
1032  * blk_rq_cur_bytes()		: bytes left in the current segment
1033  * blk_rq_sectors()		: sectors left in the entire request
1034  * blk_rq_cur_sectors()		: sectors left in the current segment
1035  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1036  */
1037 static inline sector_t blk_rq_pos(const struct request *rq)
1038 {
1039 	return rq->__sector;
1040 }
1041 
1042 static inline unsigned int blk_rq_bytes(const struct request *rq)
1043 {
1044 	return rq->__data_len;
1045 }
1046 
1047 static inline int blk_rq_cur_bytes(const struct request *rq)
1048 {
1049 	if (!rq->bio)
1050 		return 0;
1051 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1052 		return rq->bio->bi_iter.bi_size;
1053 	return bio_iovec(rq->bio).bv_len;
1054 }
1055 
1056 static inline unsigned int blk_rq_sectors(const struct request *rq)
1057 {
1058 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1059 }
1060 
1061 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1062 {
1063 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1064 }
1065 
1066 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1067 {
1068 	return rq->stats_sectors;
1069 }
1070 
1071 /*
1072  * Some commands like WRITE SAME have a payload or data transfer size which
1073  * is different from the size of the request.  Any driver that supports such
1074  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1075  * calculate the data transfer size.
1076  */
1077 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1078 {
1079 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1080 		return rq->special_vec.bv_len;
1081 	return blk_rq_bytes(rq);
1082 }
1083 
1084 /*
1085  * Return the first full biovec in the request.  The caller needs to check that
1086  * there are any bvecs before calling this helper.
1087  */
1088 static inline struct bio_vec req_bvec(struct request *rq)
1089 {
1090 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1091 		return rq->special_vec;
1092 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1093 }
1094 
1095 static inline unsigned int blk_rq_count_bios(struct request *rq)
1096 {
1097 	unsigned int nr_bios = 0;
1098 	struct bio *bio;
1099 
1100 	__rq_for_each_bio(bio, rq)
1101 		nr_bios++;
1102 
1103 	return nr_bios;
1104 }
1105 
1106 void blk_steal_bios(struct bio_list *list, struct request *rq);
1107 
1108 /*
1109  * Request completion related functions.
1110  *
1111  * blk_update_request() completes given number of bytes and updates
1112  * the request without completing it.
1113  */
1114 bool blk_update_request(struct request *rq, blk_status_t error,
1115 			       unsigned int nr_bytes);
1116 void blk_abort_request(struct request *);
1117 
1118 /*
1119  * Number of physical segments as sent to the device.
1120  *
1121  * Normally this is the number of discontiguous data segments sent by the
1122  * submitter.  But for data-less command like discard we might have no
1123  * actual data segments submitted, but the driver might have to add it's
1124  * own special payload.  In that case we still return 1 here so that this
1125  * special payload will be mapped.
1126  */
1127 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1128 {
1129 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1130 		return 1;
1131 	return rq->nr_phys_segments;
1132 }
1133 
1134 /*
1135  * Number of discard segments (or ranges) the driver needs to fill in.
1136  * Each discard bio merged into a request is counted as one segment.
1137  */
1138 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1139 {
1140 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1141 }
1142 
1143 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1144 		struct scatterlist *sglist, struct scatterlist **last_sg);
1145 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1146 		struct scatterlist *sglist)
1147 {
1148 	struct scatterlist *last_sg = NULL;
1149 
1150 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1151 }
1152 void blk_dump_rq_flags(struct request *, char *);
1153 
1154 #ifdef CONFIG_BLK_DEV_ZONED
1155 static inline unsigned int blk_rq_zone_no(struct request *rq)
1156 {
1157 	return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1158 }
1159 
1160 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1161 {
1162 	return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1163 }
1164 
1165 /**
1166  * blk_rq_is_seq_zoned_write() - Check if @rq requires write serialization.
1167  * @rq: Request to examine.
1168  *
1169  * Note: REQ_OP_ZONE_APPEND requests do not require serialization.
1170  */
1171 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1172 {
1173 	return op_needs_zoned_write_locking(req_op(rq)) &&
1174 		blk_rq_zone_is_seq(rq);
1175 }
1176 
1177 bool blk_req_needs_zone_write_lock(struct request *rq);
1178 bool blk_req_zone_write_trylock(struct request *rq);
1179 void __blk_req_zone_write_lock(struct request *rq);
1180 void __blk_req_zone_write_unlock(struct request *rq);
1181 
1182 static inline void blk_req_zone_write_lock(struct request *rq)
1183 {
1184 	if (blk_req_needs_zone_write_lock(rq))
1185 		__blk_req_zone_write_lock(rq);
1186 }
1187 
1188 static inline void blk_req_zone_write_unlock(struct request *rq)
1189 {
1190 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1191 		__blk_req_zone_write_unlock(rq);
1192 }
1193 
1194 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1195 {
1196 	return rq->q->disk->seq_zones_wlock &&
1197 		test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1198 }
1199 
1200 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1201 {
1202 	if (!blk_req_needs_zone_write_lock(rq))
1203 		return true;
1204 	return !blk_req_zone_is_write_locked(rq);
1205 }
1206 #else /* CONFIG_BLK_DEV_ZONED */
1207 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1208 {
1209 	return false;
1210 }
1211 
1212 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1213 {
1214 	return false;
1215 }
1216 
1217 static inline void blk_req_zone_write_lock(struct request *rq)
1218 {
1219 }
1220 
1221 static inline void blk_req_zone_write_unlock(struct request *rq)
1222 {
1223 }
1224 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1225 {
1226 	return false;
1227 }
1228 
1229 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1230 {
1231 	return true;
1232 }
1233 #endif /* CONFIG_BLK_DEV_ZONED */
1234 
1235 #endif /* BLK_MQ_H */
1236