xref: /linux-6.15/include/linux/bitmap.h (revision d1d1a2cd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/align.h>
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/limits.h>
11 #include <linux/string.h>
12 
13 /*
14  * bitmaps provide bit arrays that consume one or more unsigned
15  * longs.  The bitmap interface and available operations are listed
16  * here, in bitmap.h
17  *
18  * Function implementations generic to all architectures are in
19  * lib/bitmap.c.  Functions implementations that are architecture
20  * specific are in various include/asm-<arch>/bitops.h headers
21  * and other arch/<arch> specific files.
22  *
23  * See lib/bitmap.c for more details.
24  */
25 
26 /**
27  * DOC: bitmap overview
28  *
29  * The available bitmap operations and their rough meaning in the
30  * case that the bitmap is a single unsigned long are thus:
31  *
32  * The generated code is more efficient when nbits is known at
33  * compile-time and at most BITS_PER_LONG.
34  *
35  * ::
36  *
37  *  bitmap_zero(dst, nbits)                     *dst = 0UL
38  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
39  *  bitmap_copy(dst, src, nbits)                *dst = *src
40  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
41  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
42  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
43  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
44  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
45  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
46  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
47  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
48  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
49  *  bitmap_full(src, nbits)                     Are all bits set in *src?
50  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
51  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
52  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
53  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
54  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
55  *  bitmap_next_clear_region(map, &start, &end, nbits)  Find next clear region
56  *  bitmap_next_set_region(map, &start, &end, nbits)  Find next set region
57  *  bitmap_for_each_clear_region(map, rs, re, start, end)
58  *  						Iterate over all clear regions
59  *  bitmap_for_each_set_region(map, rs, re, start, end)
60  *  						Iterate over all set regions
61  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
62  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
63  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
64  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
65  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
66  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
67  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
68  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
69  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
70  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
71  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
72  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
73  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
74  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
75  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
76  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
77  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
78  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
79  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
80  *
81  * Note, bitmap_zero() and bitmap_fill() operate over the region of
82  * unsigned longs, that is, bits behind bitmap till the unsigned long
83  * boundary will be zeroed or filled as well. Consider to use
84  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
85  * respectively.
86  */
87 
88 /**
89  * DOC: bitmap bitops
90  *
91  * Also the following operations in asm/bitops.h apply to bitmaps.::
92  *
93  *  set_bit(bit, addr)                  *addr |= bit
94  *  clear_bit(bit, addr)                *addr &= ~bit
95  *  change_bit(bit, addr)               *addr ^= bit
96  *  test_bit(bit, addr)                 Is bit set in *addr?
97  *  test_and_set_bit(bit, addr)         Set bit and return old value
98  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
99  *  test_and_change_bit(bit, addr)      Change bit and return old value
100  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
101  *  find_first_bit(addr, nbits)         Position first set bit in *addr
102  *  find_next_zero_bit(addr, nbits, bit)
103  *                                      Position next zero bit in *addr >= bit
104  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
105  *  find_next_and_bit(addr1, addr2, nbits, bit)
106  *                                      Same as find_next_bit, but in
107  *                                      (*addr1 & *addr2)
108  *
109  */
110 
111 /**
112  * DOC: declare bitmap
113  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
114  * to declare an array named 'name' of just enough unsigned longs to
115  * contain all bit positions from 0 to 'bits' - 1.
116  */
117 
118 /*
119  * Allocation and deallocation of bitmap.
120  * Provided in lib/bitmap.c to avoid circular dependency.
121  */
122 extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
123 extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
124 extern void bitmap_free(const unsigned long *bitmap);
125 
126 /*
127  * lib/bitmap.c provides these functions:
128  */
129 
130 extern int __bitmap_equal(const unsigned long *bitmap1,
131 			  const unsigned long *bitmap2, unsigned int nbits);
132 extern bool __pure __bitmap_or_equal(const unsigned long *src1,
133 				     const unsigned long *src2,
134 				     const unsigned long *src3,
135 				     unsigned int nbits);
136 extern void __bitmap_complement(unsigned long *dst, const unsigned long *src,
137 			unsigned int nbits);
138 extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
139 				unsigned int shift, unsigned int nbits);
140 extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
141 				unsigned int shift, unsigned int nbits);
142 extern void bitmap_cut(unsigned long *dst, const unsigned long *src,
143 		       unsigned int first, unsigned int cut,
144 		       unsigned int nbits);
145 extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
146 			const unsigned long *bitmap2, unsigned int nbits);
147 extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
148 			const unsigned long *bitmap2, unsigned int nbits);
149 extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
150 			const unsigned long *bitmap2, unsigned int nbits);
151 extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
152 			const unsigned long *bitmap2, unsigned int nbits);
153 extern void __bitmap_replace(unsigned long *dst,
154 			const unsigned long *old, const unsigned long *new,
155 			const unsigned long *mask, unsigned int nbits);
156 extern int __bitmap_intersects(const unsigned long *bitmap1,
157 			const unsigned long *bitmap2, unsigned int nbits);
158 extern int __bitmap_subset(const unsigned long *bitmap1,
159 			const unsigned long *bitmap2, unsigned int nbits);
160 extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
161 extern void __bitmap_set(unsigned long *map, unsigned int start, int len);
162 extern void __bitmap_clear(unsigned long *map, unsigned int start, int len);
163 
164 extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
165 						    unsigned long size,
166 						    unsigned long start,
167 						    unsigned int nr,
168 						    unsigned long align_mask,
169 						    unsigned long align_offset);
170 
171 /**
172  * bitmap_find_next_zero_area - find a contiguous aligned zero area
173  * @map: The address to base the search on
174  * @size: The bitmap size in bits
175  * @start: The bitnumber to start searching at
176  * @nr: The number of zeroed bits we're looking for
177  * @align_mask: Alignment mask for zero area
178  *
179  * The @align_mask should be one less than a power of 2; the effect is that
180  * the bit offset of all zero areas this function finds is multiples of that
181  * power of 2. A @align_mask of 0 means no alignment is required.
182  */
183 static inline unsigned long
184 bitmap_find_next_zero_area(unsigned long *map,
185 			   unsigned long size,
186 			   unsigned long start,
187 			   unsigned int nr,
188 			   unsigned long align_mask)
189 {
190 	return bitmap_find_next_zero_area_off(map, size, start, nr,
191 					      align_mask, 0);
192 }
193 
194 extern int bitmap_parse(const char *buf, unsigned int buflen,
195 			unsigned long *dst, int nbits);
196 extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen,
197 			unsigned long *dst, int nbits);
198 extern int bitmap_parselist(const char *buf, unsigned long *maskp,
199 			int nmaskbits);
200 extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen,
201 			unsigned long *dst, int nbits);
202 extern void bitmap_remap(unsigned long *dst, const unsigned long *src,
203 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
204 extern int bitmap_bitremap(int oldbit,
205 		const unsigned long *old, const unsigned long *new, int bits);
206 extern void bitmap_onto(unsigned long *dst, const unsigned long *orig,
207 		const unsigned long *relmap, unsigned int bits);
208 extern void bitmap_fold(unsigned long *dst, const unsigned long *orig,
209 		unsigned int sz, unsigned int nbits);
210 extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order);
211 extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order);
212 extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order);
213 
214 #ifdef __BIG_ENDIAN
215 extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits);
216 #else
217 #define bitmap_copy_le bitmap_copy
218 #endif
219 extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits);
220 extern int bitmap_print_to_pagebuf(bool list, char *buf,
221 				   const unsigned long *maskp, int nmaskbits);
222 
223 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
224 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
225 
226 /*
227  * The static inlines below do not handle constant nbits==0 correctly,
228  * so make such users (should any ever turn up) call the out-of-line
229  * versions.
230  */
231 #define small_const_nbits(nbits) \
232 	(__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG && (nbits) > 0)
233 
234 static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
235 {
236 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
237 	memset(dst, 0, len);
238 }
239 
240 static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
241 {
242 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
243 	memset(dst, 0xff, len);
244 }
245 
246 static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
247 			unsigned int nbits)
248 {
249 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
250 	memcpy(dst, src, len);
251 }
252 
253 /*
254  * Copy bitmap and clear tail bits in last word.
255  */
256 static inline void bitmap_copy_clear_tail(unsigned long *dst,
257 		const unsigned long *src, unsigned int nbits)
258 {
259 	bitmap_copy(dst, src, nbits);
260 	if (nbits % BITS_PER_LONG)
261 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
262 }
263 
264 /*
265  * On 32-bit systems bitmaps are represented as u32 arrays internally, and
266  * therefore conversion is not needed when copying data from/to arrays of u32.
267  */
268 #if BITS_PER_LONG == 64
269 extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
270 							unsigned int nbits);
271 extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
272 							unsigned int nbits);
273 #else
274 #define bitmap_from_arr32(bitmap, buf, nbits)			\
275 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
276 			(const unsigned long *) (buf), (nbits))
277 #define bitmap_to_arr32(buf, bitmap, nbits)			\
278 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
279 			(const unsigned long *) (bitmap), (nbits))
280 #endif
281 
282 static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
283 			const unsigned long *src2, unsigned int nbits)
284 {
285 	if (small_const_nbits(nbits))
286 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
287 	return __bitmap_and(dst, src1, src2, nbits);
288 }
289 
290 static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
291 			const unsigned long *src2, unsigned int nbits)
292 {
293 	if (small_const_nbits(nbits))
294 		*dst = *src1 | *src2;
295 	else
296 		__bitmap_or(dst, src1, src2, nbits);
297 }
298 
299 static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
300 			const unsigned long *src2, unsigned int nbits)
301 {
302 	if (small_const_nbits(nbits))
303 		*dst = *src1 ^ *src2;
304 	else
305 		__bitmap_xor(dst, src1, src2, nbits);
306 }
307 
308 static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
309 			const unsigned long *src2, unsigned int nbits)
310 {
311 	if (small_const_nbits(nbits))
312 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
313 	return __bitmap_andnot(dst, src1, src2, nbits);
314 }
315 
316 static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
317 			unsigned int nbits)
318 {
319 	if (small_const_nbits(nbits))
320 		*dst = ~(*src);
321 	else
322 		__bitmap_complement(dst, src, nbits);
323 }
324 
325 #ifdef __LITTLE_ENDIAN
326 #define BITMAP_MEM_ALIGNMENT 8
327 #else
328 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
329 #endif
330 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
331 
332 static inline int bitmap_equal(const unsigned long *src1,
333 			const unsigned long *src2, unsigned int nbits)
334 {
335 	if (small_const_nbits(nbits))
336 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
337 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
338 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
339 		return !memcmp(src1, src2, nbits / 8);
340 	return __bitmap_equal(src1, src2, nbits);
341 }
342 
343 /**
344  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
345  * @src1:	Pointer to bitmap 1
346  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
347  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
348  * @nbits:	number of bits in each of these bitmaps
349  *
350  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
351  */
352 static inline bool bitmap_or_equal(const unsigned long *src1,
353 				   const unsigned long *src2,
354 				   const unsigned long *src3,
355 				   unsigned int nbits)
356 {
357 	if (!small_const_nbits(nbits))
358 		return __bitmap_or_equal(src1, src2, src3, nbits);
359 
360 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
361 }
362 
363 static inline int bitmap_intersects(const unsigned long *src1,
364 			const unsigned long *src2, unsigned int nbits)
365 {
366 	if (small_const_nbits(nbits))
367 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
368 	else
369 		return __bitmap_intersects(src1, src2, nbits);
370 }
371 
372 static inline int bitmap_subset(const unsigned long *src1,
373 			const unsigned long *src2, unsigned int nbits)
374 {
375 	if (small_const_nbits(nbits))
376 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
377 	else
378 		return __bitmap_subset(src1, src2, nbits);
379 }
380 
381 static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
382 {
383 	if (small_const_nbits(nbits))
384 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
385 
386 	return find_first_bit(src, nbits) == nbits;
387 }
388 
389 static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
390 {
391 	if (small_const_nbits(nbits))
392 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
393 
394 	return find_first_zero_bit(src, nbits) == nbits;
395 }
396 
397 static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits)
398 {
399 	if (small_const_nbits(nbits))
400 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
401 	return __bitmap_weight(src, nbits);
402 }
403 
404 static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
405 		unsigned int nbits)
406 {
407 	if (__builtin_constant_p(nbits) && nbits == 1)
408 		__set_bit(start, map);
409 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
410 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
411 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
412 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
413 		memset((char *)map + start / 8, 0xff, nbits / 8);
414 	else
415 		__bitmap_set(map, start, nbits);
416 }
417 
418 static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
419 		unsigned int nbits)
420 {
421 	if (__builtin_constant_p(nbits) && nbits == 1)
422 		__clear_bit(start, map);
423 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
424 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
425 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
426 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
427 		memset((char *)map + start / 8, 0, nbits / 8);
428 	else
429 		__bitmap_clear(map, start, nbits);
430 }
431 
432 static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
433 				unsigned int shift, unsigned int nbits)
434 {
435 	if (small_const_nbits(nbits))
436 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
437 	else
438 		__bitmap_shift_right(dst, src, shift, nbits);
439 }
440 
441 static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
442 				unsigned int shift, unsigned int nbits)
443 {
444 	if (small_const_nbits(nbits))
445 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
446 	else
447 		__bitmap_shift_left(dst, src, shift, nbits);
448 }
449 
450 static inline void bitmap_replace(unsigned long *dst,
451 				  const unsigned long *old,
452 				  const unsigned long *new,
453 				  const unsigned long *mask,
454 				  unsigned int nbits)
455 {
456 	if (small_const_nbits(nbits))
457 		*dst = (*old & ~(*mask)) | (*new & *mask);
458 	else
459 		__bitmap_replace(dst, old, new, mask, nbits);
460 }
461 
462 static inline void bitmap_next_clear_region(unsigned long *bitmap,
463 					    unsigned int *rs, unsigned int *re,
464 					    unsigned int end)
465 {
466 	*rs = find_next_zero_bit(bitmap, end, *rs);
467 	*re = find_next_bit(bitmap, end, *rs + 1);
468 }
469 
470 static inline void bitmap_next_set_region(unsigned long *bitmap,
471 					  unsigned int *rs, unsigned int *re,
472 					  unsigned int end)
473 {
474 	*rs = find_next_bit(bitmap, end, *rs);
475 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
476 }
477 
478 /*
479  * Bitmap region iterators.  Iterates over the bitmap between [@start, @end).
480  * @rs and @re should be integer variables and will be set to start and end
481  * index of the current clear or set region.
482  */
483 #define bitmap_for_each_clear_region(bitmap, rs, re, start, end)	     \
484 	for ((rs) = (start),						     \
485 	     bitmap_next_clear_region((bitmap), &(rs), &(re), (end));	     \
486 	     (rs) < (re);						     \
487 	     (rs) = (re) + 1,						     \
488 	     bitmap_next_clear_region((bitmap), &(rs), &(re), (end)))
489 
490 #define bitmap_for_each_set_region(bitmap, rs, re, start, end)		     \
491 	for ((rs) = (start),						     \
492 	     bitmap_next_set_region((bitmap), &(rs), &(re), (end));	     \
493 	     (rs) < (re);						     \
494 	     (rs) = (re) + 1,						     \
495 	     bitmap_next_set_region((bitmap), &(rs), &(re), (end)))
496 
497 /**
498  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
499  * @n: u64 value
500  *
501  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
502  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
503  *
504  * There are four combinations of endianness and length of the word in linux
505  * ABIs: LE64, BE64, LE32 and BE32.
506  *
507  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
508  * bitmaps and therefore don't require any special handling.
509  *
510  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
511  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
512  * other hand is represented as an array of 32-bit words and the position of
513  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
514  * word.  For example, bit #42 is located at 10th position of 2nd word.
515  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
516  * values in memory as it usually does. But for BE we need to swap hi and lo
517  * words manually.
518  *
519  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
520  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
521  * hi and lo words, as is expected by bitmap.
522  */
523 #if __BITS_PER_LONG == 64
524 #define BITMAP_FROM_U64(n) (n)
525 #else
526 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
527 				((unsigned long) ((u64)(n) >> 32))
528 #endif
529 
530 /**
531  * bitmap_from_u64 - Check and swap words within u64.
532  *  @mask: source bitmap
533  *  @dst:  destination bitmap
534  *
535  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
536  * to read u64 mask, we will get the wrong word.
537  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
538  * but we expect the lower 32-bits of u64.
539  */
540 static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
541 {
542 	dst[0] = mask & ULONG_MAX;
543 
544 	if (sizeof(mask) > sizeof(unsigned long))
545 		dst[1] = mask >> 32;
546 }
547 
548 /**
549  * bitmap_get_value8 - get an 8-bit value within a memory region
550  * @map: address to the bitmap memory region
551  * @start: bit offset of the 8-bit value; must be a multiple of 8
552  *
553  * Returns the 8-bit value located at the @start bit offset within the @src
554  * memory region.
555  */
556 static inline unsigned long bitmap_get_value8(const unsigned long *map,
557 					      unsigned long start)
558 {
559 	const size_t index = BIT_WORD(start);
560 	const unsigned long offset = start % BITS_PER_LONG;
561 
562 	return (map[index] >> offset) & 0xFF;
563 }
564 
565 /**
566  * bitmap_set_value8 - set an 8-bit value within a memory region
567  * @map: address to the bitmap memory region
568  * @value: the 8-bit value; values wider than 8 bits may clobber bitmap
569  * @start: bit offset of the 8-bit value; must be a multiple of 8
570  */
571 static inline void bitmap_set_value8(unsigned long *map, unsigned long value,
572 				     unsigned long start)
573 {
574 	const size_t index = BIT_WORD(start);
575 	const unsigned long offset = start % BITS_PER_LONG;
576 
577 	map[index] &= ~(0xFFUL << offset);
578 	map[index] |= value << offset;
579 }
580 
581 #endif /* __ASSEMBLY__ */
582 
583 #endif /* __LINUX_BITMAP_H */
584