1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_MQ_H 3 #define BLK_MQ_H 4 5 #include <linux/blkdev.h> 6 #include <linux/sbitmap.h> 7 #include <linux/lockdep.h> 8 #include <linux/scatterlist.h> 9 #include <linux/prefetch.h> 10 #include <linux/srcu.h> 11 #include <linux/rw_hint.h> 12 13 struct blk_mq_tags; 14 struct blk_flush_queue; 15 16 #define BLKDEV_MIN_RQ 4 17 #define BLKDEV_DEFAULT_RQ 128 18 19 enum rq_end_io_ret { 20 RQ_END_IO_NONE, 21 RQ_END_IO_FREE, 22 }; 23 24 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t); 25 26 /* 27 * request flags */ 28 typedef __u32 __bitwise req_flags_t; 29 30 /* Keep rqf_name[] in sync with the definitions below */ 31 enum { 32 /* drive already may have started this one */ 33 __RQF_STARTED, 34 /* request for flush sequence */ 35 __RQF_FLUSH_SEQ, 36 /* merge of different types, fail separately */ 37 __RQF_MIXED_MERGE, 38 /* don't call prep for this one */ 39 __RQF_DONTPREP, 40 /* use hctx->sched_tags */ 41 __RQF_SCHED_TAGS, 42 /* use an I/O scheduler for this request */ 43 __RQF_USE_SCHED, 44 /* vaguely specified driver internal error. Ignored by block layer */ 45 __RQF_FAILED, 46 /* don't warn about errors */ 47 __RQF_QUIET, 48 /* account into disk and partition IO statistics */ 49 __RQF_IO_STAT, 50 /* runtime pm request */ 51 __RQF_PM, 52 /* on IO scheduler merge hash */ 53 __RQF_HASHED, 54 /* track IO completion time */ 55 __RQF_STATS, 56 /* Look at ->special_vec for the actual data payload instead of the 57 bio chain. */ 58 __RQF_SPECIAL_PAYLOAD, 59 /* request completion needs to be signaled to zone write plugging. */ 60 __RQF_ZONE_WRITE_PLUGGING, 61 /* ->timeout has been called, don't expire again */ 62 __RQF_TIMED_OUT, 63 __RQF_RESV, 64 __RQF_BITS 65 }; 66 67 #define RQF_STARTED ((__force req_flags_t)(1 << __RQF_STARTED)) 68 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << __RQF_FLUSH_SEQ)) 69 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << __RQF_MIXED_MERGE)) 70 #define RQF_DONTPREP ((__force req_flags_t)(1 << __RQF_DONTPREP)) 71 #define RQF_SCHED_TAGS ((__force req_flags_t)(1 << __RQF_SCHED_TAGS)) 72 #define RQF_USE_SCHED ((__force req_flags_t)(1 << __RQF_USE_SCHED)) 73 #define RQF_FAILED ((__force req_flags_t)(1 << __RQF_FAILED)) 74 #define RQF_QUIET ((__force req_flags_t)(1 << __RQF_QUIET)) 75 #define RQF_IO_STAT ((__force req_flags_t)(1 << __RQF_IO_STAT)) 76 #define RQF_PM ((__force req_flags_t)(1 << __RQF_PM)) 77 #define RQF_HASHED ((__force req_flags_t)(1 << __RQF_HASHED)) 78 #define RQF_STATS ((__force req_flags_t)(1 << __RQF_STATS)) 79 #define RQF_SPECIAL_PAYLOAD \ 80 ((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD)) 81 #define RQF_ZONE_WRITE_PLUGGING \ 82 ((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING)) 83 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << __RQF_TIMED_OUT)) 84 #define RQF_RESV ((__force req_flags_t)(1 << __RQF_RESV)) 85 86 /* flags that prevent us from merging requests: */ 87 #define RQF_NOMERGE_FLAGS \ 88 (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 89 90 enum mq_rq_state { 91 MQ_RQ_IDLE = 0, 92 MQ_RQ_IN_FLIGHT = 1, 93 MQ_RQ_COMPLETE = 2, 94 }; 95 96 /* 97 * Try to put the fields that are referenced together in the same cacheline. 98 * 99 * If you modify this structure, make sure to update blk_rq_init() and 100 * especially blk_mq_rq_ctx_init() to take care of the added fields. 101 */ 102 struct request { 103 struct request_queue *q; 104 struct blk_mq_ctx *mq_ctx; 105 struct blk_mq_hw_ctx *mq_hctx; 106 107 blk_opf_t cmd_flags; /* op and common flags */ 108 req_flags_t rq_flags; 109 110 int tag; 111 int internal_tag; 112 113 unsigned int timeout; 114 115 /* the following two fields are internal, NEVER access directly */ 116 unsigned int __data_len; /* total data len */ 117 sector_t __sector; /* sector cursor */ 118 119 struct bio *bio; 120 struct bio *biotail; 121 122 union { 123 struct list_head queuelist; 124 struct request *rq_next; 125 }; 126 127 struct block_device *part; 128 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 129 /* Time that the first bio started allocating this request. */ 130 u64 alloc_time_ns; 131 #endif 132 /* Time that this request was allocated for this IO. */ 133 u64 start_time_ns; 134 /* Time that I/O was submitted to the device. */ 135 u64 io_start_time_ns; 136 137 #ifdef CONFIG_BLK_WBT 138 unsigned short wbt_flags; 139 #endif 140 /* 141 * rq sectors used for blk stats. It has the same value 142 * with blk_rq_sectors(rq), except that it never be zeroed 143 * by completion. 144 */ 145 unsigned short stats_sectors; 146 147 /* 148 * Number of scatter-gather DMA addr+len pairs after 149 * physical address coalescing is performed. 150 */ 151 unsigned short nr_phys_segments; 152 unsigned short nr_integrity_segments; 153 154 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 155 struct bio_crypt_ctx *crypt_ctx; 156 struct blk_crypto_keyslot *crypt_keyslot; 157 #endif 158 159 enum mq_rq_state state; 160 atomic_t ref; 161 162 unsigned long deadline; 163 164 /* 165 * The hash is used inside the scheduler, and killed once the 166 * request reaches the dispatch list. The ipi_list is only used 167 * to queue the request for softirq completion, which is long 168 * after the request has been unhashed (and even removed from 169 * the dispatch list). 170 */ 171 union { 172 struct hlist_node hash; /* merge hash */ 173 struct llist_node ipi_list; 174 }; 175 176 /* 177 * The rb_node is only used inside the io scheduler, requests 178 * are pruned when moved to the dispatch queue. special_vec must 179 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be 180 * insert into an IO scheduler. 181 */ 182 union { 183 struct rb_node rb_node; /* sort/lookup */ 184 struct bio_vec special_vec; 185 }; 186 187 /* 188 * Three pointers are available for the IO schedulers, if they need 189 * more they have to dynamically allocate it. 190 */ 191 struct { 192 struct io_cq *icq; 193 void *priv[2]; 194 } elv; 195 196 struct { 197 unsigned int seq; 198 rq_end_io_fn *saved_end_io; 199 } flush; 200 201 u64 fifo_time; 202 203 /* 204 * completion callback. 205 */ 206 rq_end_io_fn *end_io; 207 void *end_io_data; 208 }; 209 210 static inline enum req_op req_op(const struct request *req) 211 { 212 return req->cmd_flags & REQ_OP_MASK; 213 } 214 215 static inline bool blk_rq_is_passthrough(struct request *rq) 216 { 217 return blk_op_is_passthrough(rq->cmd_flags); 218 } 219 220 static inline unsigned short req_get_ioprio(struct request *req) 221 { 222 if (req->bio) 223 return req->bio->bi_ioprio; 224 return 0; 225 } 226 227 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 228 229 #define rq_dma_dir(rq) \ 230 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 231 232 static inline int rq_list_empty(const struct rq_list *rl) 233 { 234 return rl->head == NULL; 235 } 236 237 static inline void rq_list_init(struct rq_list *rl) 238 { 239 rl->head = NULL; 240 rl->tail = NULL; 241 } 242 243 static inline void rq_list_add_tail(struct rq_list *rl, struct request *rq) 244 { 245 rq->rq_next = NULL; 246 if (rl->tail) 247 rl->tail->rq_next = rq; 248 else 249 rl->head = rq; 250 rl->tail = rq; 251 } 252 253 static inline void rq_list_add_head(struct rq_list *rl, struct request *rq) 254 { 255 rq->rq_next = rl->head; 256 rl->head = rq; 257 if (!rl->tail) 258 rl->tail = rq; 259 } 260 261 static inline struct request *rq_list_pop(struct rq_list *rl) 262 { 263 struct request *rq = rl->head; 264 265 if (rq) { 266 rl->head = rl->head->rq_next; 267 if (!rl->head) 268 rl->tail = NULL; 269 rq->rq_next = NULL; 270 } 271 272 return rq; 273 } 274 275 static inline struct request *rq_list_peek(struct rq_list *rl) 276 { 277 return rl->head; 278 } 279 280 #define rq_list_for_each(rl, pos) \ 281 for (pos = rq_list_peek((rl)); (pos); pos = pos->rq_next) 282 283 #define rq_list_for_each_safe(rl, pos, nxt) \ 284 for (pos = rq_list_peek((rl)), nxt = pos->rq_next; \ 285 pos; pos = nxt, nxt = pos ? pos->rq_next : NULL) 286 287 /** 288 * enum blk_eh_timer_return - How the timeout handler should proceed 289 * @BLK_EH_DONE: The block driver completed the command or will complete it at 290 * a later time. 291 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the 292 * request to complete. 293 */ 294 enum blk_eh_timer_return { 295 BLK_EH_DONE, 296 BLK_EH_RESET_TIMER, 297 }; 298 299 /** 300 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware 301 * block device 302 */ 303 struct blk_mq_hw_ctx { 304 struct { 305 /** @lock: Protects the dispatch list. */ 306 spinlock_t lock; 307 /** 308 * @dispatch: Used for requests that are ready to be 309 * dispatched to the hardware but for some reason (e.g. lack of 310 * resources) could not be sent to the hardware. As soon as the 311 * driver can send new requests, requests at this list will 312 * be sent first for a fairer dispatch. 313 */ 314 struct list_head dispatch; 315 /** 316 * @state: BLK_MQ_S_* flags. Defines the state of the hw 317 * queue (active, scheduled to restart, stopped). 318 */ 319 unsigned long state; 320 } ____cacheline_aligned_in_smp; 321 322 /** 323 * @run_work: Used for scheduling a hardware queue run at a later time. 324 */ 325 struct delayed_work run_work; 326 /** @cpumask: Map of available CPUs where this hctx can run. */ 327 cpumask_var_t cpumask; 328 /** 329 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU 330 * selection from @cpumask. 331 */ 332 int next_cpu; 333 /** 334 * @next_cpu_batch: Counter of how many works left in the batch before 335 * changing to the next CPU. 336 */ 337 int next_cpu_batch; 338 339 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */ 340 unsigned long flags; 341 342 /** 343 * @sched_data: Pointer owned by the IO scheduler attached to a request 344 * queue. It's up to the IO scheduler how to use this pointer. 345 */ 346 void *sched_data; 347 /** 348 * @queue: Pointer to the request queue that owns this hardware context. 349 */ 350 struct request_queue *queue; 351 /** @fq: Queue of requests that need to perform a flush operation. */ 352 struct blk_flush_queue *fq; 353 354 /** 355 * @driver_data: Pointer to data owned by the block driver that created 356 * this hctx 357 */ 358 void *driver_data; 359 360 /** 361 * @ctx_map: Bitmap for each software queue. If bit is on, there is a 362 * pending request in that software queue. 363 */ 364 struct sbitmap ctx_map; 365 366 /** 367 * @dispatch_from: Software queue to be used when no scheduler was 368 * selected. 369 */ 370 struct blk_mq_ctx *dispatch_from; 371 /** 372 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to 373 * decide if the hw_queue is busy using Exponential Weighted Moving 374 * Average algorithm. 375 */ 376 unsigned int dispatch_busy; 377 378 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */ 379 unsigned short type; 380 /** @nr_ctx: Number of software queues. */ 381 unsigned short nr_ctx; 382 /** @ctxs: Array of software queues. */ 383 struct blk_mq_ctx **ctxs; 384 385 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */ 386 spinlock_t dispatch_wait_lock; 387 /** 388 * @dispatch_wait: Waitqueue to put requests when there is no tag 389 * available at the moment, to wait for another try in the future. 390 */ 391 wait_queue_entry_t dispatch_wait; 392 393 /** 394 * @wait_index: Index of next available dispatch_wait queue to insert 395 * requests. 396 */ 397 atomic_t wait_index; 398 399 /** 400 * @tags: Tags owned by the block driver. A tag at this set is only 401 * assigned when a request is dispatched from a hardware queue. 402 */ 403 struct blk_mq_tags *tags; 404 /** 405 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O 406 * scheduler associated with a request queue, a tag is assigned when 407 * that request is allocated. Else, this member is not used. 408 */ 409 struct blk_mq_tags *sched_tags; 410 411 /** @numa_node: NUMA node the storage adapter has been connected to. */ 412 unsigned int numa_node; 413 /** @queue_num: Index of this hardware queue. */ 414 unsigned int queue_num; 415 416 /** 417 * @nr_active: Number of active requests. Only used when a tag set is 418 * shared across request queues. 419 */ 420 atomic_t nr_active; 421 422 /** @cpuhp_online: List to store request if CPU is going to die */ 423 struct hlist_node cpuhp_online; 424 /** @cpuhp_dead: List to store request if some CPU die. */ 425 struct hlist_node cpuhp_dead; 426 /** @kobj: Kernel object for sysfs. */ 427 struct kobject kobj; 428 429 #ifdef CONFIG_BLK_DEBUG_FS 430 /** 431 * @debugfs_dir: debugfs directory for this hardware queue. Named 432 * as cpu<cpu_number>. 433 */ 434 struct dentry *debugfs_dir; 435 /** @sched_debugfs_dir: debugfs directory for the scheduler. */ 436 struct dentry *sched_debugfs_dir; 437 #endif 438 439 /** 440 * @hctx_list: if this hctx is not in use, this is an entry in 441 * q->unused_hctx_list. 442 */ 443 struct list_head hctx_list; 444 }; 445 446 /** 447 * struct blk_mq_queue_map - Map software queues to hardware queues 448 * @mq_map: CPU ID to hardware queue index map. This is an array 449 * with nr_cpu_ids elements. Each element has a value in the range 450 * [@queue_offset, @queue_offset + @nr_queues). 451 * @nr_queues: Number of hardware queues to map CPU IDs onto. 452 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe 453 * driver to map each hardware queue type (enum hctx_type) onto a distinct 454 * set of hardware queues. 455 */ 456 struct blk_mq_queue_map { 457 unsigned int *mq_map; 458 unsigned int nr_queues; 459 unsigned int queue_offset; 460 }; 461 462 /** 463 * enum hctx_type - Type of hardware queue 464 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for. 465 * @HCTX_TYPE_READ: Just for READ I/O. 466 * @HCTX_TYPE_POLL: Polled I/O of any kind. 467 * @HCTX_MAX_TYPES: Number of types of hctx. 468 */ 469 enum hctx_type { 470 HCTX_TYPE_DEFAULT, 471 HCTX_TYPE_READ, 472 HCTX_TYPE_POLL, 473 474 HCTX_MAX_TYPES, 475 }; 476 477 /** 478 * struct blk_mq_tag_set - tag set that can be shared between request queues 479 * @ops: Pointers to functions that implement block driver behavior. 480 * @map: One or more ctx -> hctx mappings. One map exists for each 481 * hardware queue type (enum hctx_type) that the driver wishes 482 * to support. There are no restrictions on maps being of the 483 * same size, and it's perfectly legal to share maps between 484 * types. 485 * @nr_maps: Number of elements in the @map array. A number in the range 486 * [1, HCTX_MAX_TYPES]. 487 * @nr_hw_queues: Number of hardware queues supported by the block driver that 488 * owns this data structure. 489 * @queue_depth: Number of tags per hardware queue, reserved tags included. 490 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag 491 * allocations. 492 * @cmd_size: Number of additional bytes to allocate per request. The block 493 * driver owns these additional bytes. 494 * @numa_node: NUMA node the storage adapter has been connected to. 495 * @timeout: Request processing timeout in jiffies. 496 * @flags: Zero or more BLK_MQ_F_* flags. 497 * @driver_data: Pointer to data owned by the block driver that created this 498 * tag set. 499 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues 500 * elements. 501 * @shared_tags: 502 * Shared set of tags. Has @nr_hw_queues elements. If set, 503 * shared by all @tags. 504 * @tag_list_lock: Serializes tag_list accesses. 505 * @tag_list: List of the request queues that use this tag set. See also 506 * request_queue.tag_set_list. 507 * @srcu: Use as lock when type of the request queue is blocking 508 * (BLK_MQ_F_BLOCKING). 509 */ 510 struct blk_mq_tag_set { 511 const struct blk_mq_ops *ops; 512 struct blk_mq_queue_map map[HCTX_MAX_TYPES]; 513 unsigned int nr_maps; 514 unsigned int nr_hw_queues; 515 unsigned int queue_depth; 516 unsigned int reserved_tags; 517 unsigned int cmd_size; 518 int numa_node; 519 unsigned int timeout; 520 unsigned int flags; 521 void *driver_data; 522 523 struct blk_mq_tags **tags; 524 525 struct blk_mq_tags *shared_tags; 526 527 struct mutex tag_list_lock; 528 struct list_head tag_list; 529 struct srcu_struct *srcu; 530 }; 531 532 /** 533 * struct blk_mq_queue_data - Data about a request inserted in a queue 534 * 535 * @rq: Request pointer. 536 * @last: If it is the last request in the queue. 537 */ 538 struct blk_mq_queue_data { 539 struct request *rq; 540 bool last; 541 }; 542 543 typedef bool (busy_tag_iter_fn)(struct request *, void *); 544 545 /** 546 * struct blk_mq_ops - Callback functions that implements block driver 547 * behaviour. 548 */ 549 struct blk_mq_ops { 550 /** 551 * @queue_rq: Queue a new request from block IO. 552 */ 553 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *, 554 const struct blk_mq_queue_data *); 555 556 /** 557 * @commit_rqs: If a driver uses bd->last to judge when to submit 558 * requests to hardware, it must define this function. In case of errors 559 * that make us stop issuing further requests, this hook serves the 560 * purpose of kicking the hardware (which the last request otherwise 561 * would have done). 562 */ 563 void (*commit_rqs)(struct blk_mq_hw_ctx *); 564 565 /** 566 * @queue_rqs: Queue a list of new requests. Driver is guaranteed 567 * that each request belongs to the same queue. If the driver doesn't 568 * empty the @rqlist completely, then the rest will be queued 569 * individually by the block layer upon return. 570 */ 571 void (*queue_rqs)(struct rq_list *rqlist); 572 573 /** 574 * @get_budget: Reserve budget before queue request, once .queue_rq is 575 * run, it is driver's responsibility to release the 576 * reserved budget. Also we have to handle failure case 577 * of .get_budget for avoiding I/O deadlock. 578 */ 579 int (*get_budget)(struct request_queue *); 580 581 /** 582 * @put_budget: Release the reserved budget. 583 */ 584 void (*put_budget)(struct request_queue *, int); 585 586 /** 587 * @set_rq_budget_token: store rq's budget token 588 */ 589 void (*set_rq_budget_token)(struct request *, int); 590 /** 591 * @get_rq_budget_token: retrieve rq's budget token 592 */ 593 int (*get_rq_budget_token)(struct request *); 594 595 /** 596 * @timeout: Called on request timeout. 597 */ 598 enum blk_eh_timer_return (*timeout)(struct request *); 599 600 /** 601 * @poll: Called to poll for completion of a specific tag. 602 */ 603 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *); 604 605 /** 606 * @complete: Mark the request as complete. 607 */ 608 void (*complete)(struct request *); 609 610 /** 611 * @init_hctx: Called when the block layer side of a hardware queue has 612 * been set up, allowing the driver to allocate/init matching 613 * structures. 614 */ 615 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int); 616 /** 617 * @exit_hctx: Ditto for exit/teardown. 618 */ 619 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int); 620 621 /** 622 * @init_request: Called for every command allocated by the block layer 623 * to allow the driver to set up driver specific data. 624 * 625 * Tag greater than or equal to queue_depth is for setting up 626 * flush request. 627 */ 628 int (*init_request)(struct blk_mq_tag_set *set, struct request *, 629 unsigned int, unsigned int); 630 /** 631 * @exit_request: Ditto for exit/teardown. 632 */ 633 void (*exit_request)(struct blk_mq_tag_set *set, struct request *, 634 unsigned int); 635 636 /** 637 * @cleanup_rq: Called before freeing one request which isn't completed 638 * yet, and usually for freeing the driver private data. 639 */ 640 void (*cleanup_rq)(struct request *); 641 642 /** 643 * @busy: If set, returns whether or not this queue currently is busy. 644 */ 645 bool (*busy)(struct request_queue *); 646 647 /** 648 * @map_queues: This allows drivers specify their own queue mapping by 649 * overriding the setup-time function that builds the mq_map. 650 */ 651 void (*map_queues)(struct blk_mq_tag_set *set); 652 653 #ifdef CONFIG_BLK_DEBUG_FS 654 /** 655 * @show_rq: Used by the debugfs implementation to show driver-specific 656 * information about a request. 657 */ 658 void (*show_rq)(struct seq_file *m, struct request *rq); 659 #endif 660 }; 661 662 /* Keep hctx_flag_name[] in sync with the definitions below */ 663 enum { 664 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1, 665 /* 666 * Set when this device requires underlying blk-mq device for 667 * completing IO: 668 */ 669 BLK_MQ_F_STACKING = 1 << 2, 670 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3, 671 BLK_MQ_F_BLOCKING = 1 << 4, 672 673 /* 674 * Alloc tags on a round-robin base instead of the first available one. 675 */ 676 BLK_MQ_F_TAG_RR = 1 << 5, 677 678 /* 679 * Select 'none' during queue registration in case of a single hwq 680 * or shared hwqs instead of 'mq-deadline'. 681 */ 682 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 6, 683 684 BLK_MQ_F_MAX = 1 << 7, 685 }; 686 687 #define BLK_MQ_MAX_DEPTH (10240) 688 #define BLK_MQ_NO_HCTX_IDX (-1U) 689 690 enum { 691 /* Keep hctx_state_name[] in sync with the definitions below */ 692 BLK_MQ_S_STOPPED, 693 BLK_MQ_S_TAG_ACTIVE, 694 BLK_MQ_S_SCHED_RESTART, 695 /* hw queue is inactive after all its CPUs become offline */ 696 BLK_MQ_S_INACTIVE, 697 BLK_MQ_S_MAX 698 }; 699 700 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 701 struct queue_limits *lim, void *queuedata, 702 struct lock_class_key *lkclass); 703 #define blk_mq_alloc_disk(set, lim, queuedata) \ 704 ({ \ 705 static struct lock_class_key __key; \ 706 \ 707 __blk_mq_alloc_disk(set, lim, queuedata, &__key); \ 708 }) 709 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 710 struct lock_class_key *lkclass); 711 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 712 struct queue_limits *lim, void *queuedata); 713 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 714 struct request_queue *q); 715 void blk_mq_destroy_queue(struct request_queue *); 716 717 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); 718 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 719 const struct blk_mq_ops *ops, unsigned int queue_depth, 720 unsigned int set_flags); 721 void blk_mq_free_tag_set(struct blk_mq_tag_set *set); 722 723 void blk_mq_free_request(struct request *rq); 724 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 725 unsigned int poll_flags); 726 727 bool blk_mq_queue_inflight(struct request_queue *q); 728 729 enum { 730 /* return when out of requests */ 731 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0), 732 /* allocate from reserved pool */ 733 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1), 734 /* set RQF_PM */ 735 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2), 736 }; 737 738 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 739 blk_mq_req_flags_t flags); 740 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 741 blk_opf_t opf, blk_mq_req_flags_t flags, 742 unsigned int hctx_idx); 743 744 /* 745 * Tag address space map. 746 */ 747 struct blk_mq_tags { 748 unsigned int nr_tags; 749 unsigned int nr_reserved_tags; 750 unsigned int active_queues; 751 752 struct sbitmap_queue bitmap_tags; 753 struct sbitmap_queue breserved_tags; 754 755 struct request **rqs; 756 struct request **static_rqs; 757 struct list_head page_list; 758 759 /* 760 * used to clear request reference in rqs[] before freeing one 761 * request pool 762 */ 763 spinlock_t lock; 764 }; 765 766 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, 767 unsigned int tag) 768 { 769 if (tag < tags->nr_tags) { 770 prefetch(tags->rqs[tag]); 771 return tags->rqs[tag]; 772 } 773 774 return NULL; 775 } 776 777 enum { 778 BLK_MQ_UNIQUE_TAG_BITS = 16, 779 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, 780 }; 781 782 u32 blk_mq_unique_tag(struct request *rq); 783 784 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) 785 { 786 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; 787 } 788 789 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) 790 { 791 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; 792 } 793 794 /** 795 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request 796 * @rq: target request. 797 */ 798 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) 799 { 800 return READ_ONCE(rq->state); 801 } 802 803 static inline int blk_mq_request_started(struct request *rq) 804 { 805 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 806 } 807 808 static inline int blk_mq_request_completed(struct request *rq) 809 { 810 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; 811 } 812 813 /* 814 * 815 * Set the state to complete when completing a request from inside ->queue_rq. 816 * This is used by drivers that want to ensure special complete actions that 817 * need access to the request are called on failure, e.g. by nvme for 818 * multipathing. 819 */ 820 static inline void blk_mq_set_request_complete(struct request *rq) 821 { 822 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 823 } 824 825 /* 826 * Complete the request directly instead of deferring it to softirq or 827 * completing it another CPU. Useful in preemptible instead of an interrupt. 828 */ 829 static inline void blk_mq_complete_request_direct(struct request *rq, 830 void (*complete)(struct request *rq)) 831 { 832 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 833 complete(rq); 834 } 835 836 void blk_mq_start_request(struct request *rq); 837 void blk_mq_end_request(struct request *rq, blk_status_t error); 838 void __blk_mq_end_request(struct request *rq, blk_status_t error); 839 void blk_mq_end_request_batch(struct io_comp_batch *ib); 840 841 /* 842 * Only need start/end time stamping if we have iostat or 843 * blk stats enabled, or using an IO scheduler. 844 */ 845 static inline bool blk_mq_need_time_stamp(struct request *rq) 846 { 847 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED)); 848 } 849 850 static inline bool blk_mq_is_reserved_rq(struct request *rq) 851 { 852 return rq->rq_flags & RQF_RESV; 853 } 854 855 /* 856 * Batched completions only work when there is no I/O error and no special 857 * ->end_io handler. 858 */ 859 static inline bool blk_mq_add_to_batch(struct request *req, 860 struct io_comp_batch *iob, int ioerror, 861 void (*complete)(struct io_comp_batch *)) 862 { 863 /* 864 * Check various conditions that exclude batch processing: 865 * 1) No batch container 866 * 2) Has scheduler data attached 867 * 3) Not a passthrough request and end_io set 868 * 4) Not a passthrough request and an ioerror 869 */ 870 if (!iob) 871 return false; 872 if (req->rq_flags & RQF_SCHED_TAGS) 873 return false; 874 if (!blk_rq_is_passthrough(req)) { 875 if (req->end_io) 876 return false; 877 if (ioerror < 0) 878 return false; 879 } 880 881 if (!iob->complete) 882 iob->complete = complete; 883 else if (iob->complete != complete) 884 return false; 885 iob->need_ts |= blk_mq_need_time_stamp(req); 886 rq_list_add_tail(&iob->req_list, req); 887 return true; 888 } 889 890 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); 891 void blk_mq_kick_requeue_list(struct request_queue *q); 892 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); 893 void blk_mq_complete_request(struct request *rq); 894 bool blk_mq_complete_request_remote(struct request *rq); 895 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); 896 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); 897 void blk_mq_stop_hw_queues(struct request_queue *q); 898 void blk_mq_start_hw_queues(struct request_queue *q); 899 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); 900 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); 901 void blk_mq_quiesce_queue(struct request_queue *q); 902 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set); 903 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set); 904 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set); 905 void blk_mq_unquiesce_queue(struct request_queue *q); 906 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); 907 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); 908 void blk_mq_run_hw_queues(struct request_queue *q, bool async); 909 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs); 910 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 911 busy_tag_iter_fn *fn, void *priv); 912 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset); 913 void blk_mq_freeze_queue_nomemsave(struct request_queue *q); 914 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q); 915 static inline unsigned int __must_check 916 blk_mq_freeze_queue(struct request_queue *q) 917 { 918 unsigned int memflags = memalloc_noio_save(); 919 920 blk_mq_freeze_queue_nomemsave(q); 921 return memflags; 922 } 923 static inline void 924 blk_mq_unfreeze_queue(struct request_queue *q, unsigned int memflags) 925 { 926 blk_mq_unfreeze_queue_nomemrestore(q); 927 memalloc_noio_restore(memflags); 928 } 929 void blk_freeze_queue_start(struct request_queue *q); 930 void blk_mq_freeze_queue_wait(struct request_queue *q); 931 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 932 unsigned long timeout); 933 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q); 934 void blk_freeze_queue_start_non_owner(struct request_queue *q); 935 936 void blk_mq_map_queues(struct blk_mq_queue_map *qmap); 937 void blk_mq_map_hw_queues(struct blk_mq_queue_map *qmap, 938 struct device *dev, unsigned int offset); 939 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); 940 941 void blk_mq_quiesce_queue_nowait(struct request_queue *q); 942 943 unsigned int blk_mq_rq_cpu(struct request *rq); 944 945 bool __blk_should_fake_timeout(struct request_queue *q); 946 static inline bool blk_should_fake_timeout(struct request_queue *q) 947 { 948 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) && 949 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags)) 950 return __blk_should_fake_timeout(q); 951 return false; 952 } 953 954 /** 955 * blk_mq_rq_from_pdu - cast a PDU to a request 956 * @pdu: the PDU (Protocol Data Unit) to be casted 957 * 958 * Return: request 959 * 960 * Driver command data is immediately after the request. So subtract request 961 * size to get back to the original request. 962 */ 963 static inline struct request *blk_mq_rq_from_pdu(void *pdu) 964 { 965 return pdu - sizeof(struct request); 966 } 967 968 /** 969 * blk_mq_rq_to_pdu - cast a request to a PDU 970 * @rq: the request to be casted 971 * 972 * Return: pointer to the PDU 973 * 974 * Driver command data is immediately after the request. So add request to get 975 * the PDU. 976 */ 977 static inline void *blk_mq_rq_to_pdu(struct request *rq) 978 { 979 return rq + 1; 980 } 981 982 #define queue_for_each_hw_ctx(q, hctx, i) \ 983 xa_for_each(&(q)->hctx_table, (i), (hctx)) 984 985 #define hctx_for_each_ctx(hctx, ctx, i) \ 986 for ((i) = 0; (i) < (hctx)->nr_ctx && \ 987 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) 988 989 static inline void blk_mq_cleanup_rq(struct request *rq) 990 { 991 if (rq->q->mq_ops->cleanup_rq) 992 rq->q->mq_ops->cleanup_rq(rq); 993 } 994 995 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 996 struct lock_class_key *key); 997 998 static inline bool rq_is_sync(struct request *rq) 999 { 1000 return op_is_sync(rq->cmd_flags); 1001 } 1002 1003 void blk_rq_init(struct request_queue *q, struct request *rq); 1004 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1005 struct bio_set *bs, gfp_t gfp_mask, 1006 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data); 1007 void blk_rq_unprep_clone(struct request *rq); 1008 blk_status_t blk_insert_cloned_request(struct request *rq); 1009 1010 struct rq_map_data { 1011 struct page **pages; 1012 unsigned long offset; 1013 unsigned short page_order; 1014 unsigned short nr_entries; 1015 bool null_mapped; 1016 bool from_user; 1017 }; 1018 1019 int blk_rq_map_user(struct request_queue *, struct request *, 1020 struct rq_map_data *, void __user *, unsigned long, gfp_t); 1021 int blk_rq_map_user_io(struct request *, struct rq_map_data *, 1022 void __user *, unsigned long, gfp_t, bool, int, bool, int); 1023 int blk_rq_map_user_iov(struct request_queue *, struct request *, 1024 struct rq_map_data *, const struct iov_iter *, gfp_t); 1025 int blk_rq_unmap_user(struct bio *); 1026 int blk_rq_map_kern(struct request_queue *, struct request *, void *, 1027 unsigned int, gfp_t); 1028 int blk_rq_append_bio(struct request *rq, struct bio *bio); 1029 void blk_execute_rq_nowait(struct request *rq, bool at_head); 1030 blk_status_t blk_execute_rq(struct request *rq, bool at_head); 1031 bool blk_rq_is_poll(struct request *rq); 1032 1033 struct req_iterator { 1034 struct bvec_iter iter; 1035 struct bio *bio; 1036 }; 1037 1038 #define __rq_for_each_bio(_bio, rq) \ 1039 if ((rq->bio)) \ 1040 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 1041 1042 #define rq_for_each_segment(bvl, _rq, _iter) \ 1043 __rq_for_each_bio(_iter.bio, _rq) \ 1044 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 1045 1046 #define rq_for_each_bvec(bvl, _rq, _iter) \ 1047 __rq_for_each_bio(_iter.bio, _rq) \ 1048 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 1049 1050 #define rq_iter_last(bvec, _iter) \ 1051 (_iter.bio->bi_next == NULL && \ 1052 bio_iter_last(bvec, _iter.iter)) 1053 1054 /* 1055 * blk_rq_pos() : the current sector 1056 * blk_rq_bytes() : bytes left in the entire request 1057 * blk_rq_cur_bytes() : bytes left in the current segment 1058 * blk_rq_sectors() : sectors left in the entire request 1059 * blk_rq_cur_sectors() : sectors left in the current segment 1060 * blk_rq_stats_sectors() : sectors of the entire request used for stats 1061 */ 1062 static inline sector_t blk_rq_pos(const struct request *rq) 1063 { 1064 return rq->__sector; 1065 } 1066 1067 static inline unsigned int blk_rq_bytes(const struct request *rq) 1068 { 1069 return rq->__data_len; 1070 } 1071 1072 static inline int blk_rq_cur_bytes(const struct request *rq) 1073 { 1074 if (!rq->bio) 1075 return 0; 1076 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */ 1077 return rq->bio->bi_iter.bi_size; 1078 return bio_iovec(rq->bio).bv_len; 1079 } 1080 1081 static inline unsigned int blk_rq_sectors(const struct request *rq) 1082 { 1083 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1084 } 1085 1086 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1087 { 1088 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1089 } 1090 1091 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1092 { 1093 return rq->stats_sectors; 1094 } 1095 1096 /* 1097 * Some commands like WRITE SAME have a payload or data transfer size which 1098 * is different from the size of the request. Any driver that supports such 1099 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1100 * calculate the data transfer size. 1101 */ 1102 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1103 { 1104 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1105 return rq->special_vec.bv_len; 1106 return blk_rq_bytes(rq); 1107 } 1108 1109 /* 1110 * Return the first full biovec in the request. The caller needs to check that 1111 * there are any bvecs before calling this helper. 1112 */ 1113 static inline struct bio_vec req_bvec(struct request *rq) 1114 { 1115 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1116 return rq->special_vec; 1117 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1118 } 1119 1120 static inline unsigned int blk_rq_count_bios(struct request *rq) 1121 { 1122 unsigned int nr_bios = 0; 1123 struct bio *bio; 1124 1125 __rq_for_each_bio(bio, rq) 1126 nr_bios++; 1127 1128 return nr_bios; 1129 } 1130 1131 void blk_steal_bios(struct bio_list *list, struct request *rq); 1132 1133 /* 1134 * Request completion related functions. 1135 * 1136 * blk_update_request() completes given number of bytes and updates 1137 * the request without completing it. 1138 */ 1139 bool blk_update_request(struct request *rq, blk_status_t error, 1140 unsigned int nr_bytes); 1141 void blk_abort_request(struct request *); 1142 1143 /* 1144 * Number of physical segments as sent to the device. 1145 * 1146 * Normally this is the number of discontiguous data segments sent by the 1147 * submitter. But for data-less command like discard we might have no 1148 * actual data segments submitted, but the driver might have to add it's 1149 * own special payload. In that case we still return 1 here so that this 1150 * special payload will be mapped. 1151 */ 1152 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1153 { 1154 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1155 return 1; 1156 return rq->nr_phys_segments; 1157 } 1158 1159 /* 1160 * Number of discard segments (or ranges) the driver needs to fill in. 1161 * Each discard bio merged into a request is counted as one segment. 1162 */ 1163 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1164 { 1165 return max_t(unsigned short, rq->nr_phys_segments, 1); 1166 } 1167 1168 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1169 struct scatterlist *sglist, struct scatterlist **last_sg); 1170 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1171 struct scatterlist *sglist) 1172 { 1173 struct scatterlist *last_sg = NULL; 1174 1175 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1176 } 1177 void blk_dump_rq_flags(struct request *, char *); 1178 1179 #endif /* BLK_MQ_H */ 1180