xref: /linux-6.15/include/linux/blk-mq.h (revision 39dfd52d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 
11 struct blk_mq_tags;
12 struct blk_flush_queue;
13 
14 #define BLKDEV_MIN_RQ	4
15 #define BLKDEV_DEFAULT_RQ	128
16 
17 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
18 
19 /*
20  * request flags */
21 typedef __u32 __bitwise req_flags_t;
22 
23 /* drive already may have started this one */
24 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
25 /* may not be passed by ioscheduler */
26 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
27 /* request for flush sequence */
28 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
29 /* merge of different types, fail separately */
30 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
31 /* track inflight for MQ */
32 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
33 /* don't call prep for this one */
34 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
35 /* vaguely specified driver internal error.  Ignored by the block layer */
36 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
37 /* don't warn about errors */
38 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
39 /* elevator private data attached */
40 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
41 /* account into disk and partition IO statistics */
42 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
43 /* runtime pm request */
44 #define RQF_PM			((__force req_flags_t)(1 << 15))
45 /* on IO scheduler merge hash */
46 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
47 /* track IO completion time */
48 #define RQF_STATS		((__force req_flags_t)(1 << 17))
49 /* Look at ->special_vec for the actual data payload instead of the
50    bio chain. */
51 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
52 /* The per-zone write lock is held for this request */
53 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
54 /* already slept for hybrid poll */
55 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
56 /* ->timeout has been called, don't expire again */
57 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
58 /* queue has elevator attached */
59 #define RQF_ELV			((__force req_flags_t)(1 << 22))
60 #define RQF_RESV			((__force req_flags_t)(1 << 23))
61 
62 /* flags that prevent us from merging requests: */
63 #define RQF_NOMERGE_FLAGS \
64 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
65 
66 enum mq_rq_state {
67 	MQ_RQ_IDLE		= 0,
68 	MQ_RQ_IN_FLIGHT		= 1,
69 	MQ_RQ_COMPLETE		= 2,
70 };
71 
72 /*
73  * Try to put the fields that are referenced together in the same cacheline.
74  *
75  * If you modify this structure, make sure to update blk_rq_init() and
76  * especially blk_mq_rq_ctx_init() to take care of the added fields.
77  */
78 struct request {
79 	struct request_queue *q;
80 	struct blk_mq_ctx *mq_ctx;
81 	struct blk_mq_hw_ctx *mq_hctx;
82 
83 	blk_opf_t cmd_flags;		/* op and common flags */
84 	req_flags_t rq_flags;
85 
86 	int tag;
87 	int internal_tag;
88 
89 	unsigned int timeout;
90 
91 	/* the following two fields are internal, NEVER access directly */
92 	unsigned int __data_len;	/* total data len */
93 	sector_t __sector;		/* sector cursor */
94 
95 	struct bio *bio;
96 	struct bio *biotail;
97 
98 	union {
99 		struct list_head queuelist;
100 		struct request *rq_next;
101 	};
102 
103 	struct block_device *part;
104 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
105 	/* Time that the first bio started allocating this request. */
106 	u64 alloc_time_ns;
107 #endif
108 	/* Time that this request was allocated for this IO. */
109 	u64 start_time_ns;
110 	/* Time that I/O was submitted to the device. */
111 	u64 io_start_time_ns;
112 
113 #ifdef CONFIG_BLK_WBT
114 	unsigned short wbt_flags;
115 #endif
116 	/*
117 	 * rq sectors used for blk stats. It has the same value
118 	 * with blk_rq_sectors(rq), except that it never be zeroed
119 	 * by completion.
120 	 */
121 	unsigned short stats_sectors;
122 
123 	/*
124 	 * Number of scatter-gather DMA addr+len pairs after
125 	 * physical address coalescing is performed.
126 	 */
127 	unsigned short nr_phys_segments;
128 
129 #ifdef CONFIG_BLK_DEV_INTEGRITY
130 	unsigned short nr_integrity_segments;
131 #endif
132 
133 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
134 	struct bio_crypt_ctx *crypt_ctx;
135 	struct blk_crypto_keyslot *crypt_keyslot;
136 #endif
137 
138 	unsigned short write_hint;
139 	unsigned short ioprio;
140 
141 	enum mq_rq_state state;
142 	atomic_t ref;
143 
144 	unsigned long deadline;
145 
146 	/*
147 	 * The hash is used inside the scheduler, and killed once the
148 	 * request reaches the dispatch list. The ipi_list is only used
149 	 * to queue the request for softirq completion, which is long
150 	 * after the request has been unhashed (and even removed from
151 	 * the dispatch list).
152 	 */
153 	union {
154 		struct hlist_node hash;	/* merge hash */
155 		struct llist_node ipi_list;
156 	};
157 
158 	/*
159 	 * The rb_node is only used inside the io scheduler, requests
160 	 * are pruned when moved to the dispatch queue. So let the
161 	 * completion_data share space with the rb_node.
162 	 */
163 	union {
164 		struct rb_node rb_node;	/* sort/lookup */
165 		struct bio_vec special_vec;
166 		void *completion_data;
167 	};
168 
169 
170 	/*
171 	 * Three pointers are available for the IO schedulers, if they need
172 	 * more they have to dynamically allocate it.  Flush requests are
173 	 * never put on the IO scheduler. So let the flush fields share
174 	 * space with the elevator data.
175 	 */
176 	union {
177 		struct {
178 			struct io_cq		*icq;
179 			void			*priv[2];
180 		} elv;
181 
182 		struct {
183 			unsigned int		seq;
184 			struct list_head	list;
185 			rq_end_io_fn		*saved_end_io;
186 		} flush;
187 	};
188 
189 	union {
190 		struct __call_single_data csd;
191 		u64 fifo_time;
192 	};
193 
194 	/*
195 	 * completion callback.
196 	 */
197 	rq_end_io_fn *end_io;
198 	void *end_io_data;
199 };
200 
201 static inline enum req_op req_op(const struct request *req)
202 {
203 	return req->cmd_flags & REQ_OP_MASK;
204 }
205 
206 static inline bool blk_rq_is_passthrough(struct request *rq)
207 {
208 	return blk_op_is_passthrough(req_op(rq));
209 }
210 
211 static inline unsigned short req_get_ioprio(struct request *req)
212 {
213 	return req->ioprio;
214 }
215 
216 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
217 
218 #define rq_dma_dir(rq) \
219 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
220 
221 #define rq_list_add(listptr, rq)	do {		\
222 	(rq)->rq_next = *(listptr);			\
223 	*(listptr) = rq;				\
224 } while (0)
225 
226 #define rq_list_pop(listptr)				\
227 ({							\
228 	struct request *__req = NULL;			\
229 	if ((listptr) && *(listptr))	{		\
230 		__req = *(listptr);			\
231 		*(listptr) = __req->rq_next;		\
232 	}						\
233 	__req;						\
234 })
235 
236 #define rq_list_peek(listptr)				\
237 ({							\
238 	struct request *__req = NULL;			\
239 	if ((listptr) && *(listptr))			\
240 		__req = *(listptr);			\
241 	__req;						\
242 })
243 
244 #define rq_list_for_each(listptr, pos)			\
245 	for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
246 
247 #define rq_list_for_each_safe(listptr, pos, nxt)			\
248 	for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);	\
249 		pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
250 
251 #define rq_list_next(rq)	(rq)->rq_next
252 #define rq_list_empty(list)	((list) == (struct request *) NULL)
253 
254 /**
255  * rq_list_move() - move a struct request from one list to another
256  * @src: The source list @rq is currently in
257  * @dst: The destination list that @rq will be appended to
258  * @rq: The request to move
259  * @prev: The request preceding @rq in @src (NULL if @rq is the head)
260  */
261 static inline void rq_list_move(struct request **src, struct request **dst,
262 				struct request *rq, struct request *prev)
263 {
264 	if (prev)
265 		prev->rq_next = rq->rq_next;
266 	else
267 		*src = rq->rq_next;
268 	rq_list_add(dst, rq);
269 }
270 
271 enum blk_eh_timer_return {
272 	BLK_EH_DONE,		/* drivers has completed the command */
273 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
274 };
275 
276 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
277 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
278 
279 /**
280  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
281  * block device
282  */
283 struct blk_mq_hw_ctx {
284 	struct {
285 		/** @lock: Protects the dispatch list. */
286 		spinlock_t		lock;
287 		/**
288 		 * @dispatch: Used for requests that are ready to be
289 		 * dispatched to the hardware but for some reason (e.g. lack of
290 		 * resources) could not be sent to the hardware. As soon as the
291 		 * driver can send new requests, requests at this list will
292 		 * be sent first for a fairer dispatch.
293 		 */
294 		struct list_head	dispatch;
295 		 /**
296 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
297 		  * queue (active, scheduled to restart, stopped).
298 		  */
299 		unsigned long		state;
300 	} ____cacheline_aligned_in_smp;
301 
302 	/**
303 	 * @run_work: Used for scheduling a hardware queue run at a later time.
304 	 */
305 	struct delayed_work	run_work;
306 	/** @cpumask: Map of available CPUs where this hctx can run. */
307 	cpumask_var_t		cpumask;
308 	/**
309 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
310 	 * selection from @cpumask.
311 	 */
312 	int			next_cpu;
313 	/**
314 	 * @next_cpu_batch: Counter of how many works left in the batch before
315 	 * changing to the next CPU.
316 	 */
317 	int			next_cpu_batch;
318 
319 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
320 	unsigned long		flags;
321 
322 	/**
323 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
324 	 * queue. It's up to the IO scheduler how to use this pointer.
325 	 */
326 	void			*sched_data;
327 	/**
328 	 * @queue: Pointer to the request queue that owns this hardware context.
329 	 */
330 	struct request_queue	*queue;
331 	/** @fq: Queue of requests that need to perform a flush operation. */
332 	struct blk_flush_queue	*fq;
333 
334 	/**
335 	 * @driver_data: Pointer to data owned by the block driver that created
336 	 * this hctx
337 	 */
338 	void			*driver_data;
339 
340 	/**
341 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
342 	 * pending request in that software queue.
343 	 */
344 	struct sbitmap		ctx_map;
345 
346 	/**
347 	 * @dispatch_from: Software queue to be used when no scheduler was
348 	 * selected.
349 	 */
350 	struct blk_mq_ctx	*dispatch_from;
351 	/**
352 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
353 	 * decide if the hw_queue is busy using Exponential Weighted Moving
354 	 * Average algorithm.
355 	 */
356 	unsigned int		dispatch_busy;
357 
358 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
359 	unsigned short		type;
360 	/** @nr_ctx: Number of software queues. */
361 	unsigned short		nr_ctx;
362 	/** @ctxs: Array of software queues. */
363 	struct blk_mq_ctx	**ctxs;
364 
365 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
366 	spinlock_t		dispatch_wait_lock;
367 	/**
368 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
369 	 * available at the moment, to wait for another try in the future.
370 	 */
371 	wait_queue_entry_t	dispatch_wait;
372 
373 	/**
374 	 * @wait_index: Index of next available dispatch_wait queue to insert
375 	 * requests.
376 	 */
377 	atomic_t		wait_index;
378 
379 	/**
380 	 * @tags: Tags owned by the block driver. A tag at this set is only
381 	 * assigned when a request is dispatched from a hardware queue.
382 	 */
383 	struct blk_mq_tags	*tags;
384 	/**
385 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
386 	 * scheduler associated with a request queue, a tag is assigned when
387 	 * that request is allocated. Else, this member is not used.
388 	 */
389 	struct blk_mq_tags	*sched_tags;
390 
391 	/** @queued: Number of queued requests. */
392 	unsigned long		queued;
393 	/** @run: Number of dispatched requests. */
394 	unsigned long		run;
395 
396 	/** @numa_node: NUMA node the storage adapter has been connected to. */
397 	unsigned int		numa_node;
398 	/** @queue_num: Index of this hardware queue. */
399 	unsigned int		queue_num;
400 
401 	/**
402 	 * @nr_active: Number of active requests. Only used when a tag set is
403 	 * shared across request queues.
404 	 */
405 	atomic_t		nr_active;
406 
407 	/** @cpuhp_online: List to store request if CPU is going to die */
408 	struct hlist_node	cpuhp_online;
409 	/** @cpuhp_dead: List to store request if some CPU die. */
410 	struct hlist_node	cpuhp_dead;
411 	/** @kobj: Kernel object for sysfs. */
412 	struct kobject		kobj;
413 
414 #ifdef CONFIG_BLK_DEBUG_FS
415 	/**
416 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
417 	 * as cpu<cpu_number>.
418 	 */
419 	struct dentry		*debugfs_dir;
420 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
421 	struct dentry		*sched_debugfs_dir;
422 #endif
423 
424 	/**
425 	 * @hctx_list: if this hctx is not in use, this is an entry in
426 	 * q->unused_hctx_list.
427 	 */
428 	struct list_head	hctx_list;
429 };
430 
431 /**
432  * struct blk_mq_queue_map - Map software queues to hardware queues
433  * @mq_map:       CPU ID to hardware queue index map. This is an array
434  *	with nr_cpu_ids elements. Each element has a value in the range
435  *	[@queue_offset, @queue_offset + @nr_queues).
436  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
437  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
438  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
439  *	set of hardware queues.
440  */
441 struct blk_mq_queue_map {
442 	unsigned int *mq_map;
443 	unsigned int nr_queues;
444 	unsigned int queue_offset;
445 };
446 
447 /**
448  * enum hctx_type - Type of hardware queue
449  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
450  * @HCTX_TYPE_READ:	Just for READ I/O.
451  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
452  * @HCTX_MAX_TYPES:	Number of types of hctx.
453  */
454 enum hctx_type {
455 	HCTX_TYPE_DEFAULT,
456 	HCTX_TYPE_READ,
457 	HCTX_TYPE_POLL,
458 
459 	HCTX_MAX_TYPES,
460 };
461 
462 /**
463  * struct blk_mq_tag_set - tag set that can be shared between request queues
464  * @map:	   One or more ctx -> hctx mappings. One map exists for each
465  *		   hardware queue type (enum hctx_type) that the driver wishes
466  *		   to support. There are no restrictions on maps being of the
467  *		   same size, and it's perfectly legal to share maps between
468  *		   types.
469  * @nr_maps:	   Number of elements in the @map array. A number in the range
470  *		   [1, HCTX_MAX_TYPES].
471  * @ops:	   Pointers to functions that implement block driver behavior.
472  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
473  *		   owns this data structure.
474  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
475  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
476  *		   allocations.
477  * @cmd_size:	   Number of additional bytes to allocate per request. The block
478  *		   driver owns these additional bytes.
479  * @numa_node:	   NUMA node the storage adapter has been connected to.
480  * @timeout:	   Request processing timeout in jiffies.
481  * @flags:	   Zero or more BLK_MQ_F_* flags.
482  * @driver_data:   Pointer to data owned by the block driver that created this
483  *		   tag set.
484  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
485  *		   elements.
486  * @shared_tags:
487  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
488  *		   shared by all @tags.
489  * @tag_list_lock: Serializes tag_list accesses.
490  * @tag_list:	   List of the request queues that use this tag set. See also
491  *		   request_queue.tag_set_list.
492  */
493 struct blk_mq_tag_set {
494 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
495 	unsigned int		nr_maps;
496 	const struct blk_mq_ops	*ops;
497 	unsigned int		nr_hw_queues;
498 	unsigned int		queue_depth;
499 	unsigned int		reserved_tags;
500 	unsigned int		cmd_size;
501 	int			numa_node;
502 	unsigned int		timeout;
503 	unsigned int		flags;
504 	void			*driver_data;
505 
506 	struct blk_mq_tags	**tags;
507 
508 	struct blk_mq_tags	*shared_tags;
509 
510 	struct mutex		tag_list_lock;
511 	struct list_head	tag_list;
512 };
513 
514 /**
515  * struct blk_mq_queue_data - Data about a request inserted in a queue
516  *
517  * @rq:   Request pointer.
518  * @last: If it is the last request in the queue.
519  */
520 struct blk_mq_queue_data {
521 	struct request *rq;
522 	bool last;
523 };
524 
525 typedef bool (busy_tag_iter_fn)(struct request *, void *);
526 
527 /**
528  * struct blk_mq_ops - Callback functions that implements block driver
529  * behaviour.
530  */
531 struct blk_mq_ops {
532 	/**
533 	 * @queue_rq: Queue a new request from block IO.
534 	 */
535 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
536 				 const struct blk_mq_queue_data *);
537 
538 	/**
539 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
540 	 * requests to hardware, it must define this function. In case of errors
541 	 * that make us stop issuing further requests, this hook serves the
542 	 * purpose of kicking the hardware (which the last request otherwise
543 	 * would have done).
544 	 */
545 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
546 
547 	/**
548 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
549 	 * that each request belongs to the same queue. If the driver doesn't
550 	 * empty the @rqlist completely, then the rest will be queued
551 	 * individually by the block layer upon return.
552 	 */
553 	void (*queue_rqs)(struct request **rqlist);
554 
555 	/**
556 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
557 	 * run, it is driver's responsibility to release the
558 	 * reserved budget. Also we have to handle failure case
559 	 * of .get_budget for avoiding I/O deadlock.
560 	 */
561 	int (*get_budget)(struct request_queue *);
562 
563 	/**
564 	 * @put_budget: Release the reserved budget.
565 	 */
566 	void (*put_budget)(struct request_queue *, int);
567 
568 	/**
569 	 * @set_rq_budget_token: store rq's budget token
570 	 */
571 	void (*set_rq_budget_token)(struct request *, int);
572 	/**
573 	 * @get_rq_budget_token: retrieve rq's budget token
574 	 */
575 	int (*get_rq_budget_token)(struct request *);
576 
577 	/**
578 	 * @timeout: Called on request timeout.
579 	 */
580 	enum blk_eh_timer_return (*timeout)(struct request *);
581 
582 	/**
583 	 * @poll: Called to poll for completion of a specific tag.
584 	 */
585 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
586 
587 	/**
588 	 * @complete: Mark the request as complete.
589 	 */
590 	void (*complete)(struct request *);
591 
592 	/**
593 	 * @init_hctx: Called when the block layer side of a hardware queue has
594 	 * been set up, allowing the driver to allocate/init matching
595 	 * structures.
596 	 */
597 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
598 	/**
599 	 * @exit_hctx: Ditto for exit/teardown.
600 	 */
601 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
602 
603 	/**
604 	 * @init_request: Called for every command allocated by the block layer
605 	 * to allow the driver to set up driver specific data.
606 	 *
607 	 * Tag greater than or equal to queue_depth is for setting up
608 	 * flush request.
609 	 */
610 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
611 			    unsigned int, unsigned int);
612 	/**
613 	 * @exit_request: Ditto for exit/teardown.
614 	 */
615 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
616 			     unsigned int);
617 
618 	/**
619 	 * @cleanup_rq: Called before freeing one request which isn't completed
620 	 * yet, and usually for freeing the driver private data.
621 	 */
622 	void (*cleanup_rq)(struct request *);
623 
624 	/**
625 	 * @busy: If set, returns whether or not this queue currently is busy.
626 	 */
627 	bool (*busy)(struct request_queue *);
628 
629 	/**
630 	 * @map_queues: This allows drivers specify their own queue mapping by
631 	 * overriding the setup-time function that builds the mq_map.
632 	 */
633 	int (*map_queues)(struct blk_mq_tag_set *set);
634 
635 #ifdef CONFIG_BLK_DEBUG_FS
636 	/**
637 	 * @show_rq: Used by the debugfs implementation to show driver-specific
638 	 * information about a request.
639 	 */
640 	void (*show_rq)(struct seq_file *m, struct request *rq);
641 #endif
642 };
643 
644 enum {
645 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
646 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
647 	/*
648 	 * Set when this device requires underlying blk-mq device for
649 	 * completing IO:
650 	 */
651 	BLK_MQ_F_STACKING	= 1 << 2,
652 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
653 	BLK_MQ_F_BLOCKING	= 1 << 5,
654 	/* Do not allow an I/O scheduler to be configured. */
655 	BLK_MQ_F_NO_SCHED	= 1 << 6,
656 	/*
657 	 * Select 'none' during queue registration in case of a single hwq
658 	 * or shared hwqs instead of 'mq-deadline'.
659 	 */
660 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
661 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
662 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
663 
664 	BLK_MQ_S_STOPPED	= 0,
665 	BLK_MQ_S_TAG_ACTIVE	= 1,
666 	BLK_MQ_S_SCHED_RESTART	= 2,
667 
668 	/* hw queue is inactive after all its CPUs become offline */
669 	BLK_MQ_S_INACTIVE	= 3,
670 
671 	BLK_MQ_MAX_DEPTH	= 10240,
672 
673 	BLK_MQ_CPU_WORK_BATCH	= 8,
674 };
675 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
676 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
677 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
678 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
679 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
680 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
681 
682 #define BLK_MQ_NO_HCTX_IDX	(-1U)
683 
684 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
685 		struct lock_class_key *lkclass);
686 #define blk_mq_alloc_disk(set, queuedata)				\
687 ({									\
688 	static struct lock_class_key __key;				\
689 									\
690 	__blk_mq_alloc_disk(set, queuedata, &__key);			\
691 })
692 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
693 		struct lock_class_key *lkclass);
694 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
695 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
696 		struct request_queue *q);
697 void blk_mq_destroy_queue(struct request_queue *);
698 
699 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
700 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
701 		const struct blk_mq_ops *ops, unsigned int queue_depth,
702 		unsigned int set_flags);
703 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
704 
705 void blk_mq_free_request(struct request *rq);
706 
707 bool blk_mq_queue_inflight(struct request_queue *q);
708 
709 enum {
710 	/* return when out of requests */
711 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
712 	/* allocate from reserved pool */
713 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
714 	/* set RQF_PM */
715 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
716 };
717 
718 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
719 		blk_mq_req_flags_t flags);
720 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
721 		blk_opf_t opf, blk_mq_req_flags_t flags,
722 		unsigned int hctx_idx);
723 
724 /*
725  * Tag address space map.
726  */
727 struct blk_mq_tags {
728 	unsigned int nr_tags;
729 	unsigned int nr_reserved_tags;
730 
731 	atomic_t active_queues;
732 
733 	struct sbitmap_queue bitmap_tags;
734 	struct sbitmap_queue breserved_tags;
735 
736 	struct request **rqs;
737 	struct request **static_rqs;
738 	struct list_head page_list;
739 
740 	/*
741 	 * used to clear request reference in rqs[] before freeing one
742 	 * request pool
743 	 */
744 	spinlock_t lock;
745 };
746 
747 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
748 					       unsigned int tag)
749 {
750 	if (tag < tags->nr_tags) {
751 		prefetch(tags->rqs[tag]);
752 		return tags->rqs[tag];
753 	}
754 
755 	return NULL;
756 }
757 
758 enum {
759 	BLK_MQ_UNIQUE_TAG_BITS = 16,
760 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
761 };
762 
763 u32 blk_mq_unique_tag(struct request *rq);
764 
765 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
766 {
767 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
768 }
769 
770 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
771 {
772 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
773 }
774 
775 /**
776  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
777  * @rq: target request.
778  */
779 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
780 {
781 	return READ_ONCE(rq->state);
782 }
783 
784 static inline int blk_mq_request_started(struct request *rq)
785 {
786 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
787 }
788 
789 static inline int blk_mq_request_completed(struct request *rq)
790 {
791 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
792 }
793 
794 /*
795  *
796  * Set the state to complete when completing a request from inside ->queue_rq.
797  * This is used by drivers that want to ensure special complete actions that
798  * need access to the request are called on failure, e.g. by nvme for
799  * multipathing.
800  */
801 static inline void blk_mq_set_request_complete(struct request *rq)
802 {
803 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
804 }
805 
806 /*
807  * Complete the request directly instead of deferring it to softirq or
808  * completing it another CPU. Useful in preemptible instead of an interrupt.
809  */
810 static inline void blk_mq_complete_request_direct(struct request *rq,
811 		   void (*complete)(struct request *rq))
812 {
813 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
814 	complete(rq);
815 }
816 
817 void blk_mq_start_request(struct request *rq);
818 void blk_mq_end_request(struct request *rq, blk_status_t error);
819 void __blk_mq_end_request(struct request *rq, blk_status_t error);
820 void blk_mq_end_request_batch(struct io_comp_batch *ib);
821 
822 /*
823  * Only need start/end time stamping if we have iostat or
824  * blk stats enabled, or using an IO scheduler.
825  */
826 static inline bool blk_mq_need_time_stamp(struct request *rq)
827 {
828 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
829 }
830 
831 static inline bool blk_mq_is_reserved_rq(struct request *rq)
832 {
833 	return rq->rq_flags & RQF_RESV;
834 }
835 
836 /*
837  * Batched completions only work when there is no I/O error and no special
838  * ->end_io handler.
839  */
840 static inline bool blk_mq_add_to_batch(struct request *req,
841 				       struct io_comp_batch *iob, int ioerror,
842 				       void (*complete)(struct io_comp_batch *))
843 {
844 	if (!iob || (req->rq_flags & RQF_ELV) || req->end_io || ioerror)
845 		return false;
846 	if (!iob->complete)
847 		iob->complete = complete;
848 	else if (iob->complete != complete)
849 		return false;
850 	iob->need_ts |= blk_mq_need_time_stamp(req);
851 	rq_list_add(&iob->req_list, req);
852 	return true;
853 }
854 
855 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
856 void blk_mq_kick_requeue_list(struct request_queue *q);
857 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
858 void blk_mq_complete_request(struct request *rq);
859 bool blk_mq_complete_request_remote(struct request *rq);
860 bool blk_mq_queue_stopped(struct request_queue *q);
861 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
862 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
863 void blk_mq_stop_hw_queues(struct request_queue *q);
864 void blk_mq_start_hw_queues(struct request_queue *q);
865 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
866 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
867 void blk_mq_quiesce_queue(struct request_queue *q);
868 void blk_mq_wait_quiesce_done(struct request_queue *q);
869 void blk_mq_unquiesce_queue(struct request_queue *q);
870 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
871 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
872 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
873 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
874 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
875 		busy_tag_iter_fn *fn, void *priv);
876 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
877 void blk_mq_freeze_queue(struct request_queue *q);
878 void blk_mq_unfreeze_queue(struct request_queue *q);
879 void blk_freeze_queue_start(struct request_queue *q);
880 void blk_mq_freeze_queue_wait(struct request_queue *q);
881 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
882 				     unsigned long timeout);
883 
884 int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
885 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
886 
887 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
888 
889 unsigned int blk_mq_rq_cpu(struct request *rq);
890 
891 bool __blk_should_fake_timeout(struct request_queue *q);
892 static inline bool blk_should_fake_timeout(struct request_queue *q)
893 {
894 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
895 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
896 		return __blk_should_fake_timeout(q);
897 	return false;
898 }
899 
900 /**
901  * blk_mq_rq_from_pdu - cast a PDU to a request
902  * @pdu: the PDU (Protocol Data Unit) to be casted
903  *
904  * Return: request
905  *
906  * Driver command data is immediately after the request. So subtract request
907  * size to get back to the original request.
908  */
909 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
910 {
911 	return pdu - sizeof(struct request);
912 }
913 
914 /**
915  * blk_mq_rq_to_pdu - cast a request to a PDU
916  * @rq: the request to be casted
917  *
918  * Return: pointer to the PDU
919  *
920  * Driver command data is immediately after the request. So add request to get
921  * the PDU.
922  */
923 static inline void *blk_mq_rq_to_pdu(struct request *rq)
924 {
925 	return rq + 1;
926 }
927 
928 #define queue_for_each_hw_ctx(q, hctx, i)				\
929 	xa_for_each(&(q)->hctx_table, (i), (hctx))
930 
931 #define hctx_for_each_ctx(hctx, ctx, i)					\
932 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
933 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
934 
935 static inline void blk_mq_cleanup_rq(struct request *rq)
936 {
937 	if (rq->q->mq_ops->cleanup_rq)
938 		rq->q->mq_ops->cleanup_rq(rq);
939 }
940 
941 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
942 		unsigned int nr_segs)
943 {
944 	rq->nr_phys_segments = nr_segs;
945 	rq->__data_len = bio->bi_iter.bi_size;
946 	rq->bio = rq->biotail = bio;
947 	rq->ioprio = bio_prio(bio);
948 }
949 
950 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
951 		struct lock_class_key *key);
952 
953 static inline bool rq_is_sync(struct request *rq)
954 {
955 	return op_is_sync(rq->cmd_flags);
956 }
957 
958 void blk_rq_init(struct request_queue *q, struct request *rq);
959 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
960 		struct bio_set *bs, gfp_t gfp_mask,
961 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
962 void blk_rq_unprep_clone(struct request *rq);
963 blk_status_t blk_insert_cloned_request(struct request *rq);
964 
965 struct rq_map_data {
966 	struct page **pages;
967 	int page_order;
968 	int nr_entries;
969 	unsigned long offset;
970 	int null_mapped;
971 	int from_user;
972 };
973 
974 int blk_rq_map_user(struct request_queue *, struct request *,
975 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
976 int blk_rq_map_user_iov(struct request_queue *, struct request *,
977 		struct rq_map_data *, const struct iov_iter *, gfp_t);
978 int blk_rq_unmap_user(struct bio *);
979 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
980 		unsigned int, gfp_t);
981 int blk_rq_append_bio(struct request *rq, struct bio *bio);
982 void blk_execute_rq_nowait(struct request *rq, bool at_head);
983 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
984 
985 struct req_iterator {
986 	struct bvec_iter iter;
987 	struct bio *bio;
988 };
989 
990 #define __rq_for_each_bio(_bio, rq)	\
991 	if ((rq->bio))			\
992 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
993 
994 #define rq_for_each_segment(bvl, _rq, _iter)			\
995 	__rq_for_each_bio(_iter.bio, _rq)			\
996 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
997 
998 #define rq_for_each_bvec(bvl, _rq, _iter)			\
999 	__rq_for_each_bio(_iter.bio, _rq)			\
1000 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1001 
1002 #define rq_iter_last(bvec, _iter)				\
1003 		(_iter.bio->bi_next == NULL &&			\
1004 		 bio_iter_last(bvec, _iter.iter))
1005 
1006 /*
1007  * blk_rq_pos()			: the current sector
1008  * blk_rq_bytes()		: bytes left in the entire request
1009  * blk_rq_cur_bytes()		: bytes left in the current segment
1010  * blk_rq_sectors()		: sectors left in the entire request
1011  * blk_rq_cur_sectors()		: sectors left in the current segment
1012  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1013  */
1014 static inline sector_t blk_rq_pos(const struct request *rq)
1015 {
1016 	return rq->__sector;
1017 }
1018 
1019 static inline unsigned int blk_rq_bytes(const struct request *rq)
1020 {
1021 	return rq->__data_len;
1022 }
1023 
1024 static inline int blk_rq_cur_bytes(const struct request *rq)
1025 {
1026 	if (!rq->bio)
1027 		return 0;
1028 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1029 		return rq->bio->bi_iter.bi_size;
1030 	return bio_iovec(rq->bio).bv_len;
1031 }
1032 
1033 static inline unsigned int blk_rq_sectors(const struct request *rq)
1034 {
1035 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1036 }
1037 
1038 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1039 {
1040 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1041 }
1042 
1043 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1044 {
1045 	return rq->stats_sectors;
1046 }
1047 
1048 /*
1049  * Some commands like WRITE SAME have a payload or data transfer size which
1050  * is different from the size of the request.  Any driver that supports such
1051  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1052  * calculate the data transfer size.
1053  */
1054 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1055 {
1056 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1057 		return rq->special_vec.bv_len;
1058 	return blk_rq_bytes(rq);
1059 }
1060 
1061 /*
1062  * Return the first full biovec in the request.  The caller needs to check that
1063  * there are any bvecs before calling this helper.
1064  */
1065 static inline struct bio_vec req_bvec(struct request *rq)
1066 {
1067 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1068 		return rq->special_vec;
1069 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1070 }
1071 
1072 static inline unsigned int blk_rq_count_bios(struct request *rq)
1073 {
1074 	unsigned int nr_bios = 0;
1075 	struct bio *bio;
1076 
1077 	__rq_for_each_bio(bio, rq)
1078 		nr_bios++;
1079 
1080 	return nr_bios;
1081 }
1082 
1083 void blk_steal_bios(struct bio_list *list, struct request *rq);
1084 
1085 /*
1086  * Request completion related functions.
1087  *
1088  * blk_update_request() completes given number of bytes and updates
1089  * the request without completing it.
1090  */
1091 bool blk_update_request(struct request *rq, blk_status_t error,
1092 			       unsigned int nr_bytes);
1093 void blk_abort_request(struct request *);
1094 
1095 /*
1096  * Number of physical segments as sent to the device.
1097  *
1098  * Normally this is the number of discontiguous data segments sent by the
1099  * submitter.  But for data-less command like discard we might have no
1100  * actual data segments submitted, but the driver might have to add it's
1101  * own special payload.  In that case we still return 1 here so that this
1102  * special payload will be mapped.
1103  */
1104 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1105 {
1106 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1107 		return 1;
1108 	return rq->nr_phys_segments;
1109 }
1110 
1111 /*
1112  * Number of discard segments (or ranges) the driver needs to fill in.
1113  * Each discard bio merged into a request is counted as one segment.
1114  */
1115 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1116 {
1117 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1118 }
1119 
1120 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1121 		struct scatterlist *sglist, struct scatterlist **last_sg);
1122 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1123 		struct scatterlist *sglist)
1124 {
1125 	struct scatterlist *last_sg = NULL;
1126 
1127 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1128 }
1129 void blk_dump_rq_flags(struct request *, char *);
1130 
1131 #ifdef CONFIG_BLK_DEV_ZONED
1132 static inline unsigned int blk_rq_zone_no(struct request *rq)
1133 {
1134 	return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1135 }
1136 
1137 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1138 {
1139 	return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1140 }
1141 
1142 bool blk_req_needs_zone_write_lock(struct request *rq);
1143 bool blk_req_zone_write_trylock(struct request *rq);
1144 void __blk_req_zone_write_lock(struct request *rq);
1145 void __blk_req_zone_write_unlock(struct request *rq);
1146 
1147 static inline void blk_req_zone_write_lock(struct request *rq)
1148 {
1149 	if (blk_req_needs_zone_write_lock(rq))
1150 		__blk_req_zone_write_lock(rq);
1151 }
1152 
1153 static inline void blk_req_zone_write_unlock(struct request *rq)
1154 {
1155 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1156 		__blk_req_zone_write_unlock(rq);
1157 }
1158 
1159 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1160 {
1161 	return rq->q->disk->seq_zones_wlock &&
1162 		test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1163 }
1164 
1165 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1166 {
1167 	if (!blk_req_needs_zone_write_lock(rq))
1168 		return true;
1169 	return !blk_req_zone_is_write_locked(rq);
1170 }
1171 #else /* CONFIG_BLK_DEV_ZONED */
1172 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1173 {
1174 	return false;
1175 }
1176 
1177 static inline void blk_req_zone_write_lock(struct request *rq)
1178 {
1179 }
1180 
1181 static inline void blk_req_zone_write_unlock(struct request *rq)
1182 {
1183 }
1184 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1185 {
1186 	return false;
1187 }
1188 
1189 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1190 {
1191 	return true;
1192 }
1193 #endif /* CONFIG_BLK_DEV_ZONED */
1194 
1195 #endif /* BLK_MQ_H */
1196