1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_MQ_H 3 #define BLK_MQ_H 4 5 #include <linux/blkdev.h> 6 #include <linux/sbitmap.h> 7 #include <linux/lockdep.h> 8 #include <linux/scatterlist.h> 9 #include <linux/prefetch.h> 10 #include <linux/srcu.h> 11 12 struct blk_mq_tags; 13 struct blk_flush_queue; 14 15 #define BLKDEV_MIN_RQ 4 16 #define BLKDEV_DEFAULT_RQ 128 17 18 enum rq_end_io_ret { 19 RQ_END_IO_NONE, 20 RQ_END_IO_FREE, 21 }; 22 23 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t); 24 25 /* 26 * request flags */ 27 typedef __u32 __bitwise req_flags_t; 28 29 /* drive already may have started this one */ 30 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 31 /* request for flush sequence */ 32 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 33 /* merge of different types, fail separately */ 34 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 35 /* track inflight for MQ */ 36 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 37 /* don't call prep for this one */ 38 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 39 /* use hctx->sched_tags */ 40 #define RQF_SCHED_TAGS ((__force req_flags_t)(1 << 8)) 41 /* use an I/O scheduler for this request */ 42 #define RQF_USE_SCHED ((__force req_flags_t)(1 << 9)) 43 /* vaguely specified driver internal error. Ignored by the block layer */ 44 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 45 /* don't warn about errors */ 46 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 47 /* account into disk and partition IO statistics */ 48 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 49 /* runtime pm request */ 50 #define RQF_PM ((__force req_flags_t)(1 << 15)) 51 /* on IO scheduler merge hash */ 52 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 53 /* track IO completion time */ 54 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 55 /* Look at ->special_vec for the actual data payload instead of the 56 bio chain. */ 57 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 58 /* The per-zone write lock is held for this request */ 59 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 60 /* ->timeout has been called, don't expire again */ 61 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 62 #define RQF_RESV ((__force req_flags_t)(1 << 23)) 63 64 /* flags that prevent us from merging requests: */ 65 #define RQF_NOMERGE_FLAGS \ 66 (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 67 68 enum mq_rq_state { 69 MQ_RQ_IDLE = 0, 70 MQ_RQ_IN_FLIGHT = 1, 71 MQ_RQ_COMPLETE = 2, 72 }; 73 74 /* 75 * Try to put the fields that are referenced together in the same cacheline. 76 * 77 * If you modify this structure, make sure to update blk_rq_init() and 78 * especially blk_mq_rq_ctx_init() to take care of the added fields. 79 */ 80 struct request { 81 struct request_queue *q; 82 struct blk_mq_ctx *mq_ctx; 83 struct blk_mq_hw_ctx *mq_hctx; 84 85 blk_opf_t cmd_flags; /* op and common flags */ 86 req_flags_t rq_flags; 87 88 int tag; 89 int internal_tag; 90 91 unsigned int timeout; 92 93 /* the following two fields are internal, NEVER access directly */ 94 unsigned int __data_len; /* total data len */ 95 sector_t __sector; /* sector cursor */ 96 97 struct bio *bio; 98 struct bio *biotail; 99 100 union { 101 struct list_head queuelist; 102 struct request *rq_next; 103 }; 104 105 struct block_device *part; 106 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 107 /* Time that the first bio started allocating this request. */ 108 u64 alloc_time_ns; 109 #endif 110 /* Time that this request was allocated for this IO. */ 111 u64 start_time_ns; 112 /* Time that I/O was submitted to the device. */ 113 u64 io_start_time_ns; 114 115 #ifdef CONFIG_BLK_WBT 116 unsigned short wbt_flags; 117 #endif 118 /* 119 * rq sectors used for blk stats. It has the same value 120 * with blk_rq_sectors(rq), except that it never be zeroed 121 * by completion. 122 */ 123 unsigned short stats_sectors; 124 125 /* 126 * Number of scatter-gather DMA addr+len pairs after 127 * physical address coalescing is performed. 128 */ 129 unsigned short nr_phys_segments; 130 131 #ifdef CONFIG_BLK_DEV_INTEGRITY 132 unsigned short nr_integrity_segments; 133 #endif 134 135 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 136 struct bio_crypt_ctx *crypt_ctx; 137 struct blk_crypto_keyslot *crypt_keyslot; 138 #endif 139 140 unsigned short ioprio; 141 142 enum mq_rq_state state; 143 atomic_t ref; 144 145 unsigned long deadline; 146 147 /* 148 * The hash is used inside the scheduler, and killed once the 149 * request reaches the dispatch list. The ipi_list is only used 150 * to queue the request for softirq completion, which is long 151 * after the request has been unhashed (and even removed from 152 * the dispatch list). 153 */ 154 union { 155 struct hlist_node hash; /* merge hash */ 156 struct llist_node ipi_list; 157 }; 158 159 /* 160 * The rb_node is only used inside the io scheduler, requests 161 * are pruned when moved to the dispatch queue. So let the 162 * completion_data share space with the rb_node. 163 */ 164 union { 165 struct rb_node rb_node; /* sort/lookup */ 166 struct bio_vec special_vec; 167 void *completion_data; 168 }; 169 170 /* 171 * Three pointers are available for the IO schedulers, if they need 172 * more they have to dynamically allocate it. 173 */ 174 struct { 175 struct io_cq *icq; 176 void *priv[2]; 177 } elv; 178 179 struct { 180 unsigned int seq; 181 struct list_head list; 182 rq_end_io_fn *saved_end_io; 183 } flush; 184 185 union { 186 struct __call_single_data csd; 187 u64 fifo_time; 188 }; 189 190 /* 191 * completion callback. 192 */ 193 rq_end_io_fn *end_io; 194 void *end_io_data; 195 }; 196 197 static inline enum req_op req_op(const struct request *req) 198 { 199 return req->cmd_flags & REQ_OP_MASK; 200 } 201 202 static inline bool blk_rq_is_passthrough(struct request *rq) 203 { 204 return blk_op_is_passthrough(rq->cmd_flags); 205 } 206 207 static inline unsigned short req_get_ioprio(struct request *req) 208 { 209 return req->ioprio; 210 } 211 212 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 213 214 #define rq_dma_dir(rq) \ 215 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 216 217 #define rq_list_add(listptr, rq) do { \ 218 (rq)->rq_next = *(listptr); \ 219 *(listptr) = rq; \ 220 } while (0) 221 222 #define rq_list_add_tail(lastpptr, rq) do { \ 223 (rq)->rq_next = NULL; \ 224 **(lastpptr) = rq; \ 225 *(lastpptr) = &rq->rq_next; \ 226 } while (0) 227 228 #define rq_list_pop(listptr) \ 229 ({ \ 230 struct request *__req = NULL; \ 231 if ((listptr) && *(listptr)) { \ 232 __req = *(listptr); \ 233 *(listptr) = __req->rq_next; \ 234 } \ 235 __req; \ 236 }) 237 238 #define rq_list_peek(listptr) \ 239 ({ \ 240 struct request *__req = NULL; \ 241 if ((listptr) && *(listptr)) \ 242 __req = *(listptr); \ 243 __req; \ 244 }) 245 246 #define rq_list_for_each(listptr, pos) \ 247 for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos)) 248 249 #define rq_list_for_each_safe(listptr, pos, nxt) \ 250 for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \ 251 pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL) 252 253 #define rq_list_next(rq) (rq)->rq_next 254 #define rq_list_empty(list) ((list) == (struct request *) NULL) 255 256 /** 257 * rq_list_move() - move a struct request from one list to another 258 * @src: The source list @rq is currently in 259 * @dst: The destination list that @rq will be appended to 260 * @rq: The request to move 261 * @prev: The request preceding @rq in @src (NULL if @rq is the head) 262 */ 263 static inline void rq_list_move(struct request **src, struct request **dst, 264 struct request *rq, struct request *prev) 265 { 266 if (prev) 267 prev->rq_next = rq->rq_next; 268 else 269 *src = rq->rq_next; 270 rq_list_add(dst, rq); 271 } 272 273 /** 274 * enum blk_eh_timer_return - How the timeout handler should proceed 275 * @BLK_EH_DONE: The block driver completed the command or will complete it at 276 * a later time. 277 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the 278 * request to complete. 279 */ 280 enum blk_eh_timer_return { 281 BLK_EH_DONE, 282 BLK_EH_RESET_TIMER, 283 }; 284 285 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 286 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 287 288 /** 289 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware 290 * block device 291 */ 292 struct blk_mq_hw_ctx { 293 struct { 294 /** @lock: Protects the dispatch list. */ 295 spinlock_t lock; 296 /** 297 * @dispatch: Used for requests that are ready to be 298 * dispatched to the hardware but for some reason (e.g. lack of 299 * resources) could not be sent to the hardware. As soon as the 300 * driver can send new requests, requests at this list will 301 * be sent first for a fairer dispatch. 302 */ 303 struct list_head dispatch; 304 /** 305 * @state: BLK_MQ_S_* flags. Defines the state of the hw 306 * queue (active, scheduled to restart, stopped). 307 */ 308 unsigned long state; 309 } ____cacheline_aligned_in_smp; 310 311 /** 312 * @run_work: Used for scheduling a hardware queue run at a later time. 313 */ 314 struct delayed_work run_work; 315 /** @cpumask: Map of available CPUs where this hctx can run. */ 316 cpumask_var_t cpumask; 317 /** 318 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU 319 * selection from @cpumask. 320 */ 321 int next_cpu; 322 /** 323 * @next_cpu_batch: Counter of how many works left in the batch before 324 * changing to the next CPU. 325 */ 326 int next_cpu_batch; 327 328 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */ 329 unsigned long flags; 330 331 /** 332 * @sched_data: Pointer owned by the IO scheduler attached to a request 333 * queue. It's up to the IO scheduler how to use this pointer. 334 */ 335 void *sched_data; 336 /** 337 * @queue: Pointer to the request queue that owns this hardware context. 338 */ 339 struct request_queue *queue; 340 /** @fq: Queue of requests that need to perform a flush operation. */ 341 struct blk_flush_queue *fq; 342 343 /** 344 * @driver_data: Pointer to data owned by the block driver that created 345 * this hctx 346 */ 347 void *driver_data; 348 349 /** 350 * @ctx_map: Bitmap for each software queue. If bit is on, there is a 351 * pending request in that software queue. 352 */ 353 struct sbitmap ctx_map; 354 355 /** 356 * @dispatch_from: Software queue to be used when no scheduler was 357 * selected. 358 */ 359 struct blk_mq_ctx *dispatch_from; 360 /** 361 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to 362 * decide if the hw_queue is busy using Exponential Weighted Moving 363 * Average algorithm. 364 */ 365 unsigned int dispatch_busy; 366 367 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */ 368 unsigned short type; 369 /** @nr_ctx: Number of software queues. */ 370 unsigned short nr_ctx; 371 /** @ctxs: Array of software queues. */ 372 struct blk_mq_ctx **ctxs; 373 374 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */ 375 spinlock_t dispatch_wait_lock; 376 /** 377 * @dispatch_wait: Waitqueue to put requests when there is no tag 378 * available at the moment, to wait for another try in the future. 379 */ 380 wait_queue_entry_t dispatch_wait; 381 382 /** 383 * @wait_index: Index of next available dispatch_wait queue to insert 384 * requests. 385 */ 386 atomic_t wait_index; 387 388 /** 389 * @tags: Tags owned by the block driver. A tag at this set is only 390 * assigned when a request is dispatched from a hardware queue. 391 */ 392 struct blk_mq_tags *tags; 393 /** 394 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O 395 * scheduler associated with a request queue, a tag is assigned when 396 * that request is allocated. Else, this member is not used. 397 */ 398 struct blk_mq_tags *sched_tags; 399 400 /** @queued: Number of queued requests. */ 401 unsigned long queued; 402 /** @run: Number of dispatched requests. */ 403 unsigned long run; 404 405 /** @numa_node: NUMA node the storage adapter has been connected to. */ 406 unsigned int numa_node; 407 /** @queue_num: Index of this hardware queue. */ 408 unsigned int queue_num; 409 410 /** 411 * @nr_active: Number of active requests. Only used when a tag set is 412 * shared across request queues. 413 */ 414 atomic_t nr_active; 415 416 /** @cpuhp_online: List to store request if CPU is going to die */ 417 struct hlist_node cpuhp_online; 418 /** @cpuhp_dead: List to store request if some CPU die. */ 419 struct hlist_node cpuhp_dead; 420 /** @kobj: Kernel object for sysfs. */ 421 struct kobject kobj; 422 423 #ifdef CONFIG_BLK_DEBUG_FS 424 /** 425 * @debugfs_dir: debugfs directory for this hardware queue. Named 426 * as cpu<cpu_number>. 427 */ 428 struct dentry *debugfs_dir; 429 /** @sched_debugfs_dir: debugfs directory for the scheduler. */ 430 struct dentry *sched_debugfs_dir; 431 #endif 432 433 /** 434 * @hctx_list: if this hctx is not in use, this is an entry in 435 * q->unused_hctx_list. 436 */ 437 struct list_head hctx_list; 438 }; 439 440 /** 441 * struct blk_mq_queue_map - Map software queues to hardware queues 442 * @mq_map: CPU ID to hardware queue index map. This is an array 443 * with nr_cpu_ids elements. Each element has a value in the range 444 * [@queue_offset, @queue_offset + @nr_queues). 445 * @nr_queues: Number of hardware queues to map CPU IDs onto. 446 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe 447 * driver to map each hardware queue type (enum hctx_type) onto a distinct 448 * set of hardware queues. 449 */ 450 struct blk_mq_queue_map { 451 unsigned int *mq_map; 452 unsigned int nr_queues; 453 unsigned int queue_offset; 454 }; 455 456 /** 457 * enum hctx_type - Type of hardware queue 458 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for. 459 * @HCTX_TYPE_READ: Just for READ I/O. 460 * @HCTX_TYPE_POLL: Polled I/O of any kind. 461 * @HCTX_MAX_TYPES: Number of types of hctx. 462 */ 463 enum hctx_type { 464 HCTX_TYPE_DEFAULT, 465 HCTX_TYPE_READ, 466 HCTX_TYPE_POLL, 467 468 HCTX_MAX_TYPES, 469 }; 470 471 /** 472 * struct blk_mq_tag_set - tag set that can be shared between request queues 473 * @ops: Pointers to functions that implement block driver behavior. 474 * @map: One or more ctx -> hctx mappings. One map exists for each 475 * hardware queue type (enum hctx_type) that the driver wishes 476 * to support. There are no restrictions on maps being of the 477 * same size, and it's perfectly legal to share maps between 478 * types. 479 * @nr_maps: Number of elements in the @map array. A number in the range 480 * [1, HCTX_MAX_TYPES]. 481 * @nr_hw_queues: Number of hardware queues supported by the block driver that 482 * owns this data structure. 483 * @queue_depth: Number of tags per hardware queue, reserved tags included. 484 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag 485 * allocations. 486 * @cmd_size: Number of additional bytes to allocate per request. The block 487 * driver owns these additional bytes. 488 * @numa_node: NUMA node the storage adapter has been connected to. 489 * @timeout: Request processing timeout in jiffies. 490 * @flags: Zero or more BLK_MQ_F_* flags. 491 * @driver_data: Pointer to data owned by the block driver that created this 492 * tag set. 493 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues 494 * elements. 495 * @shared_tags: 496 * Shared set of tags. Has @nr_hw_queues elements. If set, 497 * shared by all @tags. 498 * @tag_list_lock: Serializes tag_list accesses. 499 * @tag_list: List of the request queues that use this tag set. See also 500 * request_queue.tag_set_list. 501 * @srcu: Use as lock when type of the request queue is blocking 502 * (BLK_MQ_F_BLOCKING). 503 */ 504 struct blk_mq_tag_set { 505 const struct blk_mq_ops *ops; 506 struct blk_mq_queue_map map[HCTX_MAX_TYPES]; 507 unsigned int nr_maps; 508 unsigned int nr_hw_queues; 509 unsigned int queue_depth; 510 unsigned int reserved_tags; 511 unsigned int cmd_size; 512 int numa_node; 513 unsigned int timeout; 514 unsigned int flags; 515 void *driver_data; 516 517 struct blk_mq_tags **tags; 518 519 struct blk_mq_tags *shared_tags; 520 521 struct mutex tag_list_lock; 522 struct list_head tag_list; 523 struct srcu_struct *srcu; 524 }; 525 526 /** 527 * struct blk_mq_queue_data - Data about a request inserted in a queue 528 * 529 * @rq: Request pointer. 530 * @last: If it is the last request in the queue. 531 */ 532 struct blk_mq_queue_data { 533 struct request *rq; 534 bool last; 535 }; 536 537 typedef bool (busy_tag_iter_fn)(struct request *, void *); 538 539 /** 540 * struct blk_mq_ops - Callback functions that implements block driver 541 * behaviour. 542 */ 543 struct blk_mq_ops { 544 /** 545 * @queue_rq: Queue a new request from block IO. 546 */ 547 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *, 548 const struct blk_mq_queue_data *); 549 550 /** 551 * @commit_rqs: If a driver uses bd->last to judge when to submit 552 * requests to hardware, it must define this function. In case of errors 553 * that make us stop issuing further requests, this hook serves the 554 * purpose of kicking the hardware (which the last request otherwise 555 * would have done). 556 */ 557 void (*commit_rqs)(struct blk_mq_hw_ctx *); 558 559 /** 560 * @queue_rqs: Queue a list of new requests. Driver is guaranteed 561 * that each request belongs to the same queue. If the driver doesn't 562 * empty the @rqlist completely, then the rest will be queued 563 * individually by the block layer upon return. 564 */ 565 void (*queue_rqs)(struct request **rqlist); 566 567 /** 568 * @get_budget: Reserve budget before queue request, once .queue_rq is 569 * run, it is driver's responsibility to release the 570 * reserved budget. Also we have to handle failure case 571 * of .get_budget for avoiding I/O deadlock. 572 */ 573 int (*get_budget)(struct request_queue *); 574 575 /** 576 * @put_budget: Release the reserved budget. 577 */ 578 void (*put_budget)(struct request_queue *, int); 579 580 /** 581 * @set_rq_budget_token: store rq's budget token 582 */ 583 void (*set_rq_budget_token)(struct request *, int); 584 /** 585 * @get_rq_budget_token: retrieve rq's budget token 586 */ 587 int (*get_rq_budget_token)(struct request *); 588 589 /** 590 * @timeout: Called on request timeout. 591 */ 592 enum blk_eh_timer_return (*timeout)(struct request *); 593 594 /** 595 * @poll: Called to poll for completion of a specific tag. 596 */ 597 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *); 598 599 /** 600 * @complete: Mark the request as complete. 601 */ 602 void (*complete)(struct request *); 603 604 /** 605 * @init_hctx: Called when the block layer side of a hardware queue has 606 * been set up, allowing the driver to allocate/init matching 607 * structures. 608 */ 609 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int); 610 /** 611 * @exit_hctx: Ditto for exit/teardown. 612 */ 613 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int); 614 615 /** 616 * @init_request: Called for every command allocated by the block layer 617 * to allow the driver to set up driver specific data. 618 * 619 * Tag greater than or equal to queue_depth is for setting up 620 * flush request. 621 */ 622 int (*init_request)(struct blk_mq_tag_set *set, struct request *, 623 unsigned int, unsigned int); 624 /** 625 * @exit_request: Ditto for exit/teardown. 626 */ 627 void (*exit_request)(struct blk_mq_tag_set *set, struct request *, 628 unsigned int); 629 630 /** 631 * @cleanup_rq: Called before freeing one request which isn't completed 632 * yet, and usually for freeing the driver private data. 633 */ 634 void (*cleanup_rq)(struct request *); 635 636 /** 637 * @busy: If set, returns whether or not this queue currently is busy. 638 */ 639 bool (*busy)(struct request_queue *); 640 641 /** 642 * @map_queues: This allows drivers specify their own queue mapping by 643 * overriding the setup-time function that builds the mq_map. 644 */ 645 void (*map_queues)(struct blk_mq_tag_set *set); 646 647 #ifdef CONFIG_BLK_DEBUG_FS 648 /** 649 * @show_rq: Used by the debugfs implementation to show driver-specific 650 * information about a request. 651 */ 652 void (*show_rq)(struct seq_file *m, struct request *rq); 653 #endif 654 }; 655 656 enum { 657 BLK_MQ_F_SHOULD_MERGE = 1 << 0, 658 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1, 659 /* 660 * Set when this device requires underlying blk-mq device for 661 * completing IO: 662 */ 663 BLK_MQ_F_STACKING = 1 << 2, 664 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3, 665 BLK_MQ_F_BLOCKING = 1 << 5, 666 /* Do not allow an I/O scheduler to be configured. */ 667 BLK_MQ_F_NO_SCHED = 1 << 6, 668 /* 669 * Select 'none' during queue registration in case of a single hwq 670 * or shared hwqs instead of 'mq-deadline'. 671 */ 672 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7, 673 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8, 674 BLK_MQ_F_ALLOC_POLICY_BITS = 1, 675 676 BLK_MQ_S_STOPPED = 0, 677 BLK_MQ_S_TAG_ACTIVE = 1, 678 BLK_MQ_S_SCHED_RESTART = 2, 679 680 /* hw queue is inactive after all its CPUs become offline */ 681 BLK_MQ_S_INACTIVE = 3, 682 683 BLK_MQ_MAX_DEPTH = 10240, 684 685 BLK_MQ_CPU_WORK_BATCH = 8, 686 }; 687 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ 688 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ 689 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) 690 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ 691 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ 692 << BLK_MQ_F_ALLOC_POLICY_START_BIT) 693 694 #define BLK_MQ_NO_HCTX_IDX (-1U) 695 696 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 697 struct lock_class_key *lkclass); 698 #define blk_mq_alloc_disk(set, queuedata) \ 699 ({ \ 700 static struct lock_class_key __key; \ 701 \ 702 __blk_mq_alloc_disk(set, queuedata, &__key); \ 703 }) 704 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 705 struct lock_class_key *lkclass); 706 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *); 707 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 708 struct request_queue *q); 709 void blk_mq_destroy_queue(struct request_queue *); 710 711 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); 712 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 713 const struct blk_mq_ops *ops, unsigned int queue_depth, 714 unsigned int set_flags); 715 void blk_mq_free_tag_set(struct blk_mq_tag_set *set); 716 717 void blk_mq_free_request(struct request *rq); 718 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 719 unsigned int poll_flags); 720 721 bool blk_mq_queue_inflight(struct request_queue *q); 722 723 enum { 724 /* return when out of requests */ 725 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0), 726 /* allocate from reserved pool */ 727 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1), 728 /* set RQF_PM */ 729 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2), 730 }; 731 732 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 733 blk_mq_req_flags_t flags); 734 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 735 blk_opf_t opf, blk_mq_req_flags_t flags, 736 unsigned int hctx_idx); 737 738 /* 739 * Tag address space map. 740 */ 741 struct blk_mq_tags { 742 unsigned int nr_tags; 743 unsigned int nr_reserved_tags; 744 unsigned int active_queues; 745 746 struct sbitmap_queue bitmap_tags; 747 struct sbitmap_queue breserved_tags; 748 749 struct request **rqs; 750 struct request **static_rqs; 751 struct list_head page_list; 752 753 /* 754 * used to clear request reference in rqs[] before freeing one 755 * request pool 756 */ 757 spinlock_t lock; 758 }; 759 760 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, 761 unsigned int tag) 762 { 763 if (tag < tags->nr_tags) { 764 prefetch(tags->rqs[tag]); 765 return tags->rqs[tag]; 766 } 767 768 return NULL; 769 } 770 771 enum { 772 BLK_MQ_UNIQUE_TAG_BITS = 16, 773 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, 774 }; 775 776 u32 blk_mq_unique_tag(struct request *rq); 777 778 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) 779 { 780 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; 781 } 782 783 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) 784 { 785 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; 786 } 787 788 /** 789 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request 790 * @rq: target request. 791 */ 792 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) 793 { 794 return READ_ONCE(rq->state); 795 } 796 797 static inline int blk_mq_request_started(struct request *rq) 798 { 799 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 800 } 801 802 static inline int blk_mq_request_completed(struct request *rq) 803 { 804 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; 805 } 806 807 /* 808 * 809 * Set the state to complete when completing a request from inside ->queue_rq. 810 * This is used by drivers that want to ensure special complete actions that 811 * need access to the request are called on failure, e.g. by nvme for 812 * multipathing. 813 */ 814 static inline void blk_mq_set_request_complete(struct request *rq) 815 { 816 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 817 } 818 819 /* 820 * Complete the request directly instead of deferring it to softirq or 821 * completing it another CPU. Useful in preemptible instead of an interrupt. 822 */ 823 static inline void blk_mq_complete_request_direct(struct request *rq, 824 void (*complete)(struct request *rq)) 825 { 826 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 827 complete(rq); 828 } 829 830 void blk_mq_start_request(struct request *rq); 831 void blk_mq_end_request(struct request *rq, blk_status_t error); 832 void __blk_mq_end_request(struct request *rq, blk_status_t error); 833 void blk_mq_end_request_batch(struct io_comp_batch *ib); 834 835 /* 836 * Only need start/end time stamping if we have iostat or 837 * blk stats enabled, or using an IO scheduler. 838 */ 839 static inline bool blk_mq_need_time_stamp(struct request *rq) 840 { 841 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED)); 842 } 843 844 static inline bool blk_mq_is_reserved_rq(struct request *rq) 845 { 846 return rq->rq_flags & RQF_RESV; 847 } 848 849 /* 850 * Batched completions only work when there is no I/O error and no special 851 * ->end_io handler. 852 */ 853 static inline bool blk_mq_add_to_batch(struct request *req, 854 struct io_comp_batch *iob, int ioerror, 855 void (*complete)(struct io_comp_batch *)) 856 { 857 /* 858 * blk_mq_end_request_batch() can't end request allocated from 859 * sched tags 860 */ 861 if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror || 862 (req->end_io && !blk_rq_is_passthrough(req))) 863 return false; 864 865 if (!iob->complete) 866 iob->complete = complete; 867 else if (iob->complete != complete) 868 return false; 869 iob->need_ts |= blk_mq_need_time_stamp(req); 870 rq_list_add(&iob->req_list, req); 871 return true; 872 } 873 874 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); 875 void blk_mq_kick_requeue_list(struct request_queue *q); 876 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); 877 void blk_mq_complete_request(struct request *rq); 878 bool blk_mq_complete_request_remote(struct request *rq); 879 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); 880 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); 881 void blk_mq_stop_hw_queues(struct request_queue *q); 882 void blk_mq_start_hw_queues(struct request_queue *q); 883 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); 884 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); 885 void blk_mq_quiesce_queue(struct request_queue *q); 886 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set); 887 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set); 888 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set); 889 void blk_mq_unquiesce_queue(struct request_queue *q); 890 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); 891 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); 892 void blk_mq_run_hw_queues(struct request_queue *q, bool async); 893 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs); 894 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 895 busy_tag_iter_fn *fn, void *priv); 896 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset); 897 void blk_mq_freeze_queue(struct request_queue *q); 898 void blk_mq_unfreeze_queue(struct request_queue *q); 899 void blk_freeze_queue_start(struct request_queue *q); 900 void blk_mq_freeze_queue_wait(struct request_queue *q); 901 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 902 unsigned long timeout); 903 904 void blk_mq_map_queues(struct blk_mq_queue_map *qmap); 905 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); 906 907 void blk_mq_quiesce_queue_nowait(struct request_queue *q); 908 909 unsigned int blk_mq_rq_cpu(struct request *rq); 910 911 bool __blk_should_fake_timeout(struct request_queue *q); 912 static inline bool blk_should_fake_timeout(struct request_queue *q) 913 { 914 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) && 915 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags)) 916 return __blk_should_fake_timeout(q); 917 return false; 918 } 919 920 /** 921 * blk_mq_rq_from_pdu - cast a PDU to a request 922 * @pdu: the PDU (Protocol Data Unit) to be casted 923 * 924 * Return: request 925 * 926 * Driver command data is immediately after the request. So subtract request 927 * size to get back to the original request. 928 */ 929 static inline struct request *blk_mq_rq_from_pdu(void *pdu) 930 { 931 return pdu - sizeof(struct request); 932 } 933 934 /** 935 * blk_mq_rq_to_pdu - cast a request to a PDU 936 * @rq: the request to be casted 937 * 938 * Return: pointer to the PDU 939 * 940 * Driver command data is immediately after the request. So add request to get 941 * the PDU. 942 */ 943 static inline void *blk_mq_rq_to_pdu(struct request *rq) 944 { 945 return rq + 1; 946 } 947 948 #define queue_for_each_hw_ctx(q, hctx, i) \ 949 xa_for_each(&(q)->hctx_table, (i), (hctx)) 950 951 #define hctx_for_each_ctx(hctx, ctx, i) \ 952 for ((i) = 0; (i) < (hctx)->nr_ctx && \ 953 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) 954 955 static inline void blk_mq_cleanup_rq(struct request *rq) 956 { 957 if (rq->q->mq_ops->cleanup_rq) 958 rq->q->mq_ops->cleanup_rq(rq); 959 } 960 961 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, 962 unsigned int nr_segs) 963 { 964 rq->nr_phys_segments = nr_segs; 965 rq->__data_len = bio->bi_iter.bi_size; 966 rq->bio = rq->biotail = bio; 967 rq->ioprio = bio_prio(bio); 968 } 969 970 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 971 struct lock_class_key *key); 972 973 static inline bool rq_is_sync(struct request *rq) 974 { 975 return op_is_sync(rq->cmd_flags); 976 } 977 978 void blk_rq_init(struct request_queue *q, struct request *rq); 979 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 980 struct bio_set *bs, gfp_t gfp_mask, 981 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data); 982 void blk_rq_unprep_clone(struct request *rq); 983 blk_status_t blk_insert_cloned_request(struct request *rq); 984 985 struct rq_map_data { 986 struct page **pages; 987 unsigned long offset; 988 unsigned short page_order; 989 unsigned short nr_entries; 990 bool null_mapped; 991 bool from_user; 992 }; 993 994 int blk_rq_map_user(struct request_queue *, struct request *, 995 struct rq_map_data *, void __user *, unsigned long, gfp_t); 996 int blk_rq_map_user_io(struct request *, struct rq_map_data *, 997 void __user *, unsigned long, gfp_t, bool, int, bool, int); 998 int blk_rq_map_user_iov(struct request_queue *, struct request *, 999 struct rq_map_data *, const struct iov_iter *, gfp_t); 1000 int blk_rq_unmap_user(struct bio *); 1001 int blk_rq_map_kern(struct request_queue *, struct request *, void *, 1002 unsigned int, gfp_t); 1003 int blk_rq_append_bio(struct request *rq, struct bio *bio); 1004 void blk_execute_rq_nowait(struct request *rq, bool at_head); 1005 blk_status_t blk_execute_rq(struct request *rq, bool at_head); 1006 bool blk_rq_is_poll(struct request *rq); 1007 1008 struct req_iterator { 1009 struct bvec_iter iter; 1010 struct bio *bio; 1011 }; 1012 1013 #define __rq_for_each_bio(_bio, rq) \ 1014 if ((rq->bio)) \ 1015 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 1016 1017 #define rq_for_each_segment(bvl, _rq, _iter) \ 1018 __rq_for_each_bio(_iter.bio, _rq) \ 1019 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 1020 1021 #define rq_for_each_bvec(bvl, _rq, _iter) \ 1022 __rq_for_each_bio(_iter.bio, _rq) \ 1023 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 1024 1025 #define rq_iter_last(bvec, _iter) \ 1026 (_iter.bio->bi_next == NULL && \ 1027 bio_iter_last(bvec, _iter.iter)) 1028 1029 /* 1030 * blk_rq_pos() : the current sector 1031 * blk_rq_bytes() : bytes left in the entire request 1032 * blk_rq_cur_bytes() : bytes left in the current segment 1033 * blk_rq_sectors() : sectors left in the entire request 1034 * blk_rq_cur_sectors() : sectors left in the current segment 1035 * blk_rq_stats_sectors() : sectors of the entire request used for stats 1036 */ 1037 static inline sector_t blk_rq_pos(const struct request *rq) 1038 { 1039 return rq->__sector; 1040 } 1041 1042 static inline unsigned int blk_rq_bytes(const struct request *rq) 1043 { 1044 return rq->__data_len; 1045 } 1046 1047 static inline int blk_rq_cur_bytes(const struct request *rq) 1048 { 1049 if (!rq->bio) 1050 return 0; 1051 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */ 1052 return rq->bio->bi_iter.bi_size; 1053 return bio_iovec(rq->bio).bv_len; 1054 } 1055 1056 static inline unsigned int blk_rq_sectors(const struct request *rq) 1057 { 1058 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1059 } 1060 1061 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1062 { 1063 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1064 } 1065 1066 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1067 { 1068 return rq->stats_sectors; 1069 } 1070 1071 /* 1072 * Some commands like WRITE SAME have a payload or data transfer size which 1073 * is different from the size of the request. Any driver that supports such 1074 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1075 * calculate the data transfer size. 1076 */ 1077 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1078 { 1079 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1080 return rq->special_vec.bv_len; 1081 return blk_rq_bytes(rq); 1082 } 1083 1084 /* 1085 * Return the first full biovec in the request. The caller needs to check that 1086 * there are any bvecs before calling this helper. 1087 */ 1088 static inline struct bio_vec req_bvec(struct request *rq) 1089 { 1090 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1091 return rq->special_vec; 1092 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1093 } 1094 1095 static inline unsigned int blk_rq_count_bios(struct request *rq) 1096 { 1097 unsigned int nr_bios = 0; 1098 struct bio *bio; 1099 1100 __rq_for_each_bio(bio, rq) 1101 nr_bios++; 1102 1103 return nr_bios; 1104 } 1105 1106 void blk_steal_bios(struct bio_list *list, struct request *rq); 1107 1108 /* 1109 * Request completion related functions. 1110 * 1111 * blk_update_request() completes given number of bytes and updates 1112 * the request without completing it. 1113 */ 1114 bool blk_update_request(struct request *rq, blk_status_t error, 1115 unsigned int nr_bytes); 1116 void blk_abort_request(struct request *); 1117 1118 /* 1119 * Number of physical segments as sent to the device. 1120 * 1121 * Normally this is the number of discontiguous data segments sent by the 1122 * submitter. But for data-less command like discard we might have no 1123 * actual data segments submitted, but the driver might have to add it's 1124 * own special payload. In that case we still return 1 here so that this 1125 * special payload will be mapped. 1126 */ 1127 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1128 { 1129 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1130 return 1; 1131 return rq->nr_phys_segments; 1132 } 1133 1134 /* 1135 * Number of discard segments (or ranges) the driver needs to fill in. 1136 * Each discard bio merged into a request is counted as one segment. 1137 */ 1138 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1139 { 1140 return max_t(unsigned short, rq->nr_phys_segments, 1); 1141 } 1142 1143 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1144 struct scatterlist *sglist, struct scatterlist **last_sg); 1145 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1146 struct scatterlist *sglist) 1147 { 1148 struct scatterlist *last_sg = NULL; 1149 1150 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1151 } 1152 void blk_dump_rq_flags(struct request *, char *); 1153 1154 #ifdef CONFIG_BLK_DEV_ZONED 1155 static inline unsigned int blk_rq_zone_no(struct request *rq) 1156 { 1157 return disk_zone_no(rq->q->disk, blk_rq_pos(rq)); 1158 } 1159 1160 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1161 { 1162 return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq)); 1163 } 1164 1165 /** 1166 * blk_rq_is_seq_zoned_write() - Check if @rq requires write serialization. 1167 * @rq: Request to examine. 1168 * 1169 * Note: REQ_OP_ZONE_APPEND requests do not require serialization. 1170 */ 1171 static inline bool blk_rq_is_seq_zoned_write(struct request *rq) 1172 { 1173 return op_needs_zoned_write_locking(req_op(rq)) && 1174 blk_rq_zone_is_seq(rq); 1175 } 1176 1177 bool blk_req_needs_zone_write_lock(struct request *rq); 1178 bool blk_req_zone_write_trylock(struct request *rq); 1179 void __blk_req_zone_write_lock(struct request *rq); 1180 void __blk_req_zone_write_unlock(struct request *rq); 1181 1182 static inline void blk_req_zone_write_lock(struct request *rq) 1183 { 1184 if (blk_req_needs_zone_write_lock(rq)) 1185 __blk_req_zone_write_lock(rq); 1186 } 1187 1188 static inline void blk_req_zone_write_unlock(struct request *rq) 1189 { 1190 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1191 __blk_req_zone_write_unlock(rq); 1192 } 1193 1194 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1195 { 1196 return rq->q->disk->seq_zones_wlock && 1197 test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock); 1198 } 1199 1200 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1201 { 1202 if (!blk_req_needs_zone_write_lock(rq)) 1203 return true; 1204 return !blk_req_zone_is_write_locked(rq); 1205 } 1206 #else /* CONFIG_BLK_DEV_ZONED */ 1207 static inline bool blk_rq_is_seq_zoned_write(struct request *rq) 1208 { 1209 return false; 1210 } 1211 1212 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1213 { 1214 return false; 1215 } 1216 1217 static inline void blk_req_zone_write_lock(struct request *rq) 1218 { 1219 } 1220 1221 static inline void blk_req_zone_write_unlock(struct request *rq) 1222 { 1223 } 1224 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1225 { 1226 return false; 1227 } 1228 1229 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1230 { 1231 return true; 1232 } 1233 #endif /* CONFIG_BLK_DEV_ZONED */ 1234 1235 #endif /* BLK_MQ_H */ 1236