1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2013-2022, Intel Corporation. */ 3 4 #ifndef _VIRTCHNL_H_ 5 #define _VIRTCHNL_H_ 6 7 #include <linux/bitops.h> 8 #include <linux/bits.h> 9 #include <linux/overflow.h> 10 #include <uapi/linux/if_ether.h> 11 12 /* Description: 13 * This header file describes the Virtual Function (VF) - Physical Function 14 * (PF) communication protocol used by the drivers for all devices starting 15 * from our 40G product line 16 * 17 * Admin queue buffer usage: 18 * desc->opcode is always aqc_opc_send_msg_to_pf 19 * flags, retval, datalen, and data addr are all used normally. 20 * The Firmware copies the cookie fields when sending messages between the 21 * PF and VF, but uses all other fields internally. Due to this limitation, 22 * we must send all messages as "indirect", i.e. using an external buffer. 23 * 24 * All the VSI indexes are relative to the VF. Each VF can have maximum of 25 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 26 * have a maximum of sixteen queues for all of its VSIs. 27 * 28 * The PF is required to return a status code in v_retval for all messages 29 * except RESET_VF, which does not require any response. The returned value 30 * is of virtchnl_status_code type, defined here. 31 * 32 * In general, VF driver initialization should roughly follow the order of 33 * these opcodes. The VF driver must first validate the API version of the 34 * PF driver, then request a reset, then get resources, then configure 35 * queues and interrupts. After these operations are complete, the VF 36 * driver may start its queues, optionally add MAC and VLAN filters, and 37 * process traffic. 38 */ 39 40 /* START GENERIC DEFINES 41 * Need to ensure the following enums and defines hold the same meaning and 42 * value in current and future projects 43 */ 44 45 /* Error Codes */ 46 enum virtchnl_status_code { 47 VIRTCHNL_STATUS_SUCCESS = 0, 48 VIRTCHNL_STATUS_ERR_PARAM = -5, 49 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 50 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 51 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 52 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 53 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 54 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 55 }; 56 57 /* Backward compatibility */ 58 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 59 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 60 61 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 62 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 63 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 64 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 65 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 66 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 67 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 68 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 69 70 enum virtchnl_link_speed { 71 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 72 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 73 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 74 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 75 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 76 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 77 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 78 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 79 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 80 }; 81 82 /* for hsplit_0 field of Rx HMC context */ 83 /* deprecated with AVF 1.0 */ 84 enum virtchnl_rx_hsplit { 85 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 86 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 87 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 88 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 89 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 90 }; 91 92 /* END GENERIC DEFINES */ 93 94 /* Opcodes for VF-PF communication. These are placed in the v_opcode field 95 * of the virtchnl_msg structure. 96 */ 97 enum virtchnl_ops { 98 /* The PF sends status change events to VFs using 99 * the VIRTCHNL_OP_EVENT opcode. 100 * VFs send requests to the PF using the other ops. 101 * Use of "advanced opcode" features must be negotiated as part of capabilities 102 * exchange and are not considered part of base mode feature set. 103 */ 104 VIRTCHNL_OP_UNKNOWN = 0, 105 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 106 VIRTCHNL_OP_RESET_VF = 2, 107 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 108 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 109 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 110 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 111 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 112 VIRTCHNL_OP_ENABLE_QUEUES = 8, 113 VIRTCHNL_OP_DISABLE_QUEUES = 9, 114 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 115 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 116 VIRTCHNL_OP_ADD_VLAN = 12, 117 VIRTCHNL_OP_DEL_VLAN = 13, 118 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 119 VIRTCHNL_OP_GET_STATS = 15, 120 VIRTCHNL_OP_RSVD = 16, 121 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 122 VIRTCHNL_OP_CONFIG_RSS_HFUNC = 18, 123 /* opcode 19 is reserved */ 124 VIRTCHNL_OP_IWARP = 20, /* advanced opcode */ 125 VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP, 126 VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */ 127 VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP, 128 VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */ 129 VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP, 130 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 131 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 132 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 133 VIRTCHNL_OP_SET_RSS_HENA = 26, 134 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 135 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 136 VIRTCHNL_OP_REQUEST_QUEUES = 29, 137 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 138 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 139 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 140 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 141 /* opcode 34 - 43 are reserved */ 142 VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44, 143 VIRTCHNL_OP_ADD_RSS_CFG = 45, 144 VIRTCHNL_OP_DEL_RSS_CFG = 46, 145 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 146 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 147 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 148 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 149 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 150 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 151 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 152 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 153 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 154 VIRTCHNL_OP_MAX, 155 }; 156 157 /* These macros are used to generate compilation errors if a structure/union 158 * is not exactly the correct length. It gives a divide by zero error if the 159 * structure/union is not of the correct size, otherwise it creates an enum 160 * that is never used. 161 */ 162 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 163 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 164 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 165 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 166 167 /* Message descriptions and data structures. */ 168 169 /* VIRTCHNL_OP_VERSION 170 * VF posts its version number to the PF. PF responds with its version number 171 * in the same format, along with a return code. 172 * Reply from PF has its major/minor versions also in param0 and param1. 173 * If there is a major version mismatch, then the VF cannot operate. 174 * If there is a minor version mismatch, then the VF can operate but should 175 * add a warning to the system log. 176 * 177 * This enum element MUST always be specified as == 1, regardless of other 178 * changes in the API. The PF must always respond to this message without 179 * error regardless of version mismatch. 180 */ 181 #define VIRTCHNL_VERSION_MAJOR 1 182 #define VIRTCHNL_VERSION_MINOR 1 183 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 184 185 struct virtchnl_version_info { 186 u32 major; 187 u32 minor; 188 }; 189 190 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 191 192 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0)) 193 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 194 195 /* VIRTCHNL_OP_RESET_VF 196 * VF sends this request to PF with no parameters 197 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 198 * until reset completion is indicated. The admin queue must be reinitialized 199 * after this operation. 200 * 201 * When reset is complete, PF must ensure that all queues in all VSIs associated 202 * with the VF are stopped, all queue configurations in the HMC are set to 0, 203 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 204 * are cleared. 205 */ 206 207 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 208 * vsi_type should always be 6 for backward compatibility. Add other fields 209 * as needed. 210 */ 211 enum virtchnl_vsi_type { 212 VIRTCHNL_VSI_TYPE_INVALID = 0, 213 VIRTCHNL_VSI_SRIOV = 6, 214 }; 215 216 /* VIRTCHNL_OP_GET_VF_RESOURCES 217 * Version 1.0 VF sends this request to PF with no parameters 218 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 219 * PF responds with an indirect message containing 220 * virtchnl_vf_resource and one or more 221 * virtchnl_vsi_resource structures. 222 */ 223 224 struct virtchnl_vsi_resource { 225 u16 vsi_id; 226 u16 num_queue_pairs; 227 228 /* see enum virtchnl_vsi_type */ 229 s32 vsi_type; 230 u16 qset_handle; 231 u8 default_mac_addr[ETH_ALEN]; 232 }; 233 234 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 235 236 /* VF capability flags 237 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 238 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 239 */ 240 #define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 241 #define VIRTCHNL_VF_OFFLOAD_RDMA BIT(1) 242 #define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_RDMA 243 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 244 #define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 245 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 246 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 247 /* used to negotiate communicating link speeds in Mbps */ 248 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 249 #define VIRTCHNL_VF_OFFLOAD_CRC BIT(10) 250 #define VIRTCHNL_VF_OFFLOAD_TC_U32 BIT(11) 251 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 252 #define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 253 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 254 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 255 #define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 256 #define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 257 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 258 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 259 #define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 260 #define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 261 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26) 262 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 263 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 264 265 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 266 VIRTCHNL_VF_OFFLOAD_VLAN | \ 267 VIRTCHNL_VF_OFFLOAD_RSS_PF) 268 269 struct virtchnl_vf_resource { 270 u16 num_vsis; 271 u16 num_queue_pairs; 272 u16 max_vectors; 273 u16 max_mtu; 274 275 u32 vf_cap_flags; 276 u32 rss_key_size; 277 u32 rss_lut_size; 278 279 struct virtchnl_vsi_resource vsi_res[]; 280 }; 281 282 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource); 283 #define virtchnl_vf_resource_LEGACY_SIZEOF 36 284 285 /* VIRTCHNL_OP_CONFIG_TX_QUEUE 286 * VF sends this message to set up parameters for one TX queue. 287 * External data buffer contains one instance of virtchnl_txq_info. 288 * PF configures requested queue and returns a status code. 289 */ 290 291 /* Tx queue config info */ 292 struct virtchnl_txq_info { 293 u16 vsi_id; 294 u16 queue_id; 295 u16 ring_len; /* number of descriptors, multiple of 8 */ 296 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 297 u64 dma_ring_addr; 298 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 299 }; 300 301 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 302 303 /* VIRTCHNL_OP_CONFIG_RX_QUEUE 304 * VF sends this message to set up parameters for one RX queue. 305 * External data buffer contains one instance of virtchnl_rxq_info. 306 * PF configures requested queue and returns a status code. The 307 * crc_disable flag disables CRC stripping on the VF. Setting 308 * the crc_disable flag to 1 will disable CRC stripping for each 309 * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC 310 * offload must have been set prior to sending this info or the PF 311 * will ignore the request. This flag should be set the same for 312 * all of the queues for a VF. 313 */ 314 315 /* Rx queue config info */ 316 struct virtchnl_rxq_info { 317 u16 vsi_id; 318 u16 queue_id; 319 u32 ring_len; /* number of descriptors, multiple of 32 */ 320 u16 hdr_size; 321 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 322 u32 databuffer_size; 323 u32 max_pkt_size; 324 u8 crc_disable; 325 u8 rxdid; 326 u8 pad1[2]; 327 u64 dma_ring_addr; 328 329 /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */ 330 s32 rx_split_pos; 331 u32 pad2; 332 }; 333 334 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 335 336 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES 337 * VF sends this message to set parameters for all active TX and RX queues 338 * associated with the specified VSI. 339 * PF configures queues and returns status. 340 * If the number of queues specified is greater than the number of queues 341 * associated with the VSI, an error is returned and no queues are configured. 342 * NOTE: The VF is not required to configure all queues in a single request. 343 * It may send multiple messages. PF drivers must correctly handle all VF 344 * requests. 345 */ 346 struct virtchnl_queue_pair_info { 347 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 348 struct virtchnl_txq_info txq; 349 struct virtchnl_rxq_info rxq; 350 }; 351 352 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 353 354 struct virtchnl_vsi_queue_config_info { 355 u16 vsi_id; 356 u16 num_queue_pairs; 357 u32 pad; 358 struct virtchnl_queue_pair_info qpair[]; 359 }; 360 361 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info); 362 #define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF 72 363 364 /* VIRTCHNL_OP_REQUEST_QUEUES 365 * VF sends this message to request the PF to allocate additional queues to 366 * this VF. Each VF gets a guaranteed number of queues on init but asking for 367 * additional queues must be negotiated. This is a best effort request as it 368 * is possible the PF does not have enough queues left to support the request. 369 * If the PF cannot support the number requested it will respond with the 370 * maximum number it is able to support. If the request is successful, PF will 371 * then reset the VF to institute required changes. 372 */ 373 374 /* VF resource request */ 375 struct virtchnl_vf_res_request { 376 u16 num_queue_pairs; 377 }; 378 379 /* VIRTCHNL_OP_CONFIG_IRQ_MAP 380 * VF uses this message to map vectors to queues. 381 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 382 * are to be associated with the specified vector. 383 * The "other" causes are always mapped to vector 0. The VF may not request 384 * that vector 0 be used for traffic. 385 * PF configures interrupt mapping and returns status. 386 * NOTE: due to hardware requirements, all active queues (both TX and RX) 387 * should be mapped to interrupts, even if the driver intends to operate 388 * only in polling mode. In this case the interrupt may be disabled, but 389 * the ITR timer will still run to trigger writebacks. 390 */ 391 struct virtchnl_vector_map { 392 u16 vsi_id; 393 u16 vector_id; 394 u16 rxq_map; 395 u16 txq_map; 396 u16 rxitr_idx; 397 u16 txitr_idx; 398 }; 399 400 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 401 402 struct virtchnl_irq_map_info { 403 u16 num_vectors; 404 struct virtchnl_vector_map vecmap[]; 405 }; 406 407 VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info); 408 #define virtchnl_irq_map_info_LEGACY_SIZEOF 14 409 410 /* VIRTCHNL_OP_ENABLE_QUEUES 411 * VIRTCHNL_OP_DISABLE_QUEUES 412 * VF sends these message to enable or disable TX/RX queue pairs. 413 * The queues fields are bitmaps indicating which queues to act upon. 414 * (Currently, we only support 16 queues per VF, but we make the field 415 * u32 to allow for expansion.) 416 * PF performs requested action and returns status. 417 * NOTE: The VF is not required to enable/disable all queues in a single 418 * request. It may send multiple messages. 419 * PF drivers must correctly handle all VF requests. 420 */ 421 struct virtchnl_queue_select { 422 u16 vsi_id; 423 u16 pad; 424 u32 rx_queues; 425 u32 tx_queues; 426 }; 427 428 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 429 430 /* VIRTCHNL_OP_ADD_ETH_ADDR 431 * VF sends this message in order to add one or more unicast or multicast 432 * address filters for the specified VSI. 433 * PF adds the filters and returns status. 434 */ 435 436 /* VIRTCHNL_OP_DEL_ETH_ADDR 437 * VF sends this message in order to remove one or more unicast or multicast 438 * filters for the specified VSI. 439 * PF removes the filters and returns status. 440 */ 441 442 /* VIRTCHNL_ETHER_ADDR_LEGACY 443 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 444 * bytes. Moving forward all VF drivers should not set type to 445 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 446 * behavior. The control plane function (i.e. PF) can use a best effort method 447 * of tracking the primary/device unicast in this case, but there is no 448 * guarantee and functionality depends on the implementation of the PF. 449 */ 450 451 /* VIRTCHNL_ETHER_ADDR_PRIMARY 452 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 453 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 454 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 455 * function (i.e. PF) to accurately track and use this MAC address for 456 * displaying on the host and for VM/function reset. 457 */ 458 459 /* VIRTCHNL_ETHER_ADDR_EXTRA 460 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 461 * unicast and/or multicast filters that are being added/deleted via 462 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 463 */ 464 struct virtchnl_ether_addr { 465 u8 addr[ETH_ALEN]; 466 u8 type; 467 #define VIRTCHNL_ETHER_ADDR_LEGACY 0 468 #define VIRTCHNL_ETHER_ADDR_PRIMARY 1 469 #define VIRTCHNL_ETHER_ADDR_EXTRA 2 470 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 471 u8 pad; 472 }; 473 474 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 475 476 struct virtchnl_ether_addr_list { 477 u16 vsi_id; 478 u16 num_elements; 479 struct virtchnl_ether_addr list[]; 480 }; 481 482 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list); 483 #define virtchnl_ether_addr_list_LEGACY_SIZEOF 12 484 485 /* VIRTCHNL_OP_ADD_VLAN 486 * VF sends this message to add one or more VLAN tag filters for receives. 487 * PF adds the filters and returns status. 488 * If a port VLAN is configured by the PF, this operation will return an 489 * error to the VF. 490 */ 491 492 /* VIRTCHNL_OP_DEL_VLAN 493 * VF sends this message to remove one or more VLAN tag filters for receives. 494 * PF removes the filters and returns status. 495 * If a port VLAN is configured by the PF, this operation will return an 496 * error to the VF. 497 */ 498 499 struct virtchnl_vlan_filter_list { 500 u16 vsi_id; 501 u16 num_elements; 502 u16 vlan_id[]; 503 }; 504 505 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list); 506 #define virtchnl_vlan_filter_list_LEGACY_SIZEOF 6 507 508 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 509 * structures and opcodes. 510 * 511 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 512 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 513 * 514 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 515 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 516 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 517 * 518 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 519 * by the PF concurrently. For example, if the PF can support 520 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 521 * would OR the following bits: 522 * 523 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 524 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 525 * VIRTCHNL_VLAN_ETHERTYPE_AND; 526 * 527 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 528 * and 0x88A8 VLAN ethertypes. 529 * 530 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 531 * by the PF concurrently. For example if the PF can support 532 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 533 * offload it would OR the following bits: 534 * 535 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 536 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 537 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 538 * 539 * The VF would interpret this as VLAN stripping can be supported on either 540 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 541 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 542 * the previously set value. 543 * 544 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 545 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 546 * 547 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 548 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 549 * 550 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 551 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 552 * 553 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 554 * VLAN filtering if the underlying PF supports it. 555 * 556 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 557 * certain VLAN capability can be toggled. For example if the underlying PF/CP 558 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 559 * set this bit along with the supported ethertypes. 560 */ 561 enum virtchnl_vlan_support { 562 VIRTCHNL_VLAN_UNSUPPORTED = 0, 563 VIRTCHNL_VLAN_ETHERTYPE_8100 = BIT(0), 564 VIRTCHNL_VLAN_ETHERTYPE_88A8 = BIT(1), 565 VIRTCHNL_VLAN_ETHERTYPE_9100 = BIT(2), 566 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = BIT(8), 567 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = BIT(9), 568 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = BIT(10), 569 VIRTCHNL_VLAN_PRIO = BIT(24), 570 VIRTCHNL_VLAN_FILTER_MASK = BIT(28), 571 VIRTCHNL_VLAN_ETHERTYPE_AND = BIT(29), 572 VIRTCHNL_VLAN_ETHERTYPE_XOR = BIT(30), 573 VIRTCHNL_VLAN_TOGGLE = BIT(31), 574 }; 575 576 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 577 * for filtering, insertion, and stripping capabilities. 578 * 579 * If only outer capabilities are supported (for filtering, insertion, and/or 580 * stripping) then this refers to the outer most or single VLAN from the VF's 581 * perspective. 582 * 583 * If only inner capabilities are supported (for filtering, insertion, and/or 584 * stripping) then this refers to the outer most or single VLAN from the VF's 585 * perspective. Functionally this is the same as if only outer capabilities are 586 * supported. The VF driver is just forced to use the inner fields when 587 * adding/deleting filters and enabling/disabling offloads (if supported). 588 * 589 * If both outer and inner capabilities are supported (for filtering, insertion, 590 * and/or stripping) then outer refers to the outer most or single VLAN and 591 * inner refers to the second VLAN, if it exists, in the packet. 592 * 593 * There is no support for tunneled VLAN offloads, so outer or inner are never 594 * referring to a tunneled packet from the VF's perspective. 595 */ 596 struct virtchnl_vlan_supported_caps { 597 u32 outer; 598 u32 inner; 599 }; 600 601 /* The PF populates these fields based on the supported VLAN filtering. If a 602 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 603 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 604 * the unsupported fields. 605 * 606 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 607 * VIRTCHNL_VLAN_TOGGLE bit is set. 608 * 609 * The ethertype(s) specified in the ethertype_init field are the ethertypes 610 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 611 * most VLAN from the VF's perspective. If both inner and outer filtering are 612 * allowed then ethertype_init only refers to the outer most VLAN as only 613 * VLAN ethertype supported for inner VLAN filtering is 614 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 615 * when both inner and outer filtering are allowed. 616 * 617 * The max_filters field tells the VF how many VLAN filters it's allowed to have 618 * at any one time. If it exceeds this amount and tries to add another filter, 619 * then the request will be rejected by the PF. To prevent failures, the VF 620 * should keep track of how many VLAN filters it has added and not attempt to 621 * add more than max_filters. 622 */ 623 struct virtchnl_vlan_filtering_caps { 624 struct virtchnl_vlan_supported_caps filtering_support; 625 u32 ethertype_init; 626 u16 max_filters; 627 u8 pad[2]; 628 }; 629 630 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 631 632 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify 633 * if the PF supports a different ethertype for stripping and insertion. 634 * 635 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 636 * for stripping affect the ethertype(s) specified for insertion and visa versa 637 * as well. If the VF tries to configure VLAN stripping via 638 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 639 * that will be the ethertype for both stripping and insertion. 640 * 641 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 642 * stripping do not affect the ethertype(s) specified for insertion and visa 643 * versa. 644 */ 645 enum virtchnl_vlan_ethertype_match { 646 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 647 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 648 }; 649 650 /* The PF populates these fields based on the supported VLAN offloads. If a 651 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 652 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 653 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 654 * 655 * Also, a VF is only allowed to toggle its VLAN offload setting if the 656 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 657 * 658 * The VF driver needs to be aware of how the tags are stripped by hardware and 659 * inserted by the VF driver based on the level of offload support. The PF will 660 * populate these fields based on where the VLAN tags are expected to be 661 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 662 * interpret these fields. See the definition of the 663 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 664 * enumeration. 665 */ 666 struct virtchnl_vlan_offload_caps { 667 struct virtchnl_vlan_supported_caps stripping_support; 668 struct virtchnl_vlan_supported_caps insertion_support; 669 u32 ethertype_init; 670 u8 ethertype_match; 671 u8 pad[3]; 672 }; 673 674 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 675 676 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 677 * VF sends this message to determine its VLAN capabilities. 678 * 679 * PF will mark which capabilities it supports based on hardware support and 680 * current configuration. For example, if a port VLAN is configured the PF will 681 * not allow outer VLAN filtering, stripping, or insertion to be configured so 682 * it will block these features from the VF. 683 * 684 * The VF will need to cross reference its capabilities with the PFs 685 * capabilities in the response message from the PF to determine the VLAN 686 * support. 687 */ 688 struct virtchnl_vlan_caps { 689 struct virtchnl_vlan_filtering_caps filtering; 690 struct virtchnl_vlan_offload_caps offloads; 691 }; 692 693 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 694 695 struct virtchnl_vlan { 696 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 697 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 698 * filtering caps 699 */ 700 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 701 * filtering caps. Note that tpid here does not refer to 702 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 703 * actual 2-byte VLAN TPID 704 */ 705 u8 pad[2]; 706 }; 707 708 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 709 710 struct virtchnl_vlan_filter { 711 struct virtchnl_vlan inner; 712 struct virtchnl_vlan outer; 713 u8 pad[16]; 714 }; 715 716 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 717 718 /* VIRTCHNL_OP_ADD_VLAN_V2 719 * VIRTCHNL_OP_DEL_VLAN_V2 720 * 721 * VF sends these messages to add/del one or more VLAN tag filters for Rx 722 * traffic. 723 * 724 * The PF attempts to add the filters and returns status. 725 * 726 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 727 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 728 */ 729 struct virtchnl_vlan_filter_list_v2 { 730 u16 vport_id; 731 u16 num_elements; 732 u8 pad[4]; 733 struct virtchnl_vlan_filter filters[]; 734 }; 735 736 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2); 737 #define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF 40 738 739 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 740 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 741 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 742 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 743 * 744 * VF sends this message to enable or disable VLAN stripping or insertion. It 745 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 746 * allowed and whether or not it's allowed to enable/disable the specific 747 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 748 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 749 * messages are allowed. 750 * 751 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 752 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 753 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 754 * case means the outer most or single VLAN from the VF's perspective. This is 755 * because no outer offloads are supported. See the comments above the 756 * virtchnl_vlan_supported_caps structure for more details. 757 * 758 * virtchnl_vlan_caps.offloads.stripping_support.inner = 759 * VIRTCHNL_VLAN_TOGGLE | 760 * VIRTCHNL_VLAN_ETHERTYPE_8100; 761 * 762 * virtchnl_vlan_caps.offloads.insertion_support.inner = 763 * VIRTCHNL_VLAN_TOGGLE | 764 * VIRTCHNL_VLAN_ETHERTYPE_8100; 765 * 766 * In order to enable inner (again note that in this case inner is the outer 767 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 768 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 769 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 770 * 771 * virtchnl_vlan_setting.inner_ethertype_setting = 772 * VIRTCHNL_VLAN_ETHERTYPE_8100; 773 * 774 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 775 * initialization. 776 * 777 * The reason that VLAN TPID(s) are not being used for the 778 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 779 * possible a device could support VLAN insertion and/or stripping offload on 780 * multiple ethertypes concurrently, so this method allows a VF to request 781 * multiple ethertypes in one message using the virtchnl_vlan_support 782 * enumeration. 783 * 784 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 785 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 786 * VLAN insertion and stripping simultaneously. The 787 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 788 * populated based on what the PF can support. 789 * 790 * virtchnl_vlan_caps.offloads.stripping_support.outer = 791 * VIRTCHNL_VLAN_TOGGLE | 792 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 793 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 794 * VIRTCHNL_VLAN_ETHERTYPE_AND; 795 * 796 * virtchnl_vlan_caps.offloads.insertion_support.outer = 797 * VIRTCHNL_VLAN_TOGGLE | 798 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 799 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 800 * VIRTCHNL_VLAN_ETHERTYPE_AND; 801 * 802 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 803 * would populate the virthcnl_vlan_offload_structure in the following manner 804 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 805 * 806 * virtchnl_vlan_setting.outer_ethertype_setting = 807 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 808 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 809 * 810 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 811 * initialization. 812 * 813 * There is also the case where a PF and the underlying hardware can support 814 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 815 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 816 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 817 * offloads. The ethertypes must match for stripping and insertion. 818 * 819 * virtchnl_vlan_caps.offloads.stripping_support.outer = 820 * VIRTCHNL_VLAN_TOGGLE | 821 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 822 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 823 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 824 * 825 * virtchnl_vlan_caps.offloads.insertion_support.outer = 826 * VIRTCHNL_VLAN_TOGGLE | 827 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 828 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 829 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 830 * 831 * virtchnl_vlan_caps.offloads.ethertype_match = 832 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 833 * 834 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 835 * populate the virtchnl_vlan_setting structure in the following manner and send 836 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 837 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 838 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 839 * 840 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 841 * 842 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 843 * initialization. 844 */ 845 struct virtchnl_vlan_setting { 846 u32 outer_ethertype_setting; 847 u32 inner_ethertype_setting; 848 u16 vport_id; 849 u8 pad[6]; 850 }; 851 852 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 853 854 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 855 * VF sends VSI id and flags. 856 * PF returns status code in retval. 857 * Note: we assume that broadcast accept mode is always enabled. 858 */ 859 struct virtchnl_promisc_info { 860 u16 vsi_id; 861 u16 flags; 862 }; 863 864 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 865 866 #define FLAG_VF_UNICAST_PROMISC 0x00000001 867 #define FLAG_VF_MULTICAST_PROMISC 0x00000002 868 869 /* VIRTCHNL_OP_GET_STATS 870 * VF sends this message to request stats for the selected VSI. VF uses 871 * the virtchnl_queue_select struct to specify the VSI. The queue_id 872 * field is ignored by the PF. 873 * 874 * PF replies with struct eth_stats in an external buffer. 875 */ 876 877 /* VIRTCHNL_OP_CONFIG_RSS_KEY 878 * VIRTCHNL_OP_CONFIG_RSS_LUT 879 * VF sends these messages to configure RSS. Only supported if both PF 880 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 881 * configuration negotiation. If this is the case, then the RSS fields in 882 * the VF resource struct are valid. 883 * Both the key and LUT are initialized to 0 by the PF, meaning that 884 * RSS is effectively disabled until set up by the VF. 885 */ 886 struct virtchnl_rss_key { 887 u16 vsi_id; 888 u16 key_len; 889 u8 key[]; /* RSS hash key, packed bytes */ 890 }; 891 892 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key); 893 #define virtchnl_rss_key_LEGACY_SIZEOF 6 894 895 struct virtchnl_rss_lut { 896 u16 vsi_id; 897 u16 lut_entries; 898 u8 lut[]; /* RSS lookup table */ 899 }; 900 901 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut); 902 #define virtchnl_rss_lut_LEGACY_SIZEOF 6 903 904 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS 905 * VIRTCHNL_OP_SET_RSS_HENA 906 * VF sends these messages to get and set the hash filter enable bits for RSS. 907 * By default, the PF sets these to all possible traffic types that the 908 * hardware supports. The VF can query this value if it wants to change the 909 * traffic types that are hashed by the hardware. 910 */ 911 struct virtchnl_rss_hena { 912 u64 hena; 913 }; 914 915 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 916 917 /* Type of RSS algorithm */ 918 enum virtchnl_rss_algorithm { 919 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 920 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, 921 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 922 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 923 }; 924 925 /* VIRTCHNL_OP_CONFIG_RSS_HFUNC 926 * VF sends this message to configure the RSS hash function. Only supported 927 * if both PF and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 928 * configuration negotiation. 929 * The hash function is initialized to VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC 930 * by the PF. 931 */ 932 struct virtchnl_rss_hfunc { 933 u16 vsi_id; 934 u16 rss_algorithm; /* enum virtchnl_rss_algorithm */ 935 u32 reserved; 936 }; 937 938 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hfunc); 939 940 /* VIRTCHNL_OP_ENABLE_CHANNELS 941 * VIRTCHNL_OP_DISABLE_CHANNELS 942 * VF sends these messages to enable or disable channels based on 943 * the user specified queue count and queue offset for each traffic class. 944 * This struct encompasses all the information that the PF needs from 945 * VF to create a channel. 946 */ 947 struct virtchnl_channel_info { 948 u16 count; /* number of queues in a channel */ 949 u16 offset; /* queues in a channel start from 'offset' */ 950 u32 pad; 951 u64 max_tx_rate; 952 }; 953 954 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 955 956 struct virtchnl_tc_info { 957 u32 num_tc; 958 u32 pad; 959 struct virtchnl_channel_info list[]; 960 }; 961 962 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info); 963 #define virtchnl_tc_info_LEGACY_SIZEOF 24 964 965 /* VIRTCHNL_ADD_CLOUD_FILTER 966 * VIRTCHNL_DEL_CLOUD_FILTER 967 * VF sends these messages to add or delete a cloud filter based on the 968 * user specified match and action filters. These structures encompass 969 * all the information that the PF needs from the VF to add/delete a 970 * cloud filter. 971 */ 972 973 struct virtchnl_l4_spec { 974 u8 src_mac[ETH_ALEN]; 975 u8 dst_mac[ETH_ALEN]; 976 __be16 vlan_id; 977 __be16 pad; /* reserved for future use */ 978 __be32 src_ip[4]; 979 __be32 dst_ip[4]; 980 __be16 src_port; 981 __be16 dst_port; 982 }; 983 984 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 985 986 union virtchnl_flow_spec { 987 struct virtchnl_l4_spec tcp_spec; 988 u8 buffer[128]; /* reserved for future use */ 989 }; 990 991 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 992 993 enum virtchnl_action { 994 /* action types */ 995 VIRTCHNL_ACTION_DROP = 0, 996 VIRTCHNL_ACTION_TC_REDIRECT, 997 VIRTCHNL_ACTION_PASSTHRU, 998 VIRTCHNL_ACTION_QUEUE, 999 VIRTCHNL_ACTION_Q_REGION, 1000 VIRTCHNL_ACTION_MARK, 1001 VIRTCHNL_ACTION_COUNT, 1002 }; 1003 1004 enum virtchnl_flow_type { 1005 /* flow types */ 1006 VIRTCHNL_TCP_V4_FLOW = 0, 1007 VIRTCHNL_TCP_V6_FLOW, 1008 }; 1009 1010 struct virtchnl_filter { 1011 union virtchnl_flow_spec data; 1012 union virtchnl_flow_spec mask; 1013 1014 /* see enum virtchnl_flow_type */ 1015 s32 flow_type; 1016 1017 /* see enum virtchnl_action */ 1018 s32 action; 1019 u32 action_meta; 1020 u8 field_flags; 1021 u8 pad[3]; 1022 }; 1023 1024 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 1025 1026 struct virtchnl_supported_rxdids { 1027 u64 supported_rxdids; 1028 }; 1029 1030 /* VIRTCHNL_OP_EVENT 1031 * PF sends this message to inform the VF driver of events that may affect it. 1032 * No direct response is expected from the VF, though it may generate other 1033 * messages in response to this one. 1034 */ 1035 enum virtchnl_event_codes { 1036 VIRTCHNL_EVENT_UNKNOWN = 0, 1037 VIRTCHNL_EVENT_LINK_CHANGE, 1038 VIRTCHNL_EVENT_RESET_IMPENDING, 1039 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 1040 }; 1041 1042 #define PF_EVENT_SEVERITY_INFO 0 1043 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 1044 1045 struct virtchnl_pf_event { 1046 /* see enum virtchnl_event_codes */ 1047 s32 event; 1048 union { 1049 /* If the PF driver does not support the new speed reporting 1050 * capabilities then use link_event else use link_event_adv to 1051 * get the speed and link information. The ability to understand 1052 * new speeds is indicated by setting the capability flag 1053 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 1054 * in virtchnl_vf_resource struct and can be used to determine 1055 * which link event struct to use below. 1056 */ 1057 struct { 1058 enum virtchnl_link_speed link_speed; 1059 bool link_status; 1060 u8 pad[3]; 1061 } link_event; 1062 struct { 1063 /* link_speed provided in Mbps */ 1064 u32 link_speed; 1065 u8 link_status; 1066 u8 pad[3]; 1067 } link_event_adv; 1068 } event_data; 1069 1070 s32 severity; 1071 }; 1072 1073 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1074 1075 /* used to specify if a ceq_idx or aeq_idx is invalid */ 1076 #define VIRTCHNL_RDMA_INVALID_QUEUE_IDX 0xFFFF 1077 /* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP 1078 * VF uses this message to request PF to map RDMA vectors to RDMA queues. 1079 * The request for this originates from the VF RDMA driver through 1080 * a client interface between VF LAN and VF RDMA driver. 1081 * A vector could have an AEQ and CEQ attached to it although 1082 * there is a single AEQ per VF RDMA instance in which case 1083 * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid 1084 * idx for ceqs There will never be a case where there will be multiple CEQs 1085 * attached to a single vector. 1086 * PF configures interrupt mapping and returns status. 1087 */ 1088 1089 struct virtchnl_rdma_qv_info { 1090 u32 v_idx; /* msix_vector */ 1091 u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */ 1092 u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */ 1093 u8 itr_idx; 1094 u8 pad[3]; 1095 }; 1096 1097 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info); 1098 1099 struct virtchnl_rdma_qvlist_info { 1100 u32 num_vectors; 1101 struct virtchnl_rdma_qv_info qv_info[]; 1102 }; 1103 1104 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info); 1105 #define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF 16 1106 1107 /* VF reset states - these are written into the RSTAT register: 1108 * VFGEN_RSTAT on the VF 1109 * When the PF initiates a reset, it writes 0 1110 * When the reset is complete, it writes 1 1111 * When the PF detects that the VF has recovered, it writes 2 1112 * VF checks this register periodically to determine if a reset has occurred, 1113 * then polls it to know when the reset is complete. 1114 * If either the PF or VF reads the register while the hardware 1115 * is in a reset state, it will return DEADBEEF, which, when masked 1116 * will result in 3. 1117 */ 1118 enum virtchnl_vfr_states { 1119 VIRTCHNL_VFR_INPROGRESS = 0, 1120 VIRTCHNL_VFR_COMPLETED, 1121 VIRTCHNL_VFR_VFACTIVE, 1122 }; 1123 1124 #define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1125 #define VIRTCHNL_MAX_SIZE_RAW_PACKET 1024 1126 #define PROTO_HDR_SHIFT 5 1127 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT) 1128 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1129 1130 /* VF use these macros to configure each protocol header. 1131 * Specify which protocol headers and protocol header fields base on 1132 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1133 * @param hdr: a struct of virtchnl_proto_hdr 1134 * @param hdr_type: ETH/IPV4/TCP, etc 1135 * @param field: SRC/DST/TEID/SPI, etc 1136 */ 1137 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1138 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1139 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1140 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1141 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1142 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1143 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1144 1145 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1146 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1147 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1148 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1149 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1150 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1151 1152 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1153 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1154 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1155 (((hdr)->type) >> PROTO_HDR_SHIFT) 1156 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1157 ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT))) 1158 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1159 (VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \ 1160 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val))) 1161 1162 /* Protocol header type within a packet segment. A segment consists of one or 1163 * more protocol headers that make up a logical group of protocol headers. Each 1164 * logical group of protocol headers encapsulates or is encapsulated using/by 1165 * tunneling or encapsulation protocols for network virtualization. 1166 */ 1167 enum virtchnl_proto_hdr_type { 1168 VIRTCHNL_PROTO_HDR_NONE, 1169 VIRTCHNL_PROTO_HDR_ETH, 1170 VIRTCHNL_PROTO_HDR_S_VLAN, 1171 VIRTCHNL_PROTO_HDR_C_VLAN, 1172 VIRTCHNL_PROTO_HDR_IPV4, 1173 VIRTCHNL_PROTO_HDR_IPV6, 1174 VIRTCHNL_PROTO_HDR_TCP, 1175 VIRTCHNL_PROTO_HDR_UDP, 1176 VIRTCHNL_PROTO_HDR_SCTP, 1177 VIRTCHNL_PROTO_HDR_GTPU_IP, 1178 VIRTCHNL_PROTO_HDR_GTPU_EH, 1179 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1180 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1181 VIRTCHNL_PROTO_HDR_PPPOE, 1182 VIRTCHNL_PROTO_HDR_L2TPV3, 1183 VIRTCHNL_PROTO_HDR_ESP, 1184 VIRTCHNL_PROTO_HDR_AH, 1185 VIRTCHNL_PROTO_HDR_PFCP, 1186 }; 1187 1188 /* Protocol header field within a protocol header. */ 1189 enum virtchnl_proto_hdr_field { 1190 /* ETHER */ 1191 VIRTCHNL_PROTO_HDR_ETH_SRC = 1192 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1193 VIRTCHNL_PROTO_HDR_ETH_DST, 1194 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1195 /* S-VLAN */ 1196 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1197 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1198 /* C-VLAN */ 1199 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1200 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1201 /* IPV4 */ 1202 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1203 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1204 VIRTCHNL_PROTO_HDR_IPV4_DST, 1205 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1206 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1207 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1208 /* IPV6 */ 1209 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1210 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1211 VIRTCHNL_PROTO_HDR_IPV6_DST, 1212 VIRTCHNL_PROTO_HDR_IPV6_TC, 1213 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1214 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1215 /* TCP */ 1216 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1217 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1218 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1219 /* UDP */ 1220 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1221 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1222 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1223 /* SCTP */ 1224 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1225 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1226 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1227 /* GTPU_IP */ 1228 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1229 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1230 /* GTPU_EH */ 1231 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1232 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1233 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1234 /* PPPOE */ 1235 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1236 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1237 /* L2TPV3 */ 1238 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1239 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1240 /* ESP */ 1241 VIRTCHNL_PROTO_HDR_ESP_SPI = 1242 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1243 /* AH */ 1244 VIRTCHNL_PROTO_HDR_AH_SPI = 1245 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1246 /* PFCP */ 1247 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1248 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1249 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1250 }; 1251 1252 struct virtchnl_proto_hdr { 1253 /* see enum virtchnl_proto_hdr_type */ 1254 s32 type; 1255 u32 field_selector; /* a bit mask to select field for header type */ 1256 u8 buffer[64]; 1257 /** 1258 * binary buffer in network order for specific header type. 1259 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1260 * header is expected to be copied into the buffer. 1261 */ 1262 }; 1263 1264 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1265 1266 struct virtchnl_proto_hdrs { 1267 u8 tunnel_level; 1268 u8 pad[3]; 1269 /** 1270 * specify where protocol header start from. 1271 * must be 0 when sending a raw packet request. 1272 * 0 - from the outer layer 1273 * 1 - from the first inner layer 1274 * 2 - from the second inner layer 1275 * .... 1276 **/ 1277 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ 1278 union { 1279 struct virtchnl_proto_hdr 1280 proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1281 struct { 1282 u16 pkt_len; 1283 u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET]; 1284 u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET]; 1285 } raw; 1286 }; 1287 }; 1288 1289 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1290 1291 struct virtchnl_rss_cfg { 1292 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1293 1294 /* see enum virtchnl_rss_algorithm; rss algorithm type */ 1295 s32 rss_algorithm; 1296 u8 reserved[128]; /* reserve for future */ 1297 }; 1298 1299 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1300 1301 /* action configuration for FDIR */ 1302 struct virtchnl_filter_action { 1303 /* see enum virtchnl_action type */ 1304 s32 type; 1305 union { 1306 /* used for queue and qgroup action */ 1307 struct { 1308 u16 index; 1309 u8 region; 1310 } queue; 1311 /* used for count action */ 1312 struct { 1313 /* share counter ID with other flow rules */ 1314 u8 shared; 1315 u32 id; /* counter ID */ 1316 } count; 1317 /* used for mark action */ 1318 u32 mark_id; 1319 u8 reserve[32]; 1320 } act_conf; 1321 }; 1322 1323 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1324 1325 #define VIRTCHNL_MAX_NUM_ACTIONS 8 1326 1327 struct virtchnl_filter_action_set { 1328 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1329 int count; 1330 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1331 }; 1332 1333 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1334 1335 /* pattern and action for FDIR rule */ 1336 struct virtchnl_fdir_rule { 1337 struct virtchnl_proto_hdrs proto_hdrs; 1338 struct virtchnl_filter_action_set action_set; 1339 }; 1340 1341 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1342 1343 /* Status returned to VF after VF requests FDIR commands 1344 * VIRTCHNL_FDIR_SUCCESS 1345 * VF FDIR related request is successfully done by PF 1346 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER. 1347 * 1348 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1349 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1350 * 1351 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1352 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1353 * 1354 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1355 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1356 * 1357 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1358 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1359 * 1360 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1361 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1362 * or HW doesn't support. 1363 * 1364 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1365 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1366 * for programming. 1367 * 1368 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID 1369 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation, 1370 * for example, VF query counter of a rule who has no counter action. 1371 */ 1372 enum virtchnl_fdir_prgm_status { 1373 VIRTCHNL_FDIR_SUCCESS = 0, 1374 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1375 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1376 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1377 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1378 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1379 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1380 VIRTCHNL_FDIR_FAILURE_QUERY_INVALID, 1381 }; 1382 1383 /* VIRTCHNL_OP_ADD_FDIR_FILTER 1384 * VF sends this request to PF by filling out vsi_id, 1385 * validate_only and rule_cfg. PF will return flow_id 1386 * if the request is successfully done and return add_status to VF. 1387 */ 1388 struct virtchnl_fdir_add { 1389 u16 vsi_id; /* INPUT */ 1390 /* 1391 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1392 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1393 */ 1394 u16 validate_only; /* INPUT */ 1395 u32 flow_id; /* OUTPUT */ 1396 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1397 1398 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1399 s32 status; 1400 }; 1401 1402 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1403 1404 /* VIRTCHNL_OP_DEL_FDIR_FILTER 1405 * VF sends this request to PF by filling out vsi_id 1406 * and flow_id. PF will return del_status to VF. 1407 */ 1408 struct virtchnl_fdir_del { 1409 u16 vsi_id; /* INPUT */ 1410 u16 pad; 1411 u32 flow_id; /* INPUT */ 1412 1413 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1414 s32 status; 1415 }; 1416 1417 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1418 1419 #define __vss_byone(p, member, count, old) \ 1420 (struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0))) 1421 1422 #define __vss_byelem(p, member, count, old) \ 1423 (struct_size(p, member, count - 1) + (old - struct_size(p, member, 0))) 1424 1425 #define __vss_full(p, member, count, old) \ 1426 (struct_size(p, member, count) + (old - struct_size(p, member, 0))) 1427 1428 #define __vss(type, func, p, member, count) \ 1429 struct type: func(p, member, count, type##_LEGACY_SIZEOF) 1430 1431 #define virtchnl_struct_size(p, m, c) \ 1432 _Generic(*p, \ 1433 __vss(virtchnl_vf_resource, __vss_full, p, m, c), \ 1434 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c), \ 1435 __vss(virtchnl_irq_map_info, __vss_full, p, m, c), \ 1436 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c), \ 1437 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c), \ 1438 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c), \ 1439 __vss(virtchnl_tc_info, __vss_byelem, p, m, c), \ 1440 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c), \ 1441 __vss(virtchnl_rss_key, __vss_byone, p, m, c), \ 1442 __vss(virtchnl_rss_lut, __vss_byone, p, m, c)) 1443 1444 /** 1445 * virtchnl_vc_validate_vf_msg 1446 * @ver: Virtchnl version info 1447 * @v_opcode: Opcode for the message 1448 * @msg: pointer to the msg buffer 1449 * @msglen: msg length 1450 * 1451 * validate msg format against struct for each opcode 1452 */ 1453 static inline int 1454 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 1455 u8 *msg, u16 msglen) 1456 { 1457 bool err_msg_format = false; 1458 u32 valid_len = 0; 1459 1460 /* Validate message length. */ 1461 switch (v_opcode) { 1462 case VIRTCHNL_OP_VERSION: 1463 valid_len = sizeof(struct virtchnl_version_info); 1464 break; 1465 case VIRTCHNL_OP_RESET_VF: 1466 break; 1467 case VIRTCHNL_OP_GET_VF_RESOURCES: 1468 if (VF_IS_V11(ver)) 1469 valid_len = sizeof(u32); 1470 break; 1471 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 1472 valid_len = sizeof(struct virtchnl_txq_info); 1473 break; 1474 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 1475 valid_len = sizeof(struct virtchnl_rxq_info); 1476 break; 1477 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 1478 valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF; 1479 if (msglen >= valid_len) { 1480 struct virtchnl_vsi_queue_config_info *vqc = 1481 (struct virtchnl_vsi_queue_config_info *)msg; 1482 valid_len = virtchnl_struct_size(vqc, qpair, 1483 vqc->num_queue_pairs); 1484 if (vqc->num_queue_pairs == 0) 1485 err_msg_format = true; 1486 } 1487 break; 1488 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 1489 valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF; 1490 if (msglen >= valid_len) { 1491 struct virtchnl_irq_map_info *vimi = 1492 (struct virtchnl_irq_map_info *)msg; 1493 valid_len = virtchnl_struct_size(vimi, vecmap, 1494 vimi->num_vectors); 1495 if (vimi->num_vectors == 0) 1496 err_msg_format = true; 1497 } 1498 break; 1499 case VIRTCHNL_OP_ENABLE_QUEUES: 1500 case VIRTCHNL_OP_DISABLE_QUEUES: 1501 valid_len = sizeof(struct virtchnl_queue_select); 1502 break; 1503 case VIRTCHNL_OP_ADD_ETH_ADDR: 1504 case VIRTCHNL_OP_DEL_ETH_ADDR: 1505 valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF; 1506 if (msglen >= valid_len) { 1507 struct virtchnl_ether_addr_list *veal = 1508 (struct virtchnl_ether_addr_list *)msg; 1509 valid_len = virtchnl_struct_size(veal, list, 1510 veal->num_elements); 1511 if (veal->num_elements == 0) 1512 err_msg_format = true; 1513 } 1514 break; 1515 case VIRTCHNL_OP_ADD_VLAN: 1516 case VIRTCHNL_OP_DEL_VLAN: 1517 valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF; 1518 if (msglen >= valid_len) { 1519 struct virtchnl_vlan_filter_list *vfl = 1520 (struct virtchnl_vlan_filter_list *)msg; 1521 valid_len = virtchnl_struct_size(vfl, vlan_id, 1522 vfl->num_elements); 1523 if (vfl->num_elements == 0) 1524 err_msg_format = true; 1525 } 1526 break; 1527 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 1528 valid_len = sizeof(struct virtchnl_promisc_info); 1529 break; 1530 case VIRTCHNL_OP_GET_STATS: 1531 valid_len = sizeof(struct virtchnl_queue_select); 1532 break; 1533 case VIRTCHNL_OP_RDMA: 1534 /* These messages are opaque to us and will be validated in 1535 * the RDMA client code. We just need to check for nonzero 1536 * length. The firmware will enforce max length restrictions. 1537 */ 1538 if (msglen) 1539 valid_len = msglen; 1540 else 1541 err_msg_format = true; 1542 break; 1543 case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP: 1544 break; 1545 case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP: 1546 valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF; 1547 if (msglen >= valid_len) { 1548 struct virtchnl_rdma_qvlist_info *qv = 1549 (struct virtchnl_rdma_qvlist_info *)msg; 1550 1551 valid_len = virtchnl_struct_size(qv, qv_info, 1552 qv->num_vectors); 1553 } 1554 break; 1555 case VIRTCHNL_OP_CONFIG_RSS_KEY: 1556 valid_len = virtchnl_rss_key_LEGACY_SIZEOF; 1557 if (msglen >= valid_len) { 1558 struct virtchnl_rss_key *vrk = 1559 (struct virtchnl_rss_key *)msg; 1560 valid_len = virtchnl_struct_size(vrk, key, 1561 vrk->key_len); 1562 } 1563 break; 1564 case VIRTCHNL_OP_CONFIG_RSS_LUT: 1565 valid_len = virtchnl_rss_lut_LEGACY_SIZEOF; 1566 if (msglen >= valid_len) { 1567 struct virtchnl_rss_lut *vrl = 1568 (struct virtchnl_rss_lut *)msg; 1569 valid_len = virtchnl_struct_size(vrl, lut, 1570 vrl->lut_entries); 1571 } 1572 break; 1573 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 1574 valid_len = sizeof(struct virtchnl_rss_hfunc); 1575 break; 1576 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 1577 break; 1578 case VIRTCHNL_OP_SET_RSS_HENA: 1579 valid_len = sizeof(struct virtchnl_rss_hena); 1580 break; 1581 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 1582 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 1583 break; 1584 case VIRTCHNL_OP_REQUEST_QUEUES: 1585 valid_len = sizeof(struct virtchnl_vf_res_request); 1586 break; 1587 case VIRTCHNL_OP_ENABLE_CHANNELS: 1588 valid_len = virtchnl_tc_info_LEGACY_SIZEOF; 1589 if (msglen >= valid_len) { 1590 struct virtchnl_tc_info *vti = 1591 (struct virtchnl_tc_info *)msg; 1592 valid_len = virtchnl_struct_size(vti, list, 1593 vti->num_tc); 1594 if (vti->num_tc == 0) 1595 err_msg_format = true; 1596 } 1597 break; 1598 case VIRTCHNL_OP_DISABLE_CHANNELS: 1599 break; 1600 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 1601 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 1602 valid_len = sizeof(struct virtchnl_filter); 1603 break; 1604 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 1605 break; 1606 case VIRTCHNL_OP_ADD_RSS_CFG: 1607 case VIRTCHNL_OP_DEL_RSS_CFG: 1608 valid_len = sizeof(struct virtchnl_rss_cfg); 1609 break; 1610 case VIRTCHNL_OP_ADD_FDIR_FILTER: 1611 valid_len = sizeof(struct virtchnl_fdir_add); 1612 break; 1613 case VIRTCHNL_OP_DEL_FDIR_FILTER: 1614 valid_len = sizeof(struct virtchnl_fdir_del); 1615 break; 1616 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 1617 break; 1618 case VIRTCHNL_OP_ADD_VLAN_V2: 1619 case VIRTCHNL_OP_DEL_VLAN_V2: 1620 valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF; 1621 if (msglen >= valid_len) { 1622 struct virtchnl_vlan_filter_list_v2 *vfl = 1623 (struct virtchnl_vlan_filter_list_v2 *)msg; 1624 1625 valid_len = virtchnl_struct_size(vfl, filters, 1626 vfl->num_elements); 1627 1628 if (vfl->num_elements == 0) { 1629 err_msg_format = true; 1630 break; 1631 } 1632 } 1633 break; 1634 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 1635 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 1636 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 1637 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 1638 valid_len = sizeof(struct virtchnl_vlan_setting); 1639 break; 1640 /* These are always errors coming from the VF. */ 1641 case VIRTCHNL_OP_EVENT: 1642 case VIRTCHNL_OP_UNKNOWN: 1643 default: 1644 return VIRTCHNL_STATUS_ERR_PARAM; 1645 } 1646 /* few more checks */ 1647 if (err_msg_format || valid_len != msglen) 1648 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 1649 1650 return 0; 1651 } 1652 #endif /* _VIRTCHNL_H_ */ 1653