xref: /linux-6.15/include/linux/bitmap.h (revision cfbd8d19)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/types.h>
8 #include <linux/bitops.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 
12 /*
13  * bitmaps provide bit arrays that consume one or more unsigned
14  * longs.  The bitmap interface and available operations are listed
15  * here, in bitmap.h
16  *
17  * Function implementations generic to all architectures are in
18  * lib/bitmap.c.  Functions implementations that are architecture
19  * specific are in various include/asm-<arch>/bitops.h headers
20  * and other arch/<arch> specific files.
21  *
22  * See lib/bitmap.c for more details.
23  */
24 
25 /**
26  * DOC: bitmap overview
27  *
28  * The available bitmap operations and their rough meaning in the
29  * case that the bitmap is a single unsigned long are thus:
30  *
31  * The generated code is more efficient when nbits is known at
32  * compile-time and at most BITS_PER_LONG.
33  *
34  * ::
35  *
36  *  bitmap_zero(dst, nbits)                     *dst = 0UL
37  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
38  *  bitmap_copy(dst, src, nbits)                *dst = *src
39  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
40  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
41  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
42  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
43  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
44  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
45  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
46  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
47  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
48  *  bitmap_full(src, nbits)                     Are all bits set in *src?
49  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
50  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
51  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
52  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
53  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask)  as above
54  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
55  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
56  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
57  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
58  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
59  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
60  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
61  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
62  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
63  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
64  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
65  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
66  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
67  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
68  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
69  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
70  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
71  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
72  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
73  *
74  * Note, bitmap_zero() and bitmap_fill() operate over the region of
75  * unsigned longs, that is, bits behind bitmap till the unsigned long
76  * boundary will be zeroed or filled as well. Consider to use
77  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
78  * respectively.
79  */
80 
81 /**
82  * DOC: bitmap bitops
83  *
84  * Also the following operations in asm/bitops.h apply to bitmaps.::
85  *
86  *  set_bit(bit, addr)                  *addr |= bit
87  *  clear_bit(bit, addr)                *addr &= ~bit
88  *  change_bit(bit, addr)               *addr ^= bit
89  *  test_bit(bit, addr)                 Is bit set in *addr?
90  *  test_and_set_bit(bit, addr)         Set bit and return old value
91  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
92  *  test_and_change_bit(bit, addr)      Change bit and return old value
93  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
94  *  find_first_bit(addr, nbits)         Position first set bit in *addr
95  *  find_next_zero_bit(addr, nbits, bit)
96  *                                      Position next zero bit in *addr >= bit
97  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
98  *  find_next_and_bit(addr1, addr2, nbits, bit)
99  *                                      Same as find_next_bit, but in
100  *                                      (*addr1 & *addr2)
101  *
102  */
103 
104 /**
105  * DOC: declare bitmap
106  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
107  * to declare an array named 'name' of just enough unsigned longs to
108  * contain all bit positions from 0 to 'bits' - 1.
109  */
110 
111 /*
112  * Allocation and deallocation of bitmap.
113  * Provided in lib/bitmap.c to avoid circular dependency.
114  */
115 extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
116 extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
117 extern void bitmap_free(const unsigned long *bitmap);
118 
119 /*
120  * lib/bitmap.c provides these functions:
121  */
122 
123 extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits);
124 extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits);
125 extern int __bitmap_equal(const unsigned long *bitmap1,
126 			  const unsigned long *bitmap2, unsigned int nbits);
127 extern bool __pure __bitmap_or_equal(const unsigned long *src1,
128 				     const unsigned long *src2,
129 				     const unsigned long *src3,
130 				     unsigned int nbits);
131 extern void __bitmap_complement(unsigned long *dst, const unsigned long *src,
132 			unsigned int nbits);
133 extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
134 				unsigned int shift, unsigned int nbits);
135 extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
136 				unsigned int shift, unsigned int nbits);
137 extern void bitmap_cut(unsigned long *dst, const unsigned long *src,
138 		       unsigned int first, unsigned int cut,
139 		       unsigned int nbits);
140 extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
141 			const unsigned long *bitmap2, unsigned int nbits);
142 extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
143 			const unsigned long *bitmap2, unsigned int nbits);
144 extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
145 			const unsigned long *bitmap2, unsigned int nbits);
146 extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
147 			const unsigned long *bitmap2, unsigned int nbits);
148 extern void __bitmap_replace(unsigned long *dst,
149 			const unsigned long *old, const unsigned long *new,
150 			const unsigned long *mask, unsigned int nbits);
151 extern int __bitmap_intersects(const unsigned long *bitmap1,
152 			const unsigned long *bitmap2, unsigned int nbits);
153 extern int __bitmap_subset(const unsigned long *bitmap1,
154 			const unsigned long *bitmap2, unsigned int nbits);
155 extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
156 extern void __bitmap_set(unsigned long *map, unsigned int start, int len);
157 extern void __bitmap_clear(unsigned long *map, unsigned int start, int len);
158 
159 extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
160 						    unsigned long size,
161 						    unsigned long start,
162 						    unsigned int nr,
163 						    unsigned long align_mask,
164 						    unsigned long align_offset);
165 
166 /**
167  * bitmap_find_next_zero_area - find a contiguous aligned zero area
168  * @map: The address to base the search on
169  * @size: The bitmap size in bits
170  * @start: The bitnumber to start searching at
171  * @nr: The number of zeroed bits we're looking for
172  * @align_mask: Alignment mask for zero area
173  *
174  * The @align_mask should be one less than a power of 2; the effect is that
175  * the bit offset of all zero areas this function finds is multiples of that
176  * power of 2. A @align_mask of 0 means no alignment is required.
177  */
178 static inline unsigned long
179 bitmap_find_next_zero_area(unsigned long *map,
180 			   unsigned long size,
181 			   unsigned long start,
182 			   unsigned int nr,
183 			   unsigned long align_mask)
184 {
185 	return bitmap_find_next_zero_area_off(map, size, start, nr,
186 					      align_mask, 0);
187 }
188 
189 extern int bitmap_parse(const char *buf, unsigned int buflen,
190 			unsigned long *dst, int nbits);
191 extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen,
192 			unsigned long *dst, int nbits);
193 extern int bitmap_parselist(const char *buf, unsigned long *maskp,
194 			int nmaskbits);
195 extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen,
196 			unsigned long *dst, int nbits);
197 extern void bitmap_remap(unsigned long *dst, const unsigned long *src,
198 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
199 extern int bitmap_bitremap(int oldbit,
200 		const unsigned long *old, const unsigned long *new, int bits);
201 extern void bitmap_onto(unsigned long *dst, const unsigned long *orig,
202 		const unsigned long *relmap, unsigned int bits);
203 extern void bitmap_fold(unsigned long *dst, const unsigned long *orig,
204 		unsigned int sz, unsigned int nbits);
205 extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order);
206 extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order);
207 extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order);
208 
209 #ifdef __BIG_ENDIAN
210 extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits);
211 #else
212 #define bitmap_copy_le bitmap_copy
213 #endif
214 extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits);
215 extern int bitmap_print_to_pagebuf(bool list, char *buf,
216 				   const unsigned long *maskp, int nmaskbits);
217 
218 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
219 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
220 
221 /*
222  * The static inlines below do not handle constant nbits==0 correctly,
223  * so make such users (should any ever turn up) call the out-of-line
224  * versions.
225  */
226 #define small_const_nbits(nbits) \
227 	(__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG && (nbits) > 0)
228 
229 static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
230 {
231 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
232 	memset(dst, 0, len);
233 }
234 
235 static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
236 {
237 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
238 	memset(dst, 0xff, len);
239 }
240 
241 static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
242 			unsigned int nbits)
243 {
244 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
245 	memcpy(dst, src, len);
246 }
247 
248 /*
249  * Copy bitmap and clear tail bits in last word.
250  */
251 static inline void bitmap_copy_clear_tail(unsigned long *dst,
252 		const unsigned long *src, unsigned int nbits)
253 {
254 	bitmap_copy(dst, src, nbits);
255 	if (nbits % BITS_PER_LONG)
256 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
257 }
258 
259 /*
260  * On 32-bit systems bitmaps are represented as u32 arrays internally, and
261  * therefore conversion is not needed when copying data from/to arrays of u32.
262  */
263 #if BITS_PER_LONG == 64
264 extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
265 							unsigned int nbits);
266 extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
267 							unsigned int nbits);
268 #else
269 #define bitmap_from_arr32(bitmap, buf, nbits)			\
270 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
271 			(const unsigned long *) (buf), (nbits))
272 #define bitmap_to_arr32(buf, bitmap, nbits)			\
273 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
274 			(const unsigned long *) (bitmap), (nbits))
275 #endif
276 
277 static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
278 			const unsigned long *src2, unsigned int nbits)
279 {
280 	if (small_const_nbits(nbits))
281 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
282 	return __bitmap_and(dst, src1, src2, nbits);
283 }
284 
285 static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
286 			const unsigned long *src2, unsigned int nbits)
287 {
288 	if (small_const_nbits(nbits))
289 		*dst = *src1 | *src2;
290 	else
291 		__bitmap_or(dst, src1, src2, nbits);
292 }
293 
294 static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
295 			const unsigned long *src2, unsigned int nbits)
296 {
297 	if (small_const_nbits(nbits))
298 		*dst = *src1 ^ *src2;
299 	else
300 		__bitmap_xor(dst, src1, src2, nbits);
301 }
302 
303 static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
304 			const unsigned long *src2, unsigned int nbits)
305 {
306 	if (small_const_nbits(nbits))
307 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
308 	return __bitmap_andnot(dst, src1, src2, nbits);
309 }
310 
311 static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
312 			unsigned int nbits)
313 {
314 	if (small_const_nbits(nbits))
315 		*dst = ~(*src);
316 	else
317 		__bitmap_complement(dst, src, nbits);
318 }
319 
320 #ifdef __LITTLE_ENDIAN
321 #define BITMAP_MEM_ALIGNMENT 8
322 #else
323 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
324 #endif
325 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
326 
327 static inline int bitmap_equal(const unsigned long *src1,
328 			const unsigned long *src2, unsigned int nbits)
329 {
330 	if (small_const_nbits(nbits))
331 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
332 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
333 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
334 		return !memcmp(src1, src2, nbits / 8);
335 	return __bitmap_equal(src1, src2, nbits);
336 }
337 
338 /**
339  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
340  * @src1:	Pointer to bitmap 1
341  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
342  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
343  * @nbits:	number of bits in each of these bitmaps
344  *
345  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
346  */
347 static inline bool bitmap_or_equal(const unsigned long *src1,
348 				   const unsigned long *src2,
349 				   const unsigned long *src3,
350 				   unsigned int nbits)
351 {
352 	if (!small_const_nbits(nbits))
353 		return __bitmap_or_equal(src1, src2, src3, nbits);
354 
355 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
356 }
357 
358 static inline int bitmap_intersects(const unsigned long *src1,
359 			const unsigned long *src2, unsigned int nbits)
360 {
361 	if (small_const_nbits(nbits))
362 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
363 	else
364 		return __bitmap_intersects(src1, src2, nbits);
365 }
366 
367 static inline int bitmap_subset(const unsigned long *src1,
368 			const unsigned long *src2, unsigned int nbits)
369 {
370 	if (small_const_nbits(nbits))
371 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
372 	else
373 		return __bitmap_subset(src1, src2, nbits);
374 }
375 
376 static inline int bitmap_empty(const unsigned long *src, unsigned nbits)
377 {
378 	if (small_const_nbits(nbits))
379 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
380 
381 	return find_first_bit(src, nbits) == nbits;
382 }
383 
384 static inline int bitmap_full(const unsigned long *src, unsigned int nbits)
385 {
386 	if (small_const_nbits(nbits))
387 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
388 
389 	return find_first_zero_bit(src, nbits) == nbits;
390 }
391 
392 static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits)
393 {
394 	if (small_const_nbits(nbits))
395 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
396 	return __bitmap_weight(src, nbits);
397 }
398 
399 static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
400 		unsigned int nbits)
401 {
402 	if (__builtin_constant_p(nbits) && nbits == 1)
403 		__set_bit(start, map);
404 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
405 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
406 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
407 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
408 		memset((char *)map + start / 8, 0xff, nbits / 8);
409 	else
410 		__bitmap_set(map, start, nbits);
411 }
412 
413 static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
414 		unsigned int nbits)
415 {
416 	if (__builtin_constant_p(nbits) && nbits == 1)
417 		__clear_bit(start, map);
418 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
419 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
420 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
421 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
422 		memset((char *)map + start / 8, 0, nbits / 8);
423 	else
424 		__bitmap_clear(map, start, nbits);
425 }
426 
427 static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
428 				unsigned int shift, unsigned int nbits)
429 {
430 	if (small_const_nbits(nbits))
431 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
432 	else
433 		__bitmap_shift_right(dst, src, shift, nbits);
434 }
435 
436 static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
437 				unsigned int shift, unsigned int nbits)
438 {
439 	if (small_const_nbits(nbits))
440 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
441 	else
442 		__bitmap_shift_left(dst, src, shift, nbits);
443 }
444 
445 static inline void bitmap_replace(unsigned long *dst,
446 				  const unsigned long *old,
447 				  const unsigned long *new,
448 				  const unsigned long *mask,
449 				  unsigned int nbits)
450 {
451 	if (small_const_nbits(nbits))
452 		*dst = (*old & ~(*mask)) | (*new & *mask);
453 	else
454 		__bitmap_replace(dst, old, new, mask, nbits);
455 }
456 
457 static inline void bitmap_next_clear_region(unsigned long *bitmap,
458 					    unsigned int *rs, unsigned int *re,
459 					    unsigned int end)
460 {
461 	*rs = find_next_zero_bit(bitmap, end, *rs);
462 	*re = find_next_bit(bitmap, end, *rs + 1);
463 }
464 
465 static inline void bitmap_next_set_region(unsigned long *bitmap,
466 					  unsigned int *rs, unsigned int *re,
467 					  unsigned int end)
468 {
469 	*rs = find_next_bit(bitmap, end, *rs);
470 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
471 }
472 
473 /*
474  * Bitmap region iterators.  Iterates over the bitmap between [@start, @end).
475  * @rs and @re should be integer variables and will be set to start and end
476  * index of the current clear or set region.
477  */
478 #define bitmap_for_each_clear_region(bitmap, rs, re, start, end)	     \
479 	for ((rs) = (start),						     \
480 	     bitmap_next_clear_region((bitmap), &(rs), &(re), (end));	     \
481 	     (rs) < (re);						     \
482 	     (rs) = (re) + 1,						     \
483 	     bitmap_next_clear_region((bitmap), &(rs), &(re), (end)))
484 
485 #define bitmap_for_each_set_region(bitmap, rs, re, start, end)		     \
486 	for ((rs) = (start),						     \
487 	     bitmap_next_set_region((bitmap), &(rs), &(re), (end));	     \
488 	     (rs) < (re);						     \
489 	     (rs) = (re) + 1,						     \
490 	     bitmap_next_set_region((bitmap), &(rs), &(re), (end)))
491 
492 /**
493  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
494  * @n: u64 value
495  *
496  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
497  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
498  *
499  * There are four combinations of endianness and length of the word in linux
500  * ABIs: LE64, BE64, LE32 and BE32.
501  *
502  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
503  * bitmaps and therefore don't require any special handling.
504  *
505  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
506  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
507  * other hand is represented as an array of 32-bit words and the position of
508  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
509  * word.  For example, bit #42 is located at 10th position of 2nd word.
510  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
511  * values in memory as it usually does. But for BE we need to swap hi and lo
512  * words manually.
513  *
514  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
515  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
516  * hi and lo words, as is expected by bitmap.
517  */
518 #if __BITS_PER_LONG == 64
519 #define BITMAP_FROM_U64(n) (n)
520 #else
521 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
522 				((unsigned long) ((u64)(n) >> 32))
523 #endif
524 
525 /**
526  * bitmap_from_u64 - Check and swap words within u64.
527  *  @mask: source bitmap
528  *  @dst:  destination bitmap
529  *
530  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
531  * to read u64 mask, we will get the wrong word.
532  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
533  * but we expect the lower 32-bits of u64.
534  */
535 static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
536 {
537 	dst[0] = mask & ULONG_MAX;
538 
539 	if (sizeof(mask) > sizeof(unsigned long))
540 		dst[1] = mask >> 32;
541 }
542 
543 /**
544  * bitmap_get_value8 - get an 8-bit value within a memory region
545  * @map: address to the bitmap memory region
546  * @start: bit offset of the 8-bit value; must be a multiple of 8
547  *
548  * Returns the 8-bit value located at the @start bit offset within the @src
549  * memory region.
550  */
551 static inline unsigned long bitmap_get_value8(const unsigned long *map,
552 					      unsigned long start)
553 {
554 	const size_t index = BIT_WORD(start);
555 	const unsigned long offset = start % BITS_PER_LONG;
556 
557 	return (map[index] >> offset) & 0xFF;
558 }
559 
560 /**
561  * bitmap_set_value8 - set an 8-bit value within a memory region
562  * @map: address to the bitmap memory region
563  * @value: the 8-bit value; values wider than 8 bits may clobber bitmap
564  * @start: bit offset of the 8-bit value; must be a multiple of 8
565  */
566 static inline void bitmap_set_value8(unsigned long *map, unsigned long value,
567 				     unsigned long start)
568 {
569 	const size_t index = BIT_WORD(start);
570 	const unsigned long offset = start % BITS_PER_LONG;
571 
572 	map[index] &= ~(0xFFUL << offset);
573 	map[index] |= value << offset;
574 }
575 
576 #endif /* __ASSEMBLY__ */
577 
578 #endif /* __LINUX_BITMAP_H */
579