xref: /linux-6.15/include/linux/avf/virtchnl.h (revision 8d7253dc)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*******************************************************************************
3  *
4  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
5  * Copyright(c) 2013 - 2014 Intel Corporation.
6  *
7  * Contact Information:
8  * e1000-devel Mailing List <[email protected]>
9  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10  *
11  ******************************************************************************/
12 
13 #ifndef _VIRTCHNL_H_
14 #define _VIRTCHNL_H_
15 
16 /* Description:
17  * This header file describes the VF-PF communication protocol used
18  * by the drivers for all devices starting from our 40G product line
19  *
20  * Admin queue buffer usage:
21  * desc->opcode is always aqc_opc_send_msg_to_pf
22  * flags, retval, datalen, and data addr are all used normally.
23  * The Firmware copies the cookie fields when sending messages between the
24  * PF and VF, but uses all other fields internally. Due to this limitation,
25  * we must send all messages as "indirect", i.e. using an external buffer.
26  *
27  * All the VSI indexes are relative to the VF. Each VF can have maximum of
28  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
29  * have a maximum of sixteen queues for all of its VSIs.
30  *
31  * The PF is required to return a status code in v_retval for all messages
32  * except RESET_VF, which does not require any response. The return value
33  * is of status_code type, defined in the shared type.h.
34  *
35  * In general, VF driver initialization should roughly follow the order of
36  * these opcodes. The VF driver must first validate the API version of the
37  * PF driver, then request a reset, then get resources, then configure
38  * queues and interrupts. After these operations are complete, the VF
39  * driver may start its queues, optionally add MAC and VLAN filters, and
40  * process traffic.
41  */
42 
43 /* START GENERIC DEFINES
44  * Need to ensure the following enums and defines hold the same meaning and
45  * value in current and future projects
46  */
47 
48 /* Error Codes */
49 enum virtchnl_status_code {
50 	VIRTCHNL_STATUS_SUCCESS				= 0,
51 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
52 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
53 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
54 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
55 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
56 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
57 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
58 };
59 
60 /* Backward compatibility */
61 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
62 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
63 
64 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
65 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
66 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
67 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
68 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
69 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
70 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
71 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
72 
73 enum virtchnl_link_speed {
74 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
75 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
78 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
79 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
80 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
81 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
82 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
83 };
84 
85 /* for hsplit_0 field of Rx HMC context */
86 /* deprecated with AVF 1.0 */
87 enum virtchnl_rx_hsplit {
88 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
89 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
90 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
91 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
92 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
93 };
94 
95 /* END GENERIC DEFINES */
96 
97 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
98  * of the virtchnl_msg structure.
99  */
100 enum virtchnl_ops {
101 /* The PF sends status change events to VFs using
102  * the VIRTCHNL_OP_EVENT opcode.
103  * VFs send requests to the PF using the other ops.
104  * Use of "advanced opcode" features must be negotiated as part of capabilities
105  * exchange and are not considered part of base mode feature set.
106  */
107 	VIRTCHNL_OP_UNKNOWN = 0,
108 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
109 	VIRTCHNL_OP_RESET_VF = 2,
110 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
111 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
112 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
113 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
114 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
115 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
116 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
117 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
118 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
119 	VIRTCHNL_OP_ADD_VLAN = 12,
120 	VIRTCHNL_OP_DEL_VLAN = 13,
121 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
122 	VIRTCHNL_OP_GET_STATS = 15,
123 	VIRTCHNL_OP_RSVD = 16,
124 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
125 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
126 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
127 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
128 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
129 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
130 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
131 	VIRTCHNL_OP_SET_RSS_HENA = 26,
132 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
133 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
134 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
135 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
136 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
137 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
138 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
139 	/* opcode 34 - 43 are reserved */
140 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
141 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
142 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
143 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
144 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
145 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
146 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
147 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
148 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
149 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
150 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
151 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
152 	VIRTCHNL_OP_MAX,
153 };
154 
155 /* These macros are used to generate compilation errors if a structure/union
156  * is not exactly the correct length. It gives a divide by zero error if the
157  * structure/union is not of the correct size, otherwise it creates an enum
158  * that is never used.
159  */
160 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
161 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
162 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
163 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
164 
165 /* Virtual channel message descriptor. This overlays the admin queue
166  * descriptor. All other data is passed in external buffers.
167  */
168 
169 struct virtchnl_msg {
170 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
171 	enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
172 	enum virtchnl_status_code v_retval;  /* ditto for desc->retval */
173 	u32 vfid;			 /* used by PF when sending to VF */
174 };
175 
176 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
177 
178 /* Message descriptions and data structures. */
179 
180 /* VIRTCHNL_OP_VERSION
181  * VF posts its version number to the PF. PF responds with its version number
182  * in the same format, along with a return code.
183  * Reply from PF has its major/minor versions also in param0 and param1.
184  * If there is a major version mismatch, then the VF cannot operate.
185  * If there is a minor version mismatch, then the VF can operate but should
186  * add a warning to the system log.
187  *
188  * This enum element MUST always be specified as == 1, regardless of other
189  * changes in the API. The PF must always respond to this message without
190  * error regardless of version mismatch.
191  */
192 #define VIRTCHNL_VERSION_MAJOR		1
193 #define VIRTCHNL_VERSION_MINOR		1
194 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
195 
196 struct virtchnl_version_info {
197 	u32 major;
198 	u32 minor;
199 };
200 
201 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
202 
203 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
204 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
205 
206 /* VIRTCHNL_OP_RESET_VF
207  * VF sends this request to PF with no parameters
208  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
209  * until reset completion is indicated. The admin queue must be reinitialized
210  * after this operation.
211  *
212  * When reset is complete, PF must ensure that all queues in all VSIs associated
213  * with the VF are stopped, all queue configurations in the HMC are set to 0,
214  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
215  * are cleared.
216  */
217 
218 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
219  * vsi_type should always be 6 for backward compatibility. Add other fields
220  * as needed.
221  */
222 enum virtchnl_vsi_type {
223 	VIRTCHNL_VSI_TYPE_INVALID = 0,
224 	VIRTCHNL_VSI_SRIOV = 6,
225 };
226 
227 /* VIRTCHNL_OP_GET_VF_RESOURCES
228  * Version 1.0 VF sends this request to PF with no parameters
229  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
230  * PF responds with an indirect message containing
231  * virtchnl_vf_resource and one or more
232  * virtchnl_vsi_resource structures.
233  */
234 
235 struct virtchnl_vsi_resource {
236 	u16 vsi_id;
237 	u16 num_queue_pairs;
238 	enum virtchnl_vsi_type vsi_type;
239 	u16 qset_handle;
240 	u8 default_mac_addr[ETH_ALEN];
241 };
242 
243 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
244 
245 /* VF capability flags
246  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
247  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
248  */
249 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
250 #define VIRTCHNL_VF_OFFLOAD_IWARP		BIT(1)
251 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
252 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
253 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
254 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
255 /* used to negotiate communicating link speeds in Mbps */
256 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
257 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
258 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
259 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
260 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
261 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
262 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
263 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
264 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
265 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
266 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
267 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
268 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
269 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
270 
271 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
272 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
273 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
274 
275 struct virtchnl_vf_resource {
276 	u16 num_vsis;
277 	u16 num_queue_pairs;
278 	u16 max_vectors;
279 	u16 max_mtu;
280 
281 	u32 vf_cap_flags;
282 	u32 rss_key_size;
283 	u32 rss_lut_size;
284 
285 	struct virtchnl_vsi_resource vsi_res[1];
286 };
287 
288 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
289 
290 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
291  * VF sends this message to set up parameters for one TX queue.
292  * External data buffer contains one instance of virtchnl_txq_info.
293  * PF configures requested queue and returns a status code.
294  */
295 
296 /* Tx queue config info */
297 struct virtchnl_txq_info {
298 	u16 vsi_id;
299 	u16 queue_id;
300 	u16 ring_len;		/* number of descriptors, multiple of 8 */
301 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
302 	u64 dma_ring_addr;
303 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
304 };
305 
306 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
307 
308 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
309  * VF sends this message to set up parameters for one RX queue.
310  * External data buffer contains one instance of virtchnl_rxq_info.
311  * PF configures requested queue and returns a status code.
312  */
313 
314 /* Rx queue config info */
315 struct virtchnl_rxq_info {
316 	u16 vsi_id;
317 	u16 queue_id;
318 	u32 ring_len;		/* number of descriptors, multiple of 32 */
319 	u16 hdr_size;
320 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
321 	u32 databuffer_size;
322 	u32 max_pkt_size;
323 	u8 pad0;
324 	u8 rxdid;
325 	u8 pad1[2];
326 	u64 dma_ring_addr;
327 	enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
328 	u32 pad2;
329 };
330 
331 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
332 
333 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
334  * VF sends this message to set parameters for all active TX and RX queues
335  * associated with the specified VSI.
336  * PF configures queues and returns status.
337  * If the number of queues specified is greater than the number of queues
338  * associated with the VSI, an error is returned and no queues are configured.
339  */
340 struct virtchnl_queue_pair_info {
341 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
342 	struct virtchnl_txq_info txq;
343 	struct virtchnl_rxq_info rxq;
344 };
345 
346 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
347 
348 struct virtchnl_vsi_queue_config_info {
349 	u16 vsi_id;
350 	u16 num_queue_pairs;
351 	u32 pad;
352 	struct virtchnl_queue_pair_info qpair[1];
353 };
354 
355 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
356 
357 /* VIRTCHNL_OP_REQUEST_QUEUES
358  * VF sends this message to request the PF to allocate additional queues to
359  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
360  * additional queues must be negotiated.  This is a best effort request as it
361  * is possible the PF does not have enough queues left to support the request.
362  * If the PF cannot support the number requested it will respond with the
363  * maximum number it is able to support.  If the request is successful, PF will
364  * then reset the VF to institute required changes.
365  */
366 
367 /* VF resource request */
368 struct virtchnl_vf_res_request {
369 	u16 num_queue_pairs;
370 };
371 
372 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
373  * VF uses this message to map vectors to queues.
374  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
375  * are to be associated with the specified vector.
376  * The "other" causes are always mapped to vector 0.
377  * PF configures interrupt mapping and returns status.
378  */
379 struct virtchnl_vector_map {
380 	u16 vsi_id;
381 	u16 vector_id;
382 	u16 rxq_map;
383 	u16 txq_map;
384 	u16 rxitr_idx;
385 	u16 txitr_idx;
386 };
387 
388 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
389 
390 struct virtchnl_irq_map_info {
391 	u16 num_vectors;
392 	struct virtchnl_vector_map vecmap[1];
393 };
394 
395 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
396 
397 /* VIRTCHNL_OP_ENABLE_QUEUES
398  * VIRTCHNL_OP_DISABLE_QUEUES
399  * VF sends these message to enable or disable TX/RX queue pairs.
400  * The queues fields are bitmaps indicating which queues to act upon.
401  * (Currently, we only support 16 queues per VF, but we make the field
402  * u32 to allow for expansion.)
403  * PF performs requested action and returns status.
404  */
405 struct virtchnl_queue_select {
406 	u16 vsi_id;
407 	u16 pad;
408 	u32 rx_queues;
409 	u32 tx_queues;
410 };
411 
412 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
413 
414 /* VIRTCHNL_OP_ADD_ETH_ADDR
415  * VF sends this message in order to add one or more unicast or multicast
416  * address filters for the specified VSI.
417  * PF adds the filters and returns status.
418  */
419 
420 /* VIRTCHNL_OP_DEL_ETH_ADDR
421  * VF sends this message in order to remove one or more unicast or multicast
422  * filters for the specified VSI.
423  * PF removes the filters and returns status.
424  */
425 
426 /* VIRTCHNL_ETHER_ADDR_LEGACY
427  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
428  * bytes. Moving forward all VF drivers should not set type to
429  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
430  * behavior. The control plane function (i.e. PF) can use a best effort method
431  * of tracking the primary/device unicast in this case, but there is no
432  * guarantee and functionality depends on the implementation of the PF.
433  */
434 
435 /* VIRTCHNL_ETHER_ADDR_PRIMARY
436  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
437  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
438  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
439  * function (i.e. PF) to accurately track and use this MAC address for
440  * displaying on the host and for VM/function reset.
441  */
442 
443 /* VIRTCHNL_ETHER_ADDR_EXTRA
444  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
445  * unicast and/or multicast filters that are being added/deleted via
446  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
447  */
448 struct virtchnl_ether_addr {
449 	u8 addr[ETH_ALEN];
450 	u8 type;
451 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
452 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
453 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
454 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
455 	u8 pad;
456 };
457 
458 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
459 
460 struct virtchnl_ether_addr_list {
461 	u16 vsi_id;
462 	u16 num_elements;
463 	struct virtchnl_ether_addr list[1];
464 };
465 
466 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
467 
468 /* VIRTCHNL_OP_ADD_VLAN
469  * VF sends this message to add one or more VLAN tag filters for receives.
470  * PF adds the filters and returns status.
471  * If a port VLAN is configured by the PF, this operation will return an
472  * error to the VF.
473  */
474 
475 /* VIRTCHNL_OP_DEL_VLAN
476  * VF sends this message to remove one or more VLAN tag filters for receives.
477  * PF removes the filters and returns status.
478  * If a port VLAN is configured by the PF, this operation will return an
479  * error to the VF.
480  */
481 
482 struct virtchnl_vlan_filter_list {
483 	u16 vsi_id;
484 	u16 num_elements;
485 	u16 vlan_id[1];
486 };
487 
488 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
489 
490 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
491  * structures and opcodes.
492  *
493  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
494  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
495  *
496  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
497  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
498  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
499  *
500  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
501  * by the PF concurrently. For example, if the PF can support
502  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
503  * would OR the following bits:
504  *
505  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
506  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
507  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
508  *
509  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
510  * and 0x88A8 VLAN ethertypes.
511  *
512  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
513  * by the PF concurrently. For example if the PF can support
514  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
515  * offload it would OR the following bits:
516  *
517  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
518  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
519  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
520  *
521  * The VF would interpret this as VLAN stripping can be supported on either
522  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
523  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
524  * the previously set value.
525  *
526  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
527  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
528  *
529  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
530  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
531  *
532  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
533  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
534  *
535  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
536  * VLAN filtering if the underlying PF supports it.
537  *
538  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
539  * certain VLAN capability can be toggled. For example if the underlying PF/CP
540  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
541  * set this bit along with the supported ethertypes.
542  */
543 enum virtchnl_vlan_support {
544 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
545 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		BIT(0),
546 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		BIT(1),
547 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		BIT(2),
548 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	BIT(8),
549 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	BIT(9),
550 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	BIT(10),
551 	VIRTCHNL_VLAN_PRIO =			BIT(24),
552 	VIRTCHNL_VLAN_FILTER_MASK =		BIT(28),
553 	VIRTCHNL_VLAN_ETHERTYPE_AND =		BIT(29),
554 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		BIT(30),
555 	VIRTCHNL_VLAN_TOGGLE =			BIT(31),
556 };
557 
558 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
559  * for filtering, insertion, and stripping capabilities.
560  *
561  * If only outer capabilities are supported (for filtering, insertion, and/or
562  * stripping) then this refers to the outer most or single VLAN from the VF's
563  * perspective.
564  *
565  * If only inner capabilities are supported (for filtering, insertion, and/or
566  * stripping) then this refers to the outer most or single VLAN from the VF's
567  * perspective. Functionally this is the same as if only outer capabilities are
568  * supported. The VF driver is just forced to use the inner fields when
569  * adding/deleting filters and enabling/disabling offloads (if supported).
570  *
571  * If both outer and inner capabilities are supported (for filtering, insertion,
572  * and/or stripping) then outer refers to the outer most or single VLAN and
573  * inner refers to the second VLAN, if it exists, in the packet.
574  *
575  * There is no support for tunneled VLAN offloads, so outer or inner are never
576  * referring to a tunneled packet from the VF's perspective.
577  */
578 struct virtchnl_vlan_supported_caps {
579 	u32 outer;
580 	u32 inner;
581 };
582 
583 /* The PF populates these fields based on the supported VLAN filtering. If a
584  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
585  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
586  * the unsupported fields.
587  *
588  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
589  * VIRTCHNL_VLAN_TOGGLE bit is set.
590  *
591  * The ethertype(s) specified in the ethertype_init field are the ethertypes
592  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
593  * most VLAN from the VF's perspective. If both inner and outer filtering are
594  * allowed then ethertype_init only refers to the outer most VLAN as only
595  * VLAN ethertype supported for inner VLAN filtering is
596  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
597  * when both inner and outer filtering are allowed.
598  *
599  * The max_filters field tells the VF how many VLAN filters it's allowed to have
600  * at any one time. If it exceeds this amount and tries to add another filter,
601  * then the request will be rejected by the PF. To prevent failures, the VF
602  * should keep track of how many VLAN filters it has added and not attempt to
603  * add more than max_filters.
604  */
605 struct virtchnl_vlan_filtering_caps {
606 	struct virtchnl_vlan_supported_caps filtering_support;
607 	u32 ethertype_init;
608 	u16 max_filters;
609 	u8 pad[2];
610 };
611 
612 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
613 
614 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
615  * if the PF supports a different ethertype for stripping and insertion.
616  *
617  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
618  * for stripping affect the ethertype(s) specified for insertion and visa versa
619  * as well. If the VF tries to configure VLAN stripping via
620  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
621  * that will be the ethertype for both stripping and insertion.
622  *
623  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
624  * stripping do not affect the ethertype(s) specified for insertion and visa
625  * versa.
626  */
627 enum virtchnl_vlan_ethertype_match {
628 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
629 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
630 };
631 
632 /* The PF populates these fields based on the supported VLAN offloads. If a
633  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
634  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
635  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
636  *
637  * Also, a VF is only allowed to toggle its VLAN offload setting if the
638  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
639  *
640  * The VF driver needs to be aware of how the tags are stripped by hardware and
641  * inserted by the VF driver based on the level of offload support. The PF will
642  * populate these fields based on where the VLAN tags are expected to be
643  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
644  * interpret these fields. See the definition of the
645  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
646  * enumeration.
647  */
648 struct virtchnl_vlan_offload_caps {
649 	struct virtchnl_vlan_supported_caps stripping_support;
650 	struct virtchnl_vlan_supported_caps insertion_support;
651 	u32 ethertype_init;
652 	u8 ethertype_match;
653 	u8 pad[3];
654 };
655 
656 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
657 
658 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
659  * VF sends this message to determine its VLAN capabilities.
660  *
661  * PF will mark which capabilities it supports based on hardware support and
662  * current configuration. For example, if a port VLAN is configured the PF will
663  * not allow outer VLAN filtering, stripping, or insertion to be configured so
664  * it will block these features from the VF.
665  *
666  * The VF will need to cross reference its capabilities with the PFs
667  * capabilities in the response message from the PF to determine the VLAN
668  * support.
669  */
670 struct virtchnl_vlan_caps {
671 	struct virtchnl_vlan_filtering_caps filtering;
672 	struct virtchnl_vlan_offload_caps offloads;
673 };
674 
675 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
676 
677 struct virtchnl_vlan {
678 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
679 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
680 			 * filtering caps
681 			 */
682 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
683 			 * filtering caps. Note that tpid here does not refer to
684 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
685 			 * actual 2-byte VLAN TPID
686 			 */
687 	u8 pad[2];
688 };
689 
690 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
691 
692 struct virtchnl_vlan_filter {
693 	struct virtchnl_vlan inner;
694 	struct virtchnl_vlan outer;
695 	u8 pad[16];
696 };
697 
698 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
699 
700 /* VIRTCHNL_OP_ADD_VLAN_V2
701  * VIRTCHNL_OP_DEL_VLAN_V2
702  *
703  * VF sends these messages to add/del one or more VLAN tag filters for Rx
704  * traffic.
705  *
706  * The PF attempts to add the filters and returns status.
707  *
708  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
709  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
710  */
711 struct virtchnl_vlan_filter_list_v2 {
712 	u16 vport_id;
713 	u16 num_elements;
714 	u8 pad[4];
715 	struct virtchnl_vlan_filter filters[1];
716 };
717 
718 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
719 
720 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
721  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
722  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
723  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
724  *
725  * VF sends this message to enable or disable VLAN stripping or insertion. It
726  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
727  * allowed and whether or not it's allowed to enable/disable the specific
728  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
729  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
730  * messages are allowed.
731  *
732  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
733  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
734  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
735  * case means the outer most or single VLAN from the VF's perspective. This is
736  * because no outer offloads are supported. See the comments above the
737  * virtchnl_vlan_supported_caps structure for more details.
738  *
739  * virtchnl_vlan_caps.offloads.stripping_support.inner =
740  *			VIRTCHNL_VLAN_TOGGLE |
741  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
742  *
743  * virtchnl_vlan_caps.offloads.insertion_support.inner =
744  *			VIRTCHNL_VLAN_TOGGLE |
745  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
746  *
747  * In order to enable inner (again note that in this case inner is the outer
748  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
749  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
750  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
751  *
752  * virtchnl_vlan_setting.inner_ethertype_setting =
753  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
754  *
755  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
756  * initialization.
757  *
758  * The reason that VLAN TPID(s) are not being used for the
759  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
760  * possible a device could support VLAN insertion and/or stripping offload on
761  * multiple ethertypes concurrently, so this method allows a VF to request
762  * multiple ethertypes in one message using the virtchnl_vlan_support
763  * enumeration.
764  *
765  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
766  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
767  * VLAN insertion and stripping simultaneously. The
768  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
769  * populated based on what the PF can support.
770  *
771  * virtchnl_vlan_caps.offloads.stripping_support.outer =
772  *			VIRTCHNL_VLAN_TOGGLE |
773  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
774  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
775  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
776  *
777  * virtchnl_vlan_caps.offloads.insertion_support.outer =
778  *			VIRTCHNL_VLAN_TOGGLE |
779  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
780  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
781  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
782  *
783  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
784  * would populate the virthcnl_vlan_offload_structure in the following manner
785  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
786  *
787  * virtchnl_vlan_setting.outer_ethertype_setting =
788  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
789  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
790  *
791  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
792  * initialization.
793  *
794  * There is also the case where a PF and the underlying hardware can support
795  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
796  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
797  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
798  * offloads. The ethertypes must match for stripping and insertion.
799  *
800  * virtchnl_vlan_caps.offloads.stripping_support.outer =
801  *			VIRTCHNL_VLAN_TOGGLE |
802  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
803  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
804  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
805  *
806  * virtchnl_vlan_caps.offloads.insertion_support.outer =
807  *			VIRTCHNL_VLAN_TOGGLE |
808  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
809  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
810  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
811  *
812  * virtchnl_vlan_caps.offloads.ethertype_match =
813  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
814  *
815  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
816  * populate the virtchnl_vlan_setting structure in the following manner and send
817  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
818  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
819  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
820  *
821  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
822  *
823  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
824  * initialization.
825  */
826 struct virtchnl_vlan_setting {
827 	u32 outer_ethertype_setting;
828 	u32 inner_ethertype_setting;
829 	u16 vport_id;
830 	u8 pad[6];
831 };
832 
833 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
834 
835 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
836  * VF sends VSI id and flags.
837  * PF returns status code in retval.
838  * Note: we assume that broadcast accept mode is always enabled.
839  */
840 struct virtchnl_promisc_info {
841 	u16 vsi_id;
842 	u16 flags;
843 };
844 
845 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
846 
847 #define FLAG_VF_UNICAST_PROMISC	0x00000001
848 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
849 
850 /* VIRTCHNL_OP_GET_STATS
851  * VF sends this message to request stats for the selected VSI. VF uses
852  * the virtchnl_queue_select struct to specify the VSI. The queue_id
853  * field is ignored by the PF.
854  *
855  * PF replies with struct eth_stats in an external buffer.
856  */
857 
858 /* VIRTCHNL_OP_CONFIG_RSS_KEY
859  * VIRTCHNL_OP_CONFIG_RSS_LUT
860  * VF sends these messages to configure RSS. Only supported if both PF
861  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
862  * configuration negotiation. If this is the case, then the RSS fields in
863  * the VF resource struct are valid.
864  * Both the key and LUT are initialized to 0 by the PF, meaning that
865  * RSS is effectively disabled until set up by the VF.
866  */
867 struct virtchnl_rss_key {
868 	u16 vsi_id;
869 	u16 key_len;
870 	u8 key[1];         /* RSS hash key, packed bytes */
871 };
872 
873 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
874 
875 struct virtchnl_rss_lut {
876 	u16 vsi_id;
877 	u16 lut_entries;
878 	u8 lut[1];        /* RSS lookup table */
879 };
880 
881 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
882 
883 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
884  * VIRTCHNL_OP_SET_RSS_HENA
885  * VF sends these messages to get and set the hash filter enable bits for RSS.
886  * By default, the PF sets these to all possible traffic types that the
887  * hardware supports. The VF can query this value if it wants to change the
888  * traffic types that are hashed by the hardware.
889  */
890 struct virtchnl_rss_hena {
891 	u64 hena;
892 };
893 
894 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
895 
896 /* VIRTCHNL_OP_ENABLE_CHANNELS
897  * VIRTCHNL_OP_DISABLE_CHANNELS
898  * VF sends these messages to enable or disable channels based on
899  * the user specified queue count and queue offset for each traffic class.
900  * This struct encompasses all the information that the PF needs from
901  * VF to create a channel.
902  */
903 struct virtchnl_channel_info {
904 	u16 count; /* number of queues in a channel */
905 	u16 offset; /* queues in a channel start from 'offset' */
906 	u32 pad;
907 	u64 max_tx_rate;
908 };
909 
910 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
911 
912 struct virtchnl_tc_info {
913 	u32	num_tc;
914 	u32	pad;
915 	struct	virtchnl_channel_info list[1];
916 };
917 
918 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
919 
920 /* VIRTCHNL_ADD_CLOUD_FILTER
921  * VIRTCHNL_DEL_CLOUD_FILTER
922  * VF sends these messages to add or delete a cloud filter based on the
923  * user specified match and action filters. These structures encompass
924  * all the information that the PF needs from the VF to add/delete a
925  * cloud filter.
926  */
927 
928 struct virtchnl_l4_spec {
929 	u8	src_mac[ETH_ALEN];
930 	u8	dst_mac[ETH_ALEN];
931 	__be16	vlan_id;
932 	__be16	pad; /* reserved for future use */
933 	__be32	src_ip[4];
934 	__be32	dst_ip[4];
935 	__be16	src_port;
936 	__be16	dst_port;
937 };
938 
939 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
940 
941 union virtchnl_flow_spec {
942 	struct	virtchnl_l4_spec tcp_spec;
943 	u8	buffer[128]; /* reserved for future use */
944 };
945 
946 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
947 
948 enum virtchnl_action {
949 	/* action types */
950 	VIRTCHNL_ACTION_DROP = 0,
951 	VIRTCHNL_ACTION_TC_REDIRECT,
952 	VIRTCHNL_ACTION_PASSTHRU,
953 	VIRTCHNL_ACTION_QUEUE,
954 	VIRTCHNL_ACTION_Q_REGION,
955 	VIRTCHNL_ACTION_MARK,
956 	VIRTCHNL_ACTION_COUNT,
957 };
958 
959 enum virtchnl_flow_type {
960 	/* flow types */
961 	VIRTCHNL_TCP_V4_FLOW = 0,
962 	VIRTCHNL_TCP_V6_FLOW,
963 };
964 
965 struct virtchnl_filter {
966 	union	virtchnl_flow_spec data;
967 	union	virtchnl_flow_spec mask;
968 	enum	virtchnl_flow_type flow_type;
969 	enum	virtchnl_action action;
970 	u32	action_meta;
971 	u8	field_flags;
972 	u8	pad[3];
973 };
974 
975 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
976 
977 struct virtchnl_supported_rxdids {
978 	u64 supported_rxdids;
979 };
980 
981 /* VIRTCHNL_OP_EVENT
982  * PF sends this message to inform the VF driver of events that may affect it.
983  * No direct response is expected from the VF, though it may generate other
984  * messages in response to this one.
985  */
986 enum virtchnl_event_codes {
987 	VIRTCHNL_EVENT_UNKNOWN = 0,
988 	VIRTCHNL_EVENT_LINK_CHANGE,
989 	VIRTCHNL_EVENT_RESET_IMPENDING,
990 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
991 };
992 
993 #define PF_EVENT_SEVERITY_INFO		0
994 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
995 
996 struct virtchnl_pf_event {
997 	enum virtchnl_event_codes event;
998 	union {
999 		/* If the PF driver does not support the new speed reporting
1000 		 * capabilities then use link_event else use link_event_adv to
1001 		 * get the speed and link information. The ability to understand
1002 		 * new speeds is indicated by setting the capability flag
1003 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1004 		 * in virtchnl_vf_resource struct and can be used to determine
1005 		 * which link event struct to use below.
1006 		 */
1007 		struct {
1008 			enum virtchnl_link_speed link_speed;
1009 			bool link_status;
1010 		} link_event;
1011 		struct {
1012 			/* link_speed provided in Mbps */
1013 			u32 link_speed;
1014 			u8 link_status;
1015 			u8 pad[3];
1016 		} link_event_adv;
1017 	} event_data;
1018 
1019 	int severity;
1020 };
1021 
1022 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1023 
1024 /* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP
1025  * VF uses this message to request PF to map IWARP vectors to IWARP queues.
1026  * The request for this originates from the VF IWARP driver through
1027  * a client interface between VF LAN and VF IWARP driver.
1028  * A vector could have an AEQ and CEQ attached to it although
1029  * there is a single AEQ per VF IWARP instance in which case
1030  * most vectors will have an INVALID_IDX for aeq and valid idx for ceq.
1031  * There will never be a case where there will be multiple CEQs attached
1032  * to a single vector.
1033  * PF configures interrupt mapping and returns status.
1034  */
1035 
1036 struct virtchnl_iwarp_qv_info {
1037 	u32 v_idx; /* msix_vector */
1038 	u16 ceq_idx;
1039 	u16 aeq_idx;
1040 	u8 itr_idx;
1041 	u8 pad[3];
1042 };
1043 
1044 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info);
1045 
1046 struct virtchnl_iwarp_qvlist_info {
1047 	u32 num_vectors;
1048 	struct virtchnl_iwarp_qv_info qv_info[1];
1049 };
1050 
1051 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info);
1052 
1053 /* VF reset states - these are written into the RSTAT register:
1054  * VFGEN_RSTAT on the VF
1055  * When the PF initiates a reset, it writes 0
1056  * When the reset is complete, it writes 1
1057  * When the PF detects that the VF has recovered, it writes 2
1058  * VF checks this register periodically to determine if a reset has occurred,
1059  * then polls it to know when the reset is complete.
1060  * If either the PF or VF reads the register while the hardware
1061  * is in a reset state, it will return DEADBEEF, which, when masked
1062  * will result in 3.
1063  */
1064 enum virtchnl_vfr_states {
1065 	VIRTCHNL_VFR_INPROGRESS = 0,
1066 	VIRTCHNL_VFR_COMPLETED,
1067 	VIRTCHNL_VFR_VFACTIVE,
1068 };
1069 
1070 /* Type of RSS algorithm */
1071 enum virtchnl_rss_algorithm {
1072 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1073 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
1074 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1075 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1076 };
1077 
1078 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1079 #define PROTO_HDR_SHIFT			5
1080 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
1081 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1082 
1083 /* VF use these macros to configure each protocol header.
1084  * Specify which protocol headers and protocol header fields base on
1085  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1086  * @param hdr: a struct of virtchnl_proto_hdr
1087  * @param hdr_type: ETH/IPV4/TCP, etc
1088  * @param field: SRC/DST/TEID/SPI, etc
1089  */
1090 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1091 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1092 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1093 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1094 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1095 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1096 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1097 
1098 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1099 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1100 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1101 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1102 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1103 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1104 
1105 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1106 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1107 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1108 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1109 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1110 	((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
1111 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1112 	(VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
1113 	 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
1114 
1115 /* Protocol header type within a packet segment. A segment consists of one or
1116  * more protocol headers that make up a logical group of protocol headers. Each
1117  * logical group of protocol headers encapsulates or is encapsulated using/by
1118  * tunneling or encapsulation protocols for network virtualization.
1119  */
1120 enum virtchnl_proto_hdr_type {
1121 	VIRTCHNL_PROTO_HDR_NONE,
1122 	VIRTCHNL_PROTO_HDR_ETH,
1123 	VIRTCHNL_PROTO_HDR_S_VLAN,
1124 	VIRTCHNL_PROTO_HDR_C_VLAN,
1125 	VIRTCHNL_PROTO_HDR_IPV4,
1126 	VIRTCHNL_PROTO_HDR_IPV6,
1127 	VIRTCHNL_PROTO_HDR_TCP,
1128 	VIRTCHNL_PROTO_HDR_UDP,
1129 	VIRTCHNL_PROTO_HDR_SCTP,
1130 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1131 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1132 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1133 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1134 	VIRTCHNL_PROTO_HDR_PPPOE,
1135 	VIRTCHNL_PROTO_HDR_L2TPV3,
1136 	VIRTCHNL_PROTO_HDR_ESP,
1137 	VIRTCHNL_PROTO_HDR_AH,
1138 	VIRTCHNL_PROTO_HDR_PFCP,
1139 };
1140 
1141 /* Protocol header field within a protocol header. */
1142 enum virtchnl_proto_hdr_field {
1143 	/* ETHER */
1144 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1145 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1146 	VIRTCHNL_PROTO_HDR_ETH_DST,
1147 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1148 	/* S-VLAN */
1149 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1150 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1151 	/* C-VLAN */
1152 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1153 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1154 	/* IPV4 */
1155 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1156 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1157 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1158 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1159 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1160 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1161 	/* IPV6 */
1162 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1163 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1164 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1165 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1166 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1167 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1168 	/* TCP */
1169 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1170 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1171 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1172 	/* UDP */
1173 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1174 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1175 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1176 	/* SCTP */
1177 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1178 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1179 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1180 	/* GTPU_IP */
1181 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1182 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1183 	/* GTPU_EH */
1184 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1185 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1186 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1187 	/* PPPOE */
1188 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1189 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1190 	/* L2TPV3 */
1191 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1192 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1193 	/* ESP */
1194 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1195 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1196 	/* AH */
1197 	VIRTCHNL_PROTO_HDR_AH_SPI =
1198 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1199 	/* PFCP */
1200 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1201 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1202 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1203 };
1204 
1205 struct virtchnl_proto_hdr {
1206 	enum virtchnl_proto_hdr_type type;
1207 	u32 field_selector; /* a bit mask to select field for header type */
1208 	u8 buffer[64];
1209 	/**
1210 	 * binary buffer in network order for specific header type.
1211 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1212 	 * header is expected to be copied into the buffer.
1213 	 */
1214 };
1215 
1216 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1217 
1218 struct virtchnl_proto_hdrs {
1219 	u8 tunnel_level;
1220 	u8 pad[3];
1221 	/**
1222 	 * specify where protocol header start from.
1223 	 * 0 - from the outer layer
1224 	 * 1 - from the first inner layer
1225 	 * 2 - from the second inner layer
1226 	 * ....
1227 	 **/
1228 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1229 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1230 };
1231 
1232 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1233 
1234 struct virtchnl_rss_cfg {
1235 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1236 	enum virtchnl_rss_algorithm rss_algorithm; /* RSS algorithm type */
1237 	u8 reserved[128];			   /* reserve for future */
1238 };
1239 
1240 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1241 
1242 /* action configuration for FDIR */
1243 struct virtchnl_filter_action {
1244 	enum virtchnl_action type;
1245 	union {
1246 		/* used for queue and qgroup action */
1247 		struct {
1248 			u16 index;
1249 			u8 region;
1250 		} queue;
1251 		/* used for count action */
1252 		struct {
1253 			/* share counter ID with other flow rules */
1254 			u8 shared;
1255 			u32 id; /* counter ID */
1256 		} count;
1257 		/* used for mark action */
1258 		u32 mark_id;
1259 		u8 reserve[32];
1260 	} act_conf;
1261 };
1262 
1263 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1264 
1265 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1266 
1267 struct virtchnl_filter_action_set {
1268 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1269 	int count;
1270 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1271 };
1272 
1273 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1274 
1275 /* pattern and action for FDIR rule */
1276 struct virtchnl_fdir_rule {
1277 	struct virtchnl_proto_hdrs proto_hdrs;
1278 	struct virtchnl_filter_action_set action_set;
1279 };
1280 
1281 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1282 
1283 /* Status returned to VF after VF requests FDIR commands
1284  * VIRTCHNL_FDIR_SUCCESS
1285  * VF FDIR related request is successfully done by PF
1286  * The request can be OP_ADD/DEL.
1287  *
1288  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1289  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1290  *
1291  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1292  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1293  *
1294  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1295  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1296  *
1297  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1298  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1299  *
1300  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1301  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1302  * or HW doesn't support.
1303  *
1304  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1305  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1306  * for programming.
1307  */
1308 enum virtchnl_fdir_prgm_status {
1309 	VIRTCHNL_FDIR_SUCCESS = 0,
1310 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1311 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1312 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1313 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1314 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1315 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1316 };
1317 
1318 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1319  * VF sends this request to PF by filling out vsi_id,
1320  * validate_only and rule_cfg. PF will return flow_id
1321  * if the request is successfully done and return add_status to VF.
1322  */
1323 struct virtchnl_fdir_add {
1324 	u16 vsi_id;  /* INPUT */
1325 	/*
1326 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1327 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1328 	 */
1329 	u16 validate_only; /* INPUT */
1330 	u32 flow_id;       /* OUTPUT */
1331 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1332 	enum virtchnl_fdir_prgm_status status; /* OUTPUT */
1333 };
1334 
1335 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1336 
1337 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1338  * VF sends this request to PF by filling out vsi_id
1339  * and flow_id. PF will return del_status to VF.
1340  */
1341 struct virtchnl_fdir_del {
1342 	u16 vsi_id;  /* INPUT */
1343 	u16 pad;
1344 	u32 flow_id; /* INPUT */
1345 	enum virtchnl_fdir_prgm_status status; /* OUTPUT */
1346 };
1347 
1348 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1349 
1350 /**
1351  * virtchnl_vc_validate_vf_msg
1352  * @ver: Virtchnl version info
1353  * @v_opcode: Opcode for the message
1354  * @msg: pointer to the msg buffer
1355  * @msglen: msg length
1356  *
1357  * validate msg format against struct for each opcode
1358  */
1359 static inline int
1360 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1361 			    u8 *msg, u16 msglen)
1362 {
1363 	bool err_msg_format = false;
1364 	int valid_len = 0;
1365 
1366 	/* Validate message length. */
1367 	switch (v_opcode) {
1368 	case VIRTCHNL_OP_VERSION:
1369 		valid_len = sizeof(struct virtchnl_version_info);
1370 		break;
1371 	case VIRTCHNL_OP_RESET_VF:
1372 		break;
1373 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1374 		if (VF_IS_V11(ver))
1375 			valid_len = sizeof(u32);
1376 		break;
1377 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1378 		valid_len = sizeof(struct virtchnl_txq_info);
1379 		break;
1380 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1381 		valid_len = sizeof(struct virtchnl_rxq_info);
1382 		break;
1383 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1384 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
1385 		if (msglen >= valid_len) {
1386 			struct virtchnl_vsi_queue_config_info *vqc =
1387 			    (struct virtchnl_vsi_queue_config_info *)msg;
1388 			valid_len += (vqc->num_queue_pairs *
1389 				      sizeof(struct
1390 					     virtchnl_queue_pair_info));
1391 			if (vqc->num_queue_pairs == 0)
1392 				err_msg_format = true;
1393 		}
1394 		break;
1395 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1396 		valid_len = sizeof(struct virtchnl_irq_map_info);
1397 		if (msglen >= valid_len) {
1398 			struct virtchnl_irq_map_info *vimi =
1399 			    (struct virtchnl_irq_map_info *)msg;
1400 			valid_len += (vimi->num_vectors *
1401 				      sizeof(struct virtchnl_vector_map));
1402 			if (vimi->num_vectors == 0)
1403 				err_msg_format = true;
1404 		}
1405 		break;
1406 	case VIRTCHNL_OP_ENABLE_QUEUES:
1407 	case VIRTCHNL_OP_DISABLE_QUEUES:
1408 		valid_len = sizeof(struct virtchnl_queue_select);
1409 		break;
1410 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1411 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1412 		valid_len = sizeof(struct virtchnl_ether_addr_list);
1413 		if (msglen >= valid_len) {
1414 			struct virtchnl_ether_addr_list *veal =
1415 			    (struct virtchnl_ether_addr_list *)msg;
1416 			valid_len += veal->num_elements *
1417 			    sizeof(struct virtchnl_ether_addr);
1418 			if (veal->num_elements == 0)
1419 				err_msg_format = true;
1420 		}
1421 		break;
1422 	case VIRTCHNL_OP_ADD_VLAN:
1423 	case VIRTCHNL_OP_DEL_VLAN:
1424 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
1425 		if (msglen >= valid_len) {
1426 			struct virtchnl_vlan_filter_list *vfl =
1427 			    (struct virtchnl_vlan_filter_list *)msg;
1428 			valid_len += vfl->num_elements * sizeof(u16);
1429 			if (vfl->num_elements == 0)
1430 				err_msg_format = true;
1431 		}
1432 		break;
1433 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1434 		valid_len = sizeof(struct virtchnl_promisc_info);
1435 		break;
1436 	case VIRTCHNL_OP_GET_STATS:
1437 		valid_len = sizeof(struct virtchnl_queue_select);
1438 		break;
1439 	case VIRTCHNL_OP_IWARP:
1440 		/* These messages are opaque to us and will be validated in
1441 		 * the RDMA client code. We just need to check for nonzero
1442 		 * length. The firmware will enforce max length restrictions.
1443 		 */
1444 		if (msglen)
1445 			valid_len = msglen;
1446 		else
1447 			err_msg_format = true;
1448 		break;
1449 	case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP:
1450 		break;
1451 	case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP:
1452 		valid_len = sizeof(struct virtchnl_iwarp_qvlist_info);
1453 		if (msglen >= valid_len) {
1454 			struct virtchnl_iwarp_qvlist_info *qv =
1455 				(struct virtchnl_iwarp_qvlist_info *)msg;
1456 			if (qv->num_vectors == 0) {
1457 				err_msg_format = true;
1458 				break;
1459 			}
1460 			valid_len += ((qv->num_vectors - 1) *
1461 				sizeof(struct virtchnl_iwarp_qv_info));
1462 		}
1463 		break;
1464 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1465 		valid_len = sizeof(struct virtchnl_rss_key);
1466 		if (msglen >= valid_len) {
1467 			struct virtchnl_rss_key *vrk =
1468 				(struct virtchnl_rss_key *)msg;
1469 			valid_len += vrk->key_len - 1;
1470 		}
1471 		break;
1472 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1473 		valid_len = sizeof(struct virtchnl_rss_lut);
1474 		if (msglen >= valid_len) {
1475 			struct virtchnl_rss_lut *vrl =
1476 				(struct virtchnl_rss_lut *)msg;
1477 			valid_len += vrl->lut_entries - 1;
1478 		}
1479 		break;
1480 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1481 		break;
1482 	case VIRTCHNL_OP_SET_RSS_HENA:
1483 		valid_len = sizeof(struct virtchnl_rss_hena);
1484 		break;
1485 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1486 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1487 		break;
1488 	case VIRTCHNL_OP_REQUEST_QUEUES:
1489 		valid_len = sizeof(struct virtchnl_vf_res_request);
1490 		break;
1491 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1492 		valid_len = sizeof(struct virtchnl_tc_info);
1493 		if (msglen >= valid_len) {
1494 			struct virtchnl_tc_info *vti =
1495 				(struct virtchnl_tc_info *)msg;
1496 			valid_len += (vti->num_tc - 1) *
1497 				     sizeof(struct virtchnl_channel_info);
1498 			if (vti->num_tc == 0)
1499 				err_msg_format = true;
1500 		}
1501 		break;
1502 	case VIRTCHNL_OP_DISABLE_CHANNELS:
1503 		break;
1504 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1505 		valid_len = sizeof(struct virtchnl_filter);
1506 		break;
1507 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1508 		valid_len = sizeof(struct virtchnl_filter);
1509 		break;
1510 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
1511 		break;
1512 	case VIRTCHNL_OP_ADD_RSS_CFG:
1513 	case VIRTCHNL_OP_DEL_RSS_CFG:
1514 		valid_len = sizeof(struct virtchnl_rss_cfg);
1515 		break;
1516 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
1517 		valid_len = sizeof(struct virtchnl_fdir_add);
1518 		break;
1519 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
1520 		valid_len = sizeof(struct virtchnl_fdir_del);
1521 		break;
1522 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
1523 		break;
1524 	case VIRTCHNL_OP_ADD_VLAN_V2:
1525 	case VIRTCHNL_OP_DEL_VLAN_V2:
1526 		valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
1527 		if (msglen >= valid_len) {
1528 			struct virtchnl_vlan_filter_list_v2 *vfl =
1529 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
1530 
1531 			valid_len += (vfl->num_elements - 1) *
1532 				sizeof(struct virtchnl_vlan_filter);
1533 
1534 			if (vfl->num_elements == 0) {
1535 				err_msg_format = true;
1536 				break;
1537 			}
1538 		}
1539 		break;
1540 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
1541 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
1542 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
1543 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
1544 		valid_len = sizeof(struct virtchnl_vlan_setting);
1545 		break;
1546 	/* These are always errors coming from the VF. */
1547 	case VIRTCHNL_OP_EVENT:
1548 	case VIRTCHNL_OP_UNKNOWN:
1549 	default:
1550 		return VIRTCHNL_STATUS_ERR_PARAM;
1551 	}
1552 	/* few more checks */
1553 	if (err_msg_format || valid_len != msglen)
1554 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1555 
1556 	return 0;
1557 }
1558 #endif /* _VIRTCHNL_H_ */
1559