xref: /linux-6.15/include/linux/bitmap.h (revision b0402403)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/align.h>
8 #include <linux/bitops.h>
9 #include <linux/cleanup.h>
10 #include <linux/errno.h>
11 #include <linux/find.h>
12 #include <linux/limits.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/bitmap-str.h>
16 
17 struct device;
18 
19 /*
20  * bitmaps provide bit arrays that consume one or more unsigned
21  * longs.  The bitmap interface and available operations are listed
22  * here, in bitmap.h
23  *
24  * Function implementations generic to all architectures are in
25  * lib/bitmap.c.  Functions implementations that are architecture
26  * specific are in various include/asm-<arch>/bitops.h headers
27  * and other arch/<arch> specific files.
28  *
29  * See lib/bitmap.c for more details.
30  */
31 
32 /**
33  * DOC: bitmap overview
34  *
35  * The available bitmap operations and their rough meaning in the
36  * case that the bitmap is a single unsigned long are thus:
37  *
38  * The generated code is more efficient when nbits is known at
39  * compile-time and at most BITS_PER_LONG.
40  *
41  * ::
42  *
43  *  bitmap_zero(dst, nbits)                     *dst = 0UL
44  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
45  *  bitmap_copy(dst, src, nbits)                *dst = *src
46  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
47  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
48  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
49  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
50  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
51  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
52  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
53  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
54  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
55  *  bitmap_full(src, nbits)                     Are all bits set in *src?
56  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
57  *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap
58  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
59  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
60  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
61  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
62  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
63  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
64  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
65  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
66  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
67  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
68  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
69  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
70  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
71  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
72  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
73  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
74  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
75  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
76  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
77  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
78  *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst
79  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
80  *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
81  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
82  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
83  *
84  * Note, bitmap_zero() and bitmap_fill() operate over the region of
85  * unsigned longs, that is, bits behind bitmap till the unsigned long
86  * boundary will be zeroed or filled as well. Consider to use
87  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
88  * respectively.
89  */
90 
91 /**
92  * DOC: bitmap bitops
93  *
94  * Also the following operations in asm/bitops.h apply to bitmaps.::
95  *
96  *  set_bit(bit, addr)                  *addr |= bit
97  *  clear_bit(bit, addr)                *addr &= ~bit
98  *  change_bit(bit, addr)               *addr ^= bit
99  *  test_bit(bit, addr)                 Is bit set in *addr?
100  *  test_and_set_bit(bit, addr)         Set bit and return old value
101  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
102  *  test_and_change_bit(bit, addr)      Change bit and return old value
103  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
104  *  find_first_bit(addr, nbits)         Position first set bit in *addr
105  *  find_next_zero_bit(addr, nbits, bit)
106  *                                      Position next zero bit in *addr >= bit
107  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
108  *  find_next_and_bit(addr1, addr2, nbits, bit)
109  *                                      Same as find_next_bit, but in
110  *                                      (*addr1 & *addr2)
111  *
112  */
113 
114 /**
115  * DOC: declare bitmap
116  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
117  * to declare an array named 'name' of just enough unsigned longs to
118  * contain all bit positions from 0 to 'bits' - 1.
119  */
120 
121 /*
122  * Allocation and deallocation of bitmap.
123  * Provided in lib/bitmap.c to avoid circular dependency.
124  */
125 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
126 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
127 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
128 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
129 void bitmap_free(const unsigned long *bitmap);
130 
131 DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
132 
133 /* Managed variants of the above. */
134 unsigned long *devm_bitmap_alloc(struct device *dev,
135 				 unsigned int nbits, gfp_t flags);
136 unsigned long *devm_bitmap_zalloc(struct device *dev,
137 				  unsigned int nbits, gfp_t flags);
138 
139 /*
140  * lib/bitmap.c provides these functions:
141  */
142 
143 bool __bitmap_equal(const unsigned long *bitmap1,
144 		    const unsigned long *bitmap2, unsigned int nbits);
145 bool __pure __bitmap_or_equal(const unsigned long *src1,
146 			      const unsigned long *src2,
147 			      const unsigned long *src3,
148 			      unsigned int nbits);
149 void __bitmap_complement(unsigned long *dst, const unsigned long *src,
150 			 unsigned int nbits);
151 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
152 			  unsigned int shift, unsigned int nbits);
153 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
154 			 unsigned int shift, unsigned int nbits);
155 void bitmap_cut(unsigned long *dst, const unsigned long *src,
156 		unsigned int first, unsigned int cut, unsigned int nbits);
157 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
158 		 const unsigned long *bitmap2, unsigned int nbits);
159 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
160 		 const unsigned long *bitmap2, unsigned int nbits);
161 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
162 		  const unsigned long *bitmap2, unsigned int nbits);
163 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
164 		    const unsigned long *bitmap2, unsigned int nbits);
165 void __bitmap_replace(unsigned long *dst,
166 		      const unsigned long *old, const unsigned long *new,
167 		      const unsigned long *mask, unsigned int nbits);
168 bool __bitmap_intersects(const unsigned long *bitmap1,
169 			 const unsigned long *bitmap2, unsigned int nbits);
170 bool __bitmap_subset(const unsigned long *bitmap1,
171 		     const unsigned long *bitmap2, unsigned int nbits);
172 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
173 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
174 				 const unsigned long *bitmap2, unsigned int nbits);
175 void __bitmap_set(unsigned long *map, unsigned int start, int len);
176 void __bitmap_clear(unsigned long *map, unsigned int start, int len);
177 
178 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
179 					     unsigned long size,
180 					     unsigned long start,
181 					     unsigned int nr,
182 					     unsigned long align_mask,
183 					     unsigned long align_offset);
184 
185 /**
186  * bitmap_find_next_zero_area - find a contiguous aligned zero area
187  * @map: The address to base the search on
188  * @size: The bitmap size in bits
189  * @start: The bitnumber to start searching at
190  * @nr: The number of zeroed bits we're looking for
191  * @align_mask: Alignment mask for zero area
192  *
193  * The @align_mask should be one less than a power of 2; the effect is that
194  * the bit offset of all zero areas this function finds is multiples of that
195  * power of 2. A @align_mask of 0 means no alignment is required.
196  */
197 static inline unsigned long
198 bitmap_find_next_zero_area(unsigned long *map,
199 			   unsigned long size,
200 			   unsigned long start,
201 			   unsigned int nr,
202 			   unsigned long align_mask)
203 {
204 	return bitmap_find_next_zero_area_off(map, size, start, nr,
205 					      align_mask, 0);
206 }
207 
208 void bitmap_remap(unsigned long *dst, const unsigned long *src,
209 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
210 int bitmap_bitremap(int oldbit,
211 		const unsigned long *old, const unsigned long *new, int bits);
212 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
213 		const unsigned long *relmap, unsigned int bits);
214 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
215 		unsigned int sz, unsigned int nbits);
216 
217 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
218 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
219 
220 static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
221 {
222 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
223 
224 	if (small_const_nbits(nbits))
225 		*dst = 0;
226 	else
227 		memset(dst, 0, len);
228 }
229 
230 static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
231 {
232 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
233 
234 	if (small_const_nbits(nbits))
235 		*dst = ~0UL;
236 	else
237 		memset(dst, 0xff, len);
238 }
239 
240 static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
241 			unsigned int nbits)
242 {
243 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
244 
245 	if (small_const_nbits(nbits))
246 		*dst = *src;
247 	else
248 		memcpy(dst, src, len);
249 }
250 
251 /*
252  * Copy bitmap and clear tail bits in last word.
253  */
254 static inline void bitmap_copy_clear_tail(unsigned long *dst,
255 		const unsigned long *src, unsigned int nbits)
256 {
257 	bitmap_copy(dst, src, nbits);
258 	if (nbits % BITS_PER_LONG)
259 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
260 }
261 
262 /*
263  * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
264  * machines the order of hi and lo parts of numbers match the bitmap structure.
265  * In both cases conversion is not needed when copying data from/to arrays of
266  * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
267  * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
268  * architectures are not using bitmap_copy_clear_tail().
269  */
270 #if BITS_PER_LONG == 64
271 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
272 							unsigned int nbits);
273 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
274 							unsigned int nbits);
275 #else
276 #define bitmap_from_arr32(bitmap, buf, nbits)			\
277 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
278 			(const unsigned long *) (buf), (nbits))
279 #define bitmap_to_arr32(buf, bitmap, nbits)			\
280 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
281 			(const unsigned long *) (bitmap), (nbits))
282 #endif
283 
284 /*
285  * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
286  * the conversion is not needed when copying data from/to arrays of u64.
287  */
288 #if BITS_PER_LONG == 32
289 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
290 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
291 #else
292 #define bitmap_from_arr64(bitmap, buf, nbits)			\
293 	bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
294 #define bitmap_to_arr64(buf, bitmap, nbits)			\
295 	bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
296 #endif
297 
298 static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1,
299 			const unsigned long *src2, unsigned int nbits)
300 {
301 	if (small_const_nbits(nbits))
302 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
303 	return __bitmap_and(dst, src1, src2, nbits);
304 }
305 
306 static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
307 			const unsigned long *src2, unsigned int nbits)
308 {
309 	if (small_const_nbits(nbits))
310 		*dst = *src1 | *src2;
311 	else
312 		__bitmap_or(dst, src1, src2, nbits);
313 }
314 
315 static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
316 			const unsigned long *src2, unsigned int nbits)
317 {
318 	if (small_const_nbits(nbits))
319 		*dst = *src1 ^ *src2;
320 	else
321 		__bitmap_xor(dst, src1, src2, nbits);
322 }
323 
324 static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
325 			const unsigned long *src2, unsigned int nbits)
326 {
327 	if (small_const_nbits(nbits))
328 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
329 	return __bitmap_andnot(dst, src1, src2, nbits);
330 }
331 
332 static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
333 			unsigned int nbits)
334 {
335 	if (small_const_nbits(nbits))
336 		*dst = ~(*src);
337 	else
338 		__bitmap_complement(dst, src, nbits);
339 }
340 
341 #ifdef __LITTLE_ENDIAN
342 #define BITMAP_MEM_ALIGNMENT 8
343 #else
344 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
345 #endif
346 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
347 
348 static inline bool bitmap_equal(const unsigned long *src1,
349 				const unsigned long *src2, unsigned int nbits)
350 {
351 	if (small_const_nbits(nbits))
352 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
353 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
354 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
355 		return !memcmp(src1, src2, nbits / 8);
356 	return __bitmap_equal(src1, src2, nbits);
357 }
358 
359 /**
360  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
361  * @src1:	Pointer to bitmap 1
362  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
363  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
364  * @nbits:	number of bits in each of these bitmaps
365  *
366  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
367  */
368 static inline bool bitmap_or_equal(const unsigned long *src1,
369 				   const unsigned long *src2,
370 				   const unsigned long *src3,
371 				   unsigned int nbits)
372 {
373 	if (!small_const_nbits(nbits))
374 		return __bitmap_or_equal(src1, src2, src3, nbits);
375 
376 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
377 }
378 
379 static inline bool bitmap_intersects(const unsigned long *src1,
380 				     const unsigned long *src2,
381 				     unsigned int nbits)
382 {
383 	if (small_const_nbits(nbits))
384 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
385 	else
386 		return __bitmap_intersects(src1, src2, nbits);
387 }
388 
389 static inline bool bitmap_subset(const unsigned long *src1,
390 				 const unsigned long *src2, unsigned int nbits)
391 {
392 	if (small_const_nbits(nbits))
393 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
394 	else
395 		return __bitmap_subset(src1, src2, nbits);
396 }
397 
398 static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
399 {
400 	if (small_const_nbits(nbits))
401 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
402 
403 	return find_first_bit(src, nbits) == nbits;
404 }
405 
406 static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
407 {
408 	if (small_const_nbits(nbits))
409 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
410 
411 	return find_first_zero_bit(src, nbits) == nbits;
412 }
413 
414 static __always_inline
415 unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
416 {
417 	if (small_const_nbits(nbits))
418 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
419 	return __bitmap_weight(src, nbits);
420 }
421 
422 static __always_inline
423 unsigned long bitmap_weight_and(const unsigned long *src1,
424 				const unsigned long *src2, unsigned int nbits)
425 {
426 	if (small_const_nbits(nbits))
427 		return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
428 	return __bitmap_weight_and(src1, src2, nbits);
429 }
430 
431 static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
432 		unsigned int nbits)
433 {
434 	if (__builtin_constant_p(nbits) && nbits == 1)
435 		__set_bit(start, map);
436 	else if (small_const_nbits(start + nbits))
437 		*map |= GENMASK(start + nbits - 1, start);
438 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
439 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
440 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
441 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
442 		memset((char *)map + start / 8, 0xff, nbits / 8);
443 	else
444 		__bitmap_set(map, start, nbits);
445 }
446 
447 static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
448 		unsigned int nbits)
449 {
450 	if (__builtin_constant_p(nbits) && nbits == 1)
451 		__clear_bit(start, map);
452 	else if (small_const_nbits(start + nbits))
453 		*map &= ~GENMASK(start + nbits - 1, start);
454 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
455 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
456 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
457 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
458 		memset((char *)map + start / 8, 0, nbits / 8);
459 	else
460 		__bitmap_clear(map, start, nbits);
461 }
462 
463 static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
464 				unsigned int shift, unsigned int nbits)
465 {
466 	if (small_const_nbits(nbits))
467 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
468 	else
469 		__bitmap_shift_right(dst, src, shift, nbits);
470 }
471 
472 static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
473 				unsigned int shift, unsigned int nbits)
474 {
475 	if (small_const_nbits(nbits))
476 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
477 	else
478 		__bitmap_shift_left(dst, src, shift, nbits);
479 }
480 
481 static inline void bitmap_replace(unsigned long *dst,
482 				  const unsigned long *old,
483 				  const unsigned long *new,
484 				  const unsigned long *mask,
485 				  unsigned int nbits)
486 {
487 	if (small_const_nbits(nbits))
488 		*dst = (*old & ~(*mask)) | (*new & *mask);
489 	else
490 		__bitmap_replace(dst, old, new, mask, nbits);
491 }
492 
493 static inline void bitmap_next_set_region(unsigned long *bitmap,
494 					  unsigned int *rs, unsigned int *re,
495 					  unsigned int end)
496 {
497 	*rs = find_next_bit(bitmap, end, *rs);
498 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
499 }
500 
501 /**
502  * bitmap_release_region - release allocated bitmap region
503  *	@bitmap: array of unsigned longs corresponding to the bitmap
504  *	@pos: beginning of bit region to release
505  *	@order: region size (log base 2 of number of bits) to release
506  *
507  * This is the complement to __bitmap_find_free_region() and releases
508  * the found region (by clearing it in the bitmap).
509  */
510 static inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
511 {
512 	bitmap_clear(bitmap, pos, BIT(order));
513 }
514 
515 /**
516  * bitmap_allocate_region - allocate bitmap region
517  *	@bitmap: array of unsigned longs corresponding to the bitmap
518  *	@pos: beginning of bit region to allocate
519  *	@order: region size (log base 2 of number of bits) to allocate
520  *
521  * Allocate (set bits in) a specified region of a bitmap.
522  *
523  * Returns: 0 on success, or %-EBUSY if specified region wasn't
524  * free (not all bits were zero).
525  */
526 static inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
527 {
528 	unsigned int len = BIT(order);
529 
530 	if (find_next_bit(bitmap, pos + len, pos) < pos + len)
531 		return -EBUSY;
532 	bitmap_set(bitmap, pos, len);
533 	return 0;
534 }
535 
536 /**
537  * bitmap_find_free_region - find a contiguous aligned mem region
538  *	@bitmap: array of unsigned longs corresponding to the bitmap
539  *	@bits: number of bits in the bitmap
540  *	@order: region size (log base 2 of number of bits) to find
541  *
542  * Find a region of free (zero) bits in a @bitmap of @bits bits and
543  * allocate them (set them to one).  Only consider regions of length
544  * a power (@order) of two, aligned to that power of two, which
545  * makes the search algorithm much faster.
546  *
547  * Returns: the bit offset in bitmap of the allocated region,
548  * or -errno on failure.
549  */
550 static inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
551 {
552 	unsigned int pos, end;		/* scans bitmap by regions of size order */
553 
554 	for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
555 		if (!bitmap_allocate_region(bitmap, pos, order))
556 			return pos;
557 	}
558 	return -ENOMEM;
559 }
560 
561 /**
562  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
563  * @n: u64 value
564  *
565  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
566  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
567  *
568  * There are four combinations of endianness and length of the word in linux
569  * ABIs: LE64, BE64, LE32 and BE32.
570  *
571  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
572  * bitmaps and therefore don't require any special handling.
573  *
574  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
575  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
576  * other hand is represented as an array of 32-bit words and the position of
577  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
578  * word.  For example, bit #42 is located at 10th position of 2nd word.
579  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
580  * values in memory as it usually does. But for BE we need to swap hi and lo
581  * words manually.
582  *
583  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
584  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
585  * hi and lo words, as is expected by bitmap.
586  */
587 #if __BITS_PER_LONG == 64
588 #define BITMAP_FROM_U64(n) (n)
589 #else
590 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
591 				((unsigned long) ((u64)(n) >> 32))
592 #endif
593 
594 /**
595  * bitmap_from_u64 - Check and swap words within u64.
596  *  @mask: source bitmap
597  *  @dst:  destination bitmap
598  *
599  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
600  * to read u64 mask, we will get the wrong word.
601  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
602  * but we expect the lower 32-bits of u64.
603  */
604 static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
605 {
606 	bitmap_from_arr64(dst, &mask, 64);
607 }
608 
609 /**
610  * bitmap_get_value8 - get an 8-bit value within a memory region
611  * @map: address to the bitmap memory region
612  * @start: bit offset of the 8-bit value; must be a multiple of 8
613  *
614  * Returns the 8-bit value located at the @start bit offset within the @src
615  * memory region.
616  */
617 static inline unsigned long bitmap_get_value8(const unsigned long *map,
618 					      unsigned long start)
619 {
620 	const size_t index = BIT_WORD(start);
621 	const unsigned long offset = start % BITS_PER_LONG;
622 
623 	return (map[index] >> offset) & 0xFF;
624 }
625 
626 /**
627  * bitmap_set_value8 - set an 8-bit value within a memory region
628  * @map: address to the bitmap memory region
629  * @value: the 8-bit value; values wider than 8 bits may clobber bitmap
630  * @start: bit offset of the 8-bit value; must be a multiple of 8
631  */
632 static inline void bitmap_set_value8(unsigned long *map, unsigned long value,
633 				     unsigned long start)
634 {
635 	const size_t index = BIT_WORD(start);
636 	const unsigned long offset = start % BITS_PER_LONG;
637 
638 	map[index] &= ~(0xFFUL << offset);
639 	map[index] |= value << offset;
640 }
641 
642 #endif /* __ASSEMBLY__ */
643 
644 #endif /* __LINUX_BITMAP_H */
645