xref: /linux-6.15/include/linux/bitmap.h (revision ed8cd2b3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/align.h>
8 #include <linux/bitops.h>
9 #include <linux/cleanup.h>
10 #include <linux/errno.h>
11 #include <linux/find.h>
12 #include <linux/limits.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/bitmap-str.h>
16 
17 struct device;
18 
19 /*
20  * bitmaps provide bit arrays that consume one or more unsigned
21  * longs.  The bitmap interface and available operations are listed
22  * here, in bitmap.h
23  *
24  * Function implementations generic to all architectures are in
25  * lib/bitmap.c.  Functions implementations that are architecture
26  * specific are in various include/asm-<arch>/bitops.h headers
27  * and other arch/<arch> specific files.
28  *
29  * See lib/bitmap.c for more details.
30  */
31 
32 /**
33  * DOC: bitmap overview
34  *
35  * The available bitmap operations and their rough meaning in the
36  * case that the bitmap is a single unsigned long are thus:
37  *
38  * The generated code is more efficient when nbits is known at
39  * compile-time and at most BITS_PER_LONG.
40  *
41  * ::
42  *
43  *  bitmap_zero(dst, nbits)                     *dst = 0UL
44  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
45  *  bitmap_copy(dst, src, nbits)                *dst = *src
46  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
47  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
48  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
49  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
50  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
51  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
52  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
53  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
54  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
55  *  bitmap_full(src, nbits)                     Are all bits set in *src?
56  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
57  *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap
58  *  bitmap_weight_andnot(src1, src2, nbits)     Hamming Weight of andnot'ed bitmap
59  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
60  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
61  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
62  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
63  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
64  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
65  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
66  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
67  *  bitmap_scatter(dst, src, mask, nbits)	*dst = map(dense, sparse)(src)
68  *  bitmap_gather(dst, src, mask, nbits)	*dst = map(sparse, dense)(src)
69  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
70  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
71  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
72  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
73  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
74  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
75  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
76  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
77  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
78  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
79  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
80  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
81  *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst
82  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
83  *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
84  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
85  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
86  *  bitmap_read(map, start, nbits)              Read an nbits-sized value from
87  *                                              map at start
88  *  bitmap_write(map, value, start, nbits)      Write an nbits-sized value to
89  *                                              map at start
90  *
91  * Note, bitmap_zero() and bitmap_fill() operate over the region of
92  * unsigned longs, that is, bits behind bitmap till the unsigned long
93  * boundary will be zeroed or filled as well. Consider to use
94  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
95  * respectively.
96  */
97 
98 /**
99  * DOC: bitmap bitops
100  *
101  * Also the following operations in asm/bitops.h apply to bitmaps.::
102  *
103  *  set_bit(bit, addr)                  *addr |= bit
104  *  clear_bit(bit, addr)                *addr &= ~bit
105  *  change_bit(bit, addr)               *addr ^= bit
106  *  test_bit(bit, addr)                 Is bit set in *addr?
107  *  test_and_set_bit(bit, addr)         Set bit and return old value
108  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
109  *  test_and_change_bit(bit, addr)      Change bit and return old value
110  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
111  *  find_first_bit(addr, nbits)         Position first set bit in *addr
112  *  find_next_zero_bit(addr, nbits, bit)
113  *                                      Position next zero bit in *addr >= bit
114  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
115  *  find_next_and_bit(addr1, addr2, nbits, bit)
116  *                                      Same as find_next_bit, but in
117  *                                      (*addr1 & *addr2)
118  *
119  */
120 
121 /**
122  * DOC: declare bitmap
123  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
124  * to declare an array named 'name' of just enough unsigned longs to
125  * contain all bit positions from 0 to 'bits' - 1.
126  */
127 
128 /*
129  * Allocation and deallocation of bitmap.
130  * Provided in lib/bitmap.c to avoid circular dependency.
131  */
132 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
133 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
134 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
135 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
136 void bitmap_free(const unsigned long *bitmap);
137 
138 DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
139 
140 /* Managed variants of the above. */
141 unsigned long *devm_bitmap_alloc(struct device *dev,
142 				 unsigned int nbits, gfp_t flags);
143 unsigned long *devm_bitmap_zalloc(struct device *dev,
144 				  unsigned int nbits, gfp_t flags);
145 
146 /*
147  * lib/bitmap.c provides these functions:
148  */
149 
150 bool __bitmap_equal(const unsigned long *bitmap1,
151 		    const unsigned long *bitmap2, unsigned int nbits);
152 bool __pure __bitmap_or_equal(const unsigned long *src1,
153 			      const unsigned long *src2,
154 			      const unsigned long *src3,
155 			      unsigned int nbits);
156 void __bitmap_complement(unsigned long *dst, const unsigned long *src,
157 			 unsigned int nbits);
158 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
159 			  unsigned int shift, unsigned int nbits);
160 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
161 			 unsigned int shift, unsigned int nbits);
162 void bitmap_cut(unsigned long *dst, const unsigned long *src,
163 		unsigned int first, unsigned int cut, unsigned int nbits);
164 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
165 		 const unsigned long *bitmap2, unsigned int nbits);
166 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
167 		 const unsigned long *bitmap2, unsigned int nbits);
168 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
169 		  const unsigned long *bitmap2, unsigned int nbits);
170 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
171 		    const unsigned long *bitmap2, unsigned int nbits);
172 void __bitmap_replace(unsigned long *dst,
173 		      const unsigned long *old, const unsigned long *new,
174 		      const unsigned long *mask, unsigned int nbits);
175 bool __bitmap_intersects(const unsigned long *bitmap1,
176 			 const unsigned long *bitmap2, unsigned int nbits);
177 bool __bitmap_subset(const unsigned long *bitmap1,
178 		     const unsigned long *bitmap2, unsigned int nbits);
179 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
180 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
181 				 const unsigned long *bitmap2, unsigned int nbits);
182 unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
183 				    const unsigned long *bitmap2, unsigned int nbits);
184 void __bitmap_set(unsigned long *map, unsigned int start, int len);
185 void __bitmap_clear(unsigned long *map, unsigned int start, int len);
186 
187 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
188 					     unsigned long size,
189 					     unsigned long start,
190 					     unsigned int nr,
191 					     unsigned long align_mask,
192 					     unsigned long align_offset);
193 
194 /**
195  * bitmap_find_next_zero_area - find a contiguous aligned zero area
196  * @map: The address to base the search on
197  * @size: The bitmap size in bits
198  * @start: The bitnumber to start searching at
199  * @nr: The number of zeroed bits we're looking for
200  * @align_mask: Alignment mask for zero area
201  *
202  * The @align_mask should be one less than a power of 2; the effect is that
203  * the bit offset of all zero areas this function finds is multiples of that
204  * power of 2. A @align_mask of 0 means no alignment is required.
205  */
206 static __always_inline
207 unsigned long bitmap_find_next_zero_area(unsigned long *map,
208 					 unsigned long size,
209 					 unsigned long start,
210 					 unsigned int nr,
211 					 unsigned long align_mask)
212 {
213 	return bitmap_find_next_zero_area_off(map, size, start, nr,
214 					      align_mask, 0);
215 }
216 
217 void bitmap_remap(unsigned long *dst, const unsigned long *src,
218 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
219 int bitmap_bitremap(int oldbit,
220 		const unsigned long *old, const unsigned long *new, int bits);
221 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
222 		const unsigned long *relmap, unsigned int bits);
223 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
224 		unsigned int sz, unsigned int nbits);
225 
226 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
227 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
228 
229 #define bitmap_size(nbits)	(ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
230 
231 static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
232 {
233 	unsigned int len = bitmap_size(nbits);
234 
235 	if (small_const_nbits(nbits))
236 		*dst = 0;
237 	else
238 		memset(dst, 0, len);
239 }
240 
241 static __always_inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
242 {
243 	unsigned int len = bitmap_size(nbits);
244 
245 	if (small_const_nbits(nbits))
246 		*dst = ~0UL;
247 	else
248 		memset(dst, 0xff, len);
249 }
250 
251 static __always_inline
252 void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits)
253 {
254 	unsigned int len = bitmap_size(nbits);
255 
256 	if (small_const_nbits(nbits))
257 		*dst = *src;
258 	else
259 		memcpy(dst, src, len);
260 }
261 
262 /*
263  * Copy bitmap and clear tail bits in last word.
264  */
265 static __always_inline
266 void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits)
267 {
268 	bitmap_copy(dst, src, nbits);
269 	if (nbits % BITS_PER_LONG)
270 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
271 }
272 
273 /*
274  * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
275  * machines the order of hi and lo parts of numbers match the bitmap structure.
276  * In both cases conversion is not needed when copying data from/to arrays of
277  * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
278  * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
279  * architectures are not using bitmap_copy_clear_tail().
280  */
281 #if BITS_PER_LONG == 64
282 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
283 							unsigned int nbits);
284 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
285 							unsigned int nbits);
286 #else
287 #define bitmap_from_arr32(bitmap, buf, nbits)			\
288 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
289 			(const unsigned long *) (buf), (nbits))
290 #define bitmap_to_arr32(buf, bitmap, nbits)			\
291 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
292 			(const unsigned long *) (bitmap), (nbits))
293 #endif
294 
295 /*
296  * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
297  * the conversion is not needed when copying data from/to arrays of u64.
298  */
299 #if BITS_PER_LONG == 32
300 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
301 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
302 #else
303 #define bitmap_from_arr64(bitmap, buf, nbits)			\
304 	bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
305 #define bitmap_to_arr64(buf, bitmap, nbits)			\
306 	bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
307 #endif
308 
309 static __always_inline
310 bool bitmap_and(unsigned long *dst, const unsigned long *src1,
311 		const unsigned long *src2, unsigned int nbits)
312 {
313 	if (small_const_nbits(nbits))
314 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
315 	return __bitmap_and(dst, src1, src2, nbits);
316 }
317 
318 static __always_inline
319 void bitmap_or(unsigned long *dst, const unsigned long *src1,
320 	       const unsigned long *src2, unsigned int nbits)
321 {
322 	if (small_const_nbits(nbits))
323 		*dst = *src1 | *src2;
324 	else
325 		__bitmap_or(dst, src1, src2, nbits);
326 }
327 
328 static __always_inline
329 void bitmap_xor(unsigned long *dst, const unsigned long *src1,
330 		const unsigned long *src2, unsigned int nbits)
331 {
332 	if (small_const_nbits(nbits))
333 		*dst = *src1 ^ *src2;
334 	else
335 		__bitmap_xor(dst, src1, src2, nbits);
336 }
337 
338 static __always_inline
339 bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
340 		   const unsigned long *src2, unsigned int nbits)
341 {
342 	if (small_const_nbits(nbits))
343 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
344 	return __bitmap_andnot(dst, src1, src2, nbits);
345 }
346 
347 static __always_inline
348 void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits)
349 {
350 	if (small_const_nbits(nbits))
351 		*dst = ~(*src);
352 	else
353 		__bitmap_complement(dst, src, nbits);
354 }
355 
356 #ifdef __LITTLE_ENDIAN
357 #define BITMAP_MEM_ALIGNMENT 8
358 #else
359 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
360 #endif
361 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
362 
363 static __always_inline
364 bool bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
365 {
366 	if (small_const_nbits(nbits))
367 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
368 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
369 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
370 		return !memcmp(src1, src2, nbits / 8);
371 	return __bitmap_equal(src1, src2, nbits);
372 }
373 
374 /**
375  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
376  * @src1:	Pointer to bitmap 1
377  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
378  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
379  * @nbits:	number of bits in each of these bitmaps
380  *
381  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
382  */
383 static __always_inline
384 bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2,
385 		     const unsigned long *src3, unsigned int nbits)
386 {
387 	if (!small_const_nbits(nbits))
388 		return __bitmap_or_equal(src1, src2, src3, nbits);
389 
390 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
391 }
392 
393 static __always_inline
394 bool bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
395 {
396 	if (small_const_nbits(nbits))
397 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
398 	else
399 		return __bitmap_intersects(src1, src2, nbits);
400 }
401 
402 static __always_inline
403 bool bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
404 {
405 	if (small_const_nbits(nbits))
406 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
407 	else
408 		return __bitmap_subset(src1, src2, nbits);
409 }
410 
411 static __always_inline
412 bool bitmap_empty(const unsigned long *src, unsigned nbits)
413 {
414 	if (small_const_nbits(nbits))
415 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
416 
417 	return find_first_bit(src, nbits) == nbits;
418 }
419 
420 static __always_inline
421 bool bitmap_full(const unsigned long *src, unsigned int nbits)
422 {
423 	if (small_const_nbits(nbits))
424 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
425 
426 	return find_first_zero_bit(src, nbits) == nbits;
427 }
428 
429 static __always_inline
430 unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
431 {
432 	if (small_const_nbits(nbits))
433 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
434 	return __bitmap_weight(src, nbits);
435 }
436 
437 static __always_inline
438 unsigned long bitmap_weight_and(const unsigned long *src1,
439 				const unsigned long *src2, unsigned int nbits)
440 {
441 	if (small_const_nbits(nbits))
442 		return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
443 	return __bitmap_weight_and(src1, src2, nbits);
444 }
445 
446 static __always_inline
447 unsigned long bitmap_weight_andnot(const unsigned long *src1,
448 				   const unsigned long *src2, unsigned int nbits)
449 {
450 	if (small_const_nbits(nbits))
451 		return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
452 	return __bitmap_weight_andnot(src1, src2, nbits);
453 }
454 
455 static __always_inline
456 void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits)
457 {
458 	if (__builtin_constant_p(nbits) && nbits == 1)
459 		__set_bit(start, map);
460 	else if (small_const_nbits(start + nbits))
461 		*map |= GENMASK(start + nbits - 1, start);
462 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
463 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
464 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
465 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
466 		memset((char *)map + start / 8, 0xff, nbits / 8);
467 	else
468 		__bitmap_set(map, start, nbits);
469 }
470 
471 static __always_inline
472 void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits)
473 {
474 	if (__builtin_constant_p(nbits) && nbits == 1)
475 		__clear_bit(start, map);
476 	else if (small_const_nbits(start + nbits))
477 		*map &= ~GENMASK(start + nbits - 1, start);
478 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
479 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
480 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
481 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
482 		memset((char *)map + start / 8, 0, nbits / 8);
483 	else
484 		__bitmap_clear(map, start, nbits);
485 }
486 
487 static __always_inline
488 void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
489 			unsigned int shift, unsigned int nbits)
490 {
491 	if (small_const_nbits(nbits))
492 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
493 	else
494 		__bitmap_shift_right(dst, src, shift, nbits);
495 }
496 
497 static __always_inline
498 void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
499 		       unsigned int shift, unsigned int nbits)
500 {
501 	if (small_const_nbits(nbits))
502 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
503 	else
504 		__bitmap_shift_left(dst, src, shift, nbits);
505 }
506 
507 static __always_inline
508 void bitmap_replace(unsigned long *dst,
509 		    const unsigned long *old,
510 		    const unsigned long *new,
511 		    const unsigned long *mask,
512 		    unsigned int nbits)
513 {
514 	if (small_const_nbits(nbits))
515 		*dst = (*old & ~(*mask)) | (*new & *mask);
516 	else
517 		__bitmap_replace(dst, old, new, mask, nbits);
518 }
519 
520 /**
521  * bitmap_scatter - Scatter a bitmap according to the given mask
522  * @dst: scattered bitmap
523  * @src: gathered bitmap
524  * @mask: mask representing bits to assign to in the scattered bitmap
525  * @nbits: number of bits in each of these bitmaps
526  *
527  * Scatters bitmap with sequential bits according to the given @mask.
528  *
529  * Example:
530  * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
531  *
532  * Or in binary form
533  * @src			@mask			@dst
534  * 0000000001011010	0001001100010011	0000001100000010
535  *
536  * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
537  *
538  * A more 'visual' description of the operation::
539  *
540  *	src:  0000000001011010
541  *	                ||||||
542  *	         +------+|||||
543  *	         |  +----+||||
544  *	         |  |+----+|||
545  *	         |  ||   +-+||
546  *	         |  ||   |  ||
547  *	mask: ...v..vv...v..vv
548  *	      ...0..11...0..10
549  *	dst:  0000001100000010
550  *
551  * A relationship exists between bitmap_scatter() and bitmap_gather().
552  * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
553  * See bitmap_scatter() for details related to this relationship.
554  */
555 static __always_inline
556 void bitmap_scatter(unsigned long *dst, const unsigned long *src,
557 		    const unsigned long *mask, unsigned int nbits)
558 {
559 	unsigned int n = 0;
560 	unsigned int bit;
561 
562 	bitmap_zero(dst, nbits);
563 
564 	for_each_set_bit(bit, mask, nbits)
565 		__assign_bit(bit, dst, test_bit(n++, src));
566 }
567 
568 /**
569  * bitmap_gather - Gather a bitmap according to given mask
570  * @dst: gathered bitmap
571  * @src: scattered bitmap
572  * @mask: mask representing bits to extract from in the scattered bitmap
573  * @nbits: number of bits in each of these bitmaps
574  *
575  * Gathers bitmap with sparse bits according to the given @mask.
576  *
577  * Example:
578  * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
579  *
580  * Or in binary form
581  * @src			@mask			@dst
582  * 0000001100000010	0001001100010011	0000000000011010
583  *
584  * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
585  *
586  * A more 'visual' description of the operation::
587  *
588  *	mask: ...v..vv...v..vv
589  *	src:  0000001100000010
590  *	         ^  ^^   ^   0
591  *	         |  ||   |  10
592  *	         |  ||   > 010
593  *	         |  |+--> 1010
594  *	         |  +--> 11010
595  *	         +----> 011010
596  *	dst:  0000000000011010
597  *
598  * A relationship exists between bitmap_gather() and bitmap_scatter(). See
599  * bitmap_scatter() for the bitmap scatter detailed operations.
600  * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
601  * The operation bitmap_gather(result, scattered, mask, n) leads to a result
602  * equal or equivalent to src.
603  *
604  * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
605  * are not bijective.
606  * The result and src values are equivalent in that sense that a call to
607  * bitmap_scatter(res, src, mask, n) and a call to
608  * bitmap_scatter(res, result, mask, n) will lead to the same res value.
609  */
610 static __always_inline
611 void bitmap_gather(unsigned long *dst, const unsigned long *src,
612 		   const unsigned long *mask, unsigned int nbits)
613 {
614 	unsigned int n = 0;
615 	unsigned int bit;
616 
617 	bitmap_zero(dst, nbits);
618 
619 	for_each_set_bit(bit, mask, nbits)
620 		__assign_bit(n++, dst, test_bit(bit, src));
621 }
622 
623 static __always_inline
624 void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs,
625 			    unsigned int *re, unsigned int end)
626 {
627 	*rs = find_next_bit(bitmap, end, *rs);
628 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
629 }
630 
631 /**
632  * bitmap_release_region - release allocated bitmap region
633  *	@bitmap: array of unsigned longs corresponding to the bitmap
634  *	@pos: beginning of bit region to release
635  *	@order: region size (log base 2 of number of bits) to release
636  *
637  * This is the complement to __bitmap_find_free_region() and releases
638  * the found region (by clearing it in the bitmap).
639  */
640 static __always_inline
641 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
642 {
643 	bitmap_clear(bitmap, pos, BIT(order));
644 }
645 
646 /**
647  * bitmap_allocate_region - allocate bitmap region
648  *	@bitmap: array of unsigned longs corresponding to the bitmap
649  *	@pos: beginning of bit region to allocate
650  *	@order: region size (log base 2 of number of bits) to allocate
651  *
652  * Allocate (set bits in) a specified region of a bitmap.
653  *
654  * Returns: 0 on success, or %-EBUSY if specified region wasn't
655  * free (not all bits were zero).
656  */
657 static __always_inline
658 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
659 {
660 	unsigned int len = BIT(order);
661 
662 	if (find_next_bit(bitmap, pos + len, pos) < pos + len)
663 		return -EBUSY;
664 	bitmap_set(bitmap, pos, len);
665 	return 0;
666 }
667 
668 /**
669  * bitmap_find_free_region - find a contiguous aligned mem region
670  *	@bitmap: array of unsigned longs corresponding to the bitmap
671  *	@bits: number of bits in the bitmap
672  *	@order: region size (log base 2 of number of bits) to find
673  *
674  * Find a region of free (zero) bits in a @bitmap of @bits bits and
675  * allocate them (set them to one).  Only consider regions of length
676  * a power (@order) of two, aligned to that power of two, which
677  * makes the search algorithm much faster.
678  *
679  * Returns: the bit offset in bitmap of the allocated region,
680  * or -errno on failure.
681  */
682 static __always_inline
683 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
684 {
685 	unsigned int pos, end;		/* scans bitmap by regions of size order */
686 
687 	for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
688 		if (!bitmap_allocate_region(bitmap, pos, order))
689 			return pos;
690 	}
691 	return -ENOMEM;
692 }
693 
694 /**
695  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
696  * @n: u64 value
697  *
698  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
699  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
700  *
701  * There are four combinations of endianness and length of the word in linux
702  * ABIs: LE64, BE64, LE32 and BE32.
703  *
704  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
705  * bitmaps and therefore don't require any special handling.
706  *
707  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
708  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
709  * other hand is represented as an array of 32-bit words and the position of
710  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
711  * word.  For example, bit #42 is located at 10th position of 2nd word.
712  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
713  * values in memory as it usually does. But for BE we need to swap hi and lo
714  * words manually.
715  *
716  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
717  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
718  * hi and lo words, as is expected by bitmap.
719  */
720 #if __BITS_PER_LONG == 64
721 #define BITMAP_FROM_U64(n) (n)
722 #else
723 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
724 				((unsigned long) ((u64)(n) >> 32))
725 #endif
726 
727 /**
728  * bitmap_from_u64 - Check and swap words within u64.
729  *  @mask: source bitmap
730  *  @dst:  destination bitmap
731  *
732  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
733  * to read u64 mask, we will get the wrong word.
734  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
735  * but we expect the lower 32-bits of u64.
736  */
737 static __always_inline void bitmap_from_u64(unsigned long *dst, u64 mask)
738 {
739 	bitmap_from_arr64(dst, &mask, 64);
740 }
741 
742 /**
743  * bitmap_read - read a value of n-bits from the memory region
744  * @map: address to the bitmap memory region
745  * @start: bit offset of the n-bit value
746  * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
747  *
748  * Returns: value of @nbits bits located at the @start bit offset within the
749  * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
750  * value is undefined.
751  */
752 static __always_inline
753 unsigned long bitmap_read(const unsigned long *map, unsigned long start, unsigned long nbits)
754 {
755 	size_t index = BIT_WORD(start);
756 	unsigned long offset = start % BITS_PER_LONG;
757 	unsigned long space = BITS_PER_LONG - offset;
758 	unsigned long value_low, value_high;
759 
760 	if (unlikely(!nbits || nbits > BITS_PER_LONG))
761 		return 0;
762 
763 	if (space >= nbits)
764 		return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
765 
766 	value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
767 	value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
768 	return (value_low >> offset) | (value_high << space);
769 }
770 
771 /**
772  * bitmap_write - write n-bit value within a memory region
773  * @map: address to the bitmap memory region
774  * @value: value to write, clamped to nbits
775  * @start: bit offset of the n-bit value
776  * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
777  *
778  * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
779  * i.e. bits beyond @nbits are ignored:
780  *
781  *   for (bit = 0; bit < nbits; bit++)
782  *           __assign_bit(start + bit, bitmap, val & BIT(bit));
783  *
784  * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
785  */
786 static __always_inline
787 void bitmap_write(unsigned long *map, unsigned long value,
788 		  unsigned long start, unsigned long nbits)
789 {
790 	size_t index;
791 	unsigned long offset;
792 	unsigned long space;
793 	unsigned long mask;
794 	bool fit;
795 
796 	if (unlikely(!nbits || nbits > BITS_PER_LONG))
797 		return;
798 
799 	mask = BITMAP_LAST_WORD_MASK(nbits);
800 	value &= mask;
801 	offset = start % BITS_PER_LONG;
802 	space = BITS_PER_LONG - offset;
803 	fit = space >= nbits;
804 	index = BIT_WORD(start);
805 
806 	map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
807 	map[index] |= value << offset;
808 	if (fit)
809 		return;
810 
811 	map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
812 	map[index + 1] |= (value >> space);
813 }
814 
815 #define bitmap_get_value8(map, start)			\
816 	bitmap_read(map, start, BITS_PER_BYTE)
817 #define bitmap_set_value8(map, value, start)		\
818 	bitmap_write(map, value, start, BITS_PER_BYTE)
819 
820 #endif /* __ASSEMBLY__ */
821 
822 #endif /* __LINUX_BITMAP_H */
823