1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2013-2022, Intel Corporation. */ 3 4 #ifndef _VIRTCHNL_H_ 5 #define _VIRTCHNL_H_ 6 7 /* Description: 8 * This header file describes the Virtual Function (VF) - Physical Function 9 * (PF) communication protocol used by the drivers for all devices starting 10 * from our 40G product line 11 * 12 * Admin queue buffer usage: 13 * desc->opcode is always aqc_opc_send_msg_to_pf 14 * flags, retval, datalen, and data addr are all used normally. 15 * The Firmware copies the cookie fields when sending messages between the 16 * PF and VF, but uses all other fields internally. Due to this limitation, 17 * we must send all messages as "indirect", i.e. using an external buffer. 18 * 19 * All the VSI indexes are relative to the VF. Each VF can have maximum of 20 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 21 * have a maximum of sixteen queues for all of its VSIs. 22 * 23 * The PF is required to return a status code in v_retval for all messages 24 * except RESET_VF, which does not require any response. The returned value 25 * is of virtchnl_status_code type, defined here. 26 * 27 * In general, VF driver initialization should roughly follow the order of 28 * these opcodes. The VF driver must first validate the API version of the 29 * PF driver, then request a reset, then get resources, then configure 30 * queues and interrupts. After these operations are complete, the VF 31 * driver may start its queues, optionally add MAC and VLAN filters, and 32 * process traffic. 33 */ 34 35 /* START GENERIC DEFINES 36 * Need to ensure the following enums and defines hold the same meaning and 37 * value in current and future projects 38 */ 39 40 /* Error Codes */ 41 enum virtchnl_status_code { 42 VIRTCHNL_STATUS_SUCCESS = 0, 43 VIRTCHNL_STATUS_ERR_PARAM = -5, 44 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 45 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 46 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 47 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 48 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 49 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 50 }; 51 52 /* Backward compatibility */ 53 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 54 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 55 56 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 57 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 58 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 59 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 60 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 61 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 62 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 63 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 64 65 enum virtchnl_link_speed { 66 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 67 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 68 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 69 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 70 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 71 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 72 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 73 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 74 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 75 }; 76 77 /* for hsplit_0 field of Rx HMC context */ 78 /* deprecated with AVF 1.0 */ 79 enum virtchnl_rx_hsplit { 80 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 81 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 82 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 83 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 84 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 85 }; 86 87 /* END GENERIC DEFINES */ 88 89 /* Opcodes for VF-PF communication. These are placed in the v_opcode field 90 * of the virtchnl_msg structure. 91 */ 92 enum virtchnl_ops { 93 /* The PF sends status change events to VFs using 94 * the VIRTCHNL_OP_EVENT opcode. 95 * VFs send requests to the PF using the other ops. 96 * Use of "advanced opcode" features must be negotiated as part of capabilities 97 * exchange and are not considered part of base mode feature set. 98 */ 99 VIRTCHNL_OP_UNKNOWN = 0, 100 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 101 VIRTCHNL_OP_RESET_VF = 2, 102 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 103 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 104 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 105 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 106 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 107 VIRTCHNL_OP_ENABLE_QUEUES = 8, 108 VIRTCHNL_OP_DISABLE_QUEUES = 9, 109 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 110 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 111 VIRTCHNL_OP_ADD_VLAN = 12, 112 VIRTCHNL_OP_DEL_VLAN = 13, 113 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 114 VIRTCHNL_OP_GET_STATS = 15, 115 VIRTCHNL_OP_RSVD = 16, 116 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 117 /* opcode 19 is reserved */ 118 VIRTCHNL_OP_IWARP = 20, /* advanced opcode */ 119 VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP, 120 VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */ 121 VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP, 122 VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */ 123 VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP, 124 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 125 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 126 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 127 VIRTCHNL_OP_SET_RSS_HENA = 26, 128 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 129 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 130 VIRTCHNL_OP_REQUEST_QUEUES = 29, 131 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 132 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 133 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 134 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 135 /* opcode 34 - 43 are reserved */ 136 VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44, 137 VIRTCHNL_OP_ADD_RSS_CFG = 45, 138 VIRTCHNL_OP_DEL_RSS_CFG = 46, 139 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 140 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 141 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 142 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 143 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 144 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 145 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 146 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 147 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 148 VIRTCHNL_OP_MAX, 149 }; 150 151 /* These macros are used to generate compilation errors if a structure/union 152 * is not exactly the correct length. It gives a divide by zero error if the 153 * structure/union is not of the correct size, otherwise it creates an enum 154 * that is never used. 155 */ 156 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 157 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 158 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 159 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 160 161 /* Message descriptions and data structures. */ 162 163 /* VIRTCHNL_OP_VERSION 164 * VF posts its version number to the PF. PF responds with its version number 165 * in the same format, along with a return code. 166 * Reply from PF has its major/minor versions also in param0 and param1. 167 * If there is a major version mismatch, then the VF cannot operate. 168 * If there is a minor version mismatch, then the VF can operate but should 169 * add a warning to the system log. 170 * 171 * This enum element MUST always be specified as == 1, regardless of other 172 * changes in the API. The PF must always respond to this message without 173 * error regardless of version mismatch. 174 */ 175 #define VIRTCHNL_VERSION_MAJOR 1 176 #define VIRTCHNL_VERSION_MINOR 1 177 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 178 179 struct virtchnl_version_info { 180 u32 major; 181 u32 minor; 182 }; 183 184 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 185 186 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0)) 187 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 188 189 /* VIRTCHNL_OP_RESET_VF 190 * VF sends this request to PF with no parameters 191 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 192 * until reset completion is indicated. The admin queue must be reinitialized 193 * after this operation. 194 * 195 * When reset is complete, PF must ensure that all queues in all VSIs associated 196 * with the VF are stopped, all queue configurations in the HMC are set to 0, 197 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 198 * are cleared. 199 */ 200 201 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 202 * vsi_type should always be 6 for backward compatibility. Add other fields 203 * as needed. 204 */ 205 enum virtchnl_vsi_type { 206 VIRTCHNL_VSI_TYPE_INVALID = 0, 207 VIRTCHNL_VSI_SRIOV = 6, 208 }; 209 210 /* VIRTCHNL_OP_GET_VF_RESOURCES 211 * Version 1.0 VF sends this request to PF with no parameters 212 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 213 * PF responds with an indirect message containing 214 * virtchnl_vf_resource and one or more 215 * virtchnl_vsi_resource structures. 216 */ 217 218 struct virtchnl_vsi_resource { 219 u16 vsi_id; 220 u16 num_queue_pairs; 221 222 /* see enum virtchnl_vsi_type */ 223 s32 vsi_type; 224 u16 qset_handle; 225 u8 default_mac_addr[ETH_ALEN]; 226 }; 227 228 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 229 230 /* VF capability flags 231 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 232 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 233 */ 234 #define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 235 #define VIRTCHNL_VF_OFFLOAD_RDMA BIT(1) 236 #define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_RDMA 237 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 238 #define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 239 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 240 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 241 /* used to negotiate communicating link speeds in Mbps */ 242 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 243 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 244 #define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 245 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 246 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 247 #define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 248 #define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 249 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 250 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 251 #define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 252 #define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 253 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26) 254 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 255 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 256 257 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 258 VIRTCHNL_VF_OFFLOAD_VLAN | \ 259 VIRTCHNL_VF_OFFLOAD_RSS_PF) 260 261 struct virtchnl_vf_resource { 262 u16 num_vsis; 263 u16 num_queue_pairs; 264 u16 max_vectors; 265 u16 max_mtu; 266 267 u32 vf_cap_flags; 268 u32 rss_key_size; 269 u32 rss_lut_size; 270 271 struct virtchnl_vsi_resource vsi_res[]; 272 }; 273 274 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource); 275 #define virtchnl_vf_resource_LEGACY_SIZEOF 36 276 277 /* VIRTCHNL_OP_CONFIG_TX_QUEUE 278 * VF sends this message to set up parameters for one TX queue. 279 * External data buffer contains one instance of virtchnl_txq_info. 280 * PF configures requested queue and returns a status code. 281 */ 282 283 /* Tx queue config info */ 284 struct virtchnl_txq_info { 285 u16 vsi_id; 286 u16 queue_id; 287 u16 ring_len; /* number of descriptors, multiple of 8 */ 288 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 289 u64 dma_ring_addr; 290 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 291 }; 292 293 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 294 295 /* VIRTCHNL_OP_CONFIG_RX_QUEUE 296 * VF sends this message to set up parameters for one RX queue. 297 * External data buffer contains one instance of virtchnl_rxq_info. 298 * PF configures requested queue and returns a status code. 299 */ 300 301 /* Rx queue config info */ 302 struct virtchnl_rxq_info { 303 u16 vsi_id; 304 u16 queue_id; 305 u32 ring_len; /* number of descriptors, multiple of 32 */ 306 u16 hdr_size; 307 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 308 u32 databuffer_size; 309 u32 max_pkt_size; 310 u8 pad0; 311 u8 rxdid; 312 u8 pad1[2]; 313 u64 dma_ring_addr; 314 315 /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */ 316 s32 rx_split_pos; 317 u32 pad2; 318 }; 319 320 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 321 322 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES 323 * VF sends this message to set parameters for all active TX and RX queues 324 * associated with the specified VSI. 325 * PF configures queues and returns status. 326 * If the number of queues specified is greater than the number of queues 327 * associated with the VSI, an error is returned and no queues are configured. 328 * NOTE: The VF is not required to configure all queues in a single request. 329 * It may send multiple messages. PF drivers must correctly handle all VF 330 * requests. 331 */ 332 struct virtchnl_queue_pair_info { 333 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 334 struct virtchnl_txq_info txq; 335 struct virtchnl_rxq_info rxq; 336 }; 337 338 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 339 340 struct virtchnl_vsi_queue_config_info { 341 u16 vsi_id; 342 u16 num_queue_pairs; 343 u32 pad; 344 struct virtchnl_queue_pair_info qpair[]; 345 }; 346 347 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info); 348 #define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF 72 349 350 /* VIRTCHNL_OP_REQUEST_QUEUES 351 * VF sends this message to request the PF to allocate additional queues to 352 * this VF. Each VF gets a guaranteed number of queues on init but asking for 353 * additional queues must be negotiated. This is a best effort request as it 354 * is possible the PF does not have enough queues left to support the request. 355 * If the PF cannot support the number requested it will respond with the 356 * maximum number it is able to support. If the request is successful, PF will 357 * then reset the VF to institute required changes. 358 */ 359 360 /* VF resource request */ 361 struct virtchnl_vf_res_request { 362 u16 num_queue_pairs; 363 }; 364 365 /* VIRTCHNL_OP_CONFIG_IRQ_MAP 366 * VF uses this message to map vectors to queues. 367 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 368 * are to be associated with the specified vector. 369 * The "other" causes are always mapped to vector 0. The VF may not request 370 * that vector 0 be used for traffic. 371 * PF configures interrupt mapping and returns status. 372 * NOTE: due to hardware requirements, all active queues (both TX and RX) 373 * should be mapped to interrupts, even if the driver intends to operate 374 * only in polling mode. In this case the interrupt may be disabled, but 375 * the ITR timer will still run to trigger writebacks. 376 */ 377 struct virtchnl_vector_map { 378 u16 vsi_id; 379 u16 vector_id; 380 u16 rxq_map; 381 u16 txq_map; 382 u16 rxitr_idx; 383 u16 txitr_idx; 384 }; 385 386 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 387 388 struct virtchnl_irq_map_info { 389 u16 num_vectors; 390 struct virtchnl_vector_map vecmap[]; 391 }; 392 393 VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info); 394 #define virtchnl_irq_map_info_LEGACY_SIZEOF 14 395 396 /* VIRTCHNL_OP_ENABLE_QUEUES 397 * VIRTCHNL_OP_DISABLE_QUEUES 398 * VF sends these message to enable or disable TX/RX queue pairs. 399 * The queues fields are bitmaps indicating which queues to act upon. 400 * (Currently, we only support 16 queues per VF, but we make the field 401 * u32 to allow for expansion.) 402 * PF performs requested action and returns status. 403 * NOTE: The VF is not required to enable/disable all queues in a single 404 * request. It may send multiple messages. 405 * PF drivers must correctly handle all VF requests. 406 */ 407 struct virtchnl_queue_select { 408 u16 vsi_id; 409 u16 pad; 410 u32 rx_queues; 411 u32 tx_queues; 412 }; 413 414 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 415 416 /* VIRTCHNL_OP_ADD_ETH_ADDR 417 * VF sends this message in order to add one or more unicast or multicast 418 * address filters for the specified VSI. 419 * PF adds the filters and returns status. 420 */ 421 422 /* VIRTCHNL_OP_DEL_ETH_ADDR 423 * VF sends this message in order to remove one or more unicast or multicast 424 * filters for the specified VSI. 425 * PF removes the filters and returns status. 426 */ 427 428 /* VIRTCHNL_ETHER_ADDR_LEGACY 429 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 430 * bytes. Moving forward all VF drivers should not set type to 431 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 432 * behavior. The control plane function (i.e. PF) can use a best effort method 433 * of tracking the primary/device unicast in this case, but there is no 434 * guarantee and functionality depends on the implementation of the PF. 435 */ 436 437 /* VIRTCHNL_ETHER_ADDR_PRIMARY 438 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 439 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 440 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 441 * function (i.e. PF) to accurately track and use this MAC address for 442 * displaying on the host and for VM/function reset. 443 */ 444 445 /* VIRTCHNL_ETHER_ADDR_EXTRA 446 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 447 * unicast and/or multicast filters that are being added/deleted via 448 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 449 */ 450 struct virtchnl_ether_addr { 451 u8 addr[ETH_ALEN]; 452 u8 type; 453 #define VIRTCHNL_ETHER_ADDR_LEGACY 0 454 #define VIRTCHNL_ETHER_ADDR_PRIMARY 1 455 #define VIRTCHNL_ETHER_ADDR_EXTRA 2 456 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 457 u8 pad; 458 }; 459 460 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 461 462 struct virtchnl_ether_addr_list { 463 u16 vsi_id; 464 u16 num_elements; 465 struct virtchnl_ether_addr list[]; 466 }; 467 468 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list); 469 #define virtchnl_ether_addr_list_LEGACY_SIZEOF 12 470 471 /* VIRTCHNL_OP_ADD_VLAN 472 * VF sends this message to add one or more VLAN tag filters for receives. 473 * PF adds the filters and returns status. 474 * If a port VLAN is configured by the PF, this operation will return an 475 * error to the VF. 476 */ 477 478 /* VIRTCHNL_OP_DEL_VLAN 479 * VF sends this message to remove one or more VLAN tag filters for receives. 480 * PF removes the filters and returns status. 481 * If a port VLAN is configured by the PF, this operation will return an 482 * error to the VF. 483 */ 484 485 struct virtchnl_vlan_filter_list { 486 u16 vsi_id; 487 u16 num_elements; 488 u16 vlan_id[]; 489 }; 490 491 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list); 492 #define virtchnl_vlan_filter_list_LEGACY_SIZEOF 6 493 494 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 495 * structures and opcodes. 496 * 497 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 498 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 499 * 500 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 501 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 502 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 503 * 504 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 505 * by the PF concurrently. For example, if the PF can support 506 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 507 * would OR the following bits: 508 * 509 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 510 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 511 * VIRTCHNL_VLAN_ETHERTYPE_AND; 512 * 513 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 514 * and 0x88A8 VLAN ethertypes. 515 * 516 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 517 * by the PF concurrently. For example if the PF can support 518 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 519 * offload it would OR the following bits: 520 * 521 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 522 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 523 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 524 * 525 * The VF would interpret this as VLAN stripping can be supported on either 526 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 527 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 528 * the previously set value. 529 * 530 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 531 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 532 * 533 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 534 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 535 * 536 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 537 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 538 * 539 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 540 * VLAN filtering if the underlying PF supports it. 541 * 542 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 543 * certain VLAN capability can be toggled. For example if the underlying PF/CP 544 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 545 * set this bit along with the supported ethertypes. 546 */ 547 enum virtchnl_vlan_support { 548 VIRTCHNL_VLAN_UNSUPPORTED = 0, 549 VIRTCHNL_VLAN_ETHERTYPE_8100 = BIT(0), 550 VIRTCHNL_VLAN_ETHERTYPE_88A8 = BIT(1), 551 VIRTCHNL_VLAN_ETHERTYPE_9100 = BIT(2), 552 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = BIT(8), 553 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = BIT(9), 554 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = BIT(10), 555 VIRTCHNL_VLAN_PRIO = BIT(24), 556 VIRTCHNL_VLAN_FILTER_MASK = BIT(28), 557 VIRTCHNL_VLAN_ETHERTYPE_AND = BIT(29), 558 VIRTCHNL_VLAN_ETHERTYPE_XOR = BIT(30), 559 VIRTCHNL_VLAN_TOGGLE = BIT(31), 560 }; 561 562 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 563 * for filtering, insertion, and stripping capabilities. 564 * 565 * If only outer capabilities are supported (for filtering, insertion, and/or 566 * stripping) then this refers to the outer most or single VLAN from the VF's 567 * perspective. 568 * 569 * If only inner capabilities are supported (for filtering, insertion, and/or 570 * stripping) then this refers to the outer most or single VLAN from the VF's 571 * perspective. Functionally this is the same as if only outer capabilities are 572 * supported. The VF driver is just forced to use the inner fields when 573 * adding/deleting filters and enabling/disabling offloads (if supported). 574 * 575 * If both outer and inner capabilities are supported (for filtering, insertion, 576 * and/or stripping) then outer refers to the outer most or single VLAN and 577 * inner refers to the second VLAN, if it exists, in the packet. 578 * 579 * There is no support for tunneled VLAN offloads, so outer or inner are never 580 * referring to a tunneled packet from the VF's perspective. 581 */ 582 struct virtchnl_vlan_supported_caps { 583 u32 outer; 584 u32 inner; 585 }; 586 587 /* The PF populates these fields based on the supported VLAN filtering. If a 588 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 589 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 590 * the unsupported fields. 591 * 592 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 593 * VIRTCHNL_VLAN_TOGGLE bit is set. 594 * 595 * The ethertype(s) specified in the ethertype_init field are the ethertypes 596 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 597 * most VLAN from the VF's perspective. If both inner and outer filtering are 598 * allowed then ethertype_init only refers to the outer most VLAN as only 599 * VLAN ethertype supported for inner VLAN filtering is 600 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 601 * when both inner and outer filtering are allowed. 602 * 603 * The max_filters field tells the VF how many VLAN filters it's allowed to have 604 * at any one time. If it exceeds this amount and tries to add another filter, 605 * then the request will be rejected by the PF. To prevent failures, the VF 606 * should keep track of how many VLAN filters it has added and not attempt to 607 * add more than max_filters. 608 */ 609 struct virtchnl_vlan_filtering_caps { 610 struct virtchnl_vlan_supported_caps filtering_support; 611 u32 ethertype_init; 612 u16 max_filters; 613 u8 pad[2]; 614 }; 615 616 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 617 618 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify 619 * if the PF supports a different ethertype for stripping and insertion. 620 * 621 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 622 * for stripping affect the ethertype(s) specified for insertion and visa versa 623 * as well. If the VF tries to configure VLAN stripping via 624 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 625 * that will be the ethertype for both stripping and insertion. 626 * 627 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 628 * stripping do not affect the ethertype(s) specified for insertion and visa 629 * versa. 630 */ 631 enum virtchnl_vlan_ethertype_match { 632 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 633 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 634 }; 635 636 /* The PF populates these fields based on the supported VLAN offloads. If a 637 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 638 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 639 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 640 * 641 * Also, a VF is only allowed to toggle its VLAN offload setting if the 642 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 643 * 644 * The VF driver needs to be aware of how the tags are stripped by hardware and 645 * inserted by the VF driver based on the level of offload support. The PF will 646 * populate these fields based on where the VLAN tags are expected to be 647 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 648 * interpret these fields. See the definition of the 649 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 650 * enumeration. 651 */ 652 struct virtchnl_vlan_offload_caps { 653 struct virtchnl_vlan_supported_caps stripping_support; 654 struct virtchnl_vlan_supported_caps insertion_support; 655 u32 ethertype_init; 656 u8 ethertype_match; 657 u8 pad[3]; 658 }; 659 660 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 661 662 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 663 * VF sends this message to determine its VLAN capabilities. 664 * 665 * PF will mark which capabilities it supports based on hardware support and 666 * current configuration. For example, if a port VLAN is configured the PF will 667 * not allow outer VLAN filtering, stripping, or insertion to be configured so 668 * it will block these features from the VF. 669 * 670 * The VF will need to cross reference its capabilities with the PFs 671 * capabilities in the response message from the PF to determine the VLAN 672 * support. 673 */ 674 struct virtchnl_vlan_caps { 675 struct virtchnl_vlan_filtering_caps filtering; 676 struct virtchnl_vlan_offload_caps offloads; 677 }; 678 679 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 680 681 struct virtchnl_vlan { 682 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 683 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 684 * filtering caps 685 */ 686 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 687 * filtering caps. Note that tpid here does not refer to 688 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 689 * actual 2-byte VLAN TPID 690 */ 691 u8 pad[2]; 692 }; 693 694 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 695 696 struct virtchnl_vlan_filter { 697 struct virtchnl_vlan inner; 698 struct virtchnl_vlan outer; 699 u8 pad[16]; 700 }; 701 702 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 703 704 /* VIRTCHNL_OP_ADD_VLAN_V2 705 * VIRTCHNL_OP_DEL_VLAN_V2 706 * 707 * VF sends these messages to add/del one or more VLAN tag filters for Rx 708 * traffic. 709 * 710 * The PF attempts to add the filters and returns status. 711 * 712 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 713 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 714 */ 715 struct virtchnl_vlan_filter_list_v2 { 716 u16 vport_id; 717 u16 num_elements; 718 u8 pad[4]; 719 struct virtchnl_vlan_filter filters[]; 720 }; 721 722 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2); 723 #define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF 40 724 725 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 726 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 727 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 728 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 729 * 730 * VF sends this message to enable or disable VLAN stripping or insertion. It 731 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 732 * allowed and whether or not it's allowed to enable/disable the specific 733 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 734 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 735 * messages are allowed. 736 * 737 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 738 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 739 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 740 * case means the outer most or single VLAN from the VF's perspective. This is 741 * because no outer offloads are supported. See the comments above the 742 * virtchnl_vlan_supported_caps structure for more details. 743 * 744 * virtchnl_vlan_caps.offloads.stripping_support.inner = 745 * VIRTCHNL_VLAN_TOGGLE | 746 * VIRTCHNL_VLAN_ETHERTYPE_8100; 747 * 748 * virtchnl_vlan_caps.offloads.insertion_support.inner = 749 * VIRTCHNL_VLAN_TOGGLE | 750 * VIRTCHNL_VLAN_ETHERTYPE_8100; 751 * 752 * In order to enable inner (again note that in this case inner is the outer 753 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 754 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 755 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 756 * 757 * virtchnl_vlan_setting.inner_ethertype_setting = 758 * VIRTCHNL_VLAN_ETHERTYPE_8100; 759 * 760 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 761 * initialization. 762 * 763 * The reason that VLAN TPID(s) are not being used for the 764 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 765 * possible a device could support VLAN insertion and/or stripping offload on 766 * multiple ethertypes concurrently, so this method allows a VF to request 767 * multiple ethertypes in one message using the virtchnl_vlan_support 768 * enumeration. 769 * 770 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 771 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 772 * VLAN insertion and stripping simultaneously. The 773 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 774 * populated based on what the PF can support. 775 * 776 * virtchnl_vlan_caps.offloads.stripping_support.outer = 777 * VIRTCHNL_VLAN_TOGGLE | 778 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 779 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 780 * VIRTCHNL_VLAN_ETHERTYPE_AND; 781 * 782 * virtchnl_vlan_caps.offloads.insertion_support.outer = 783 * VIRTCHNL_VLAN_TOGGLE | 784 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 785 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 786 * VIRTCHNL_VLAN_ETHERTYPE_AND; 787 * 788 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 789 * would populate the virthcnl_vlan_offload_structure in the following manner 790 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 791 * 792 * virtchnl_vlan_setting.outer_ethertype_setting = 793 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 794 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 795 * 796 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 797 * initialization. 798 * 799 * There is also the case where a PF and the underlying hardware can support 800 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 801 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 802 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 803 * offloads. The ethertypes must match for stripping and insertion. 804 * 805 * virtchnl_vlan_caps.offloads.stripping_support.outer = 806 * VIRTCHNL_VLAN_TOGGLE | 807 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 808 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 809 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 810 * 811 * virtchnl_vlan_caps.offloads.insertion_support.outer = 812 * VIRTCHNL_VLAN_TOGGLE | 813 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 814 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 815 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 816 * 817 * virtchnl_vlan_caps.offloads.ethertype_match = 818 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 819 * 820 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 821 * populate the virtchnl_vlan_setting structure in the following manner and send 822 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 823 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 824 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 825 * 826 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 827 * 828 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 829 * initialization. 830 */ 831 struct virtchnl_vlan_setting { 832 u32 outer_ethertype_setting; 833 u32 inner_ethertype_setting; 834 u16 vport_id; 835 u8 pad[6]; 836 }; 837 838 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 839 840 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 841 * VF sends VSI id and flags. 842 * PF returns status code in retval. 843 * Note: we assume that broadcast accept mode is always enabled. 844 */ 845 struct virtchnl_promisc_info { 846 u16 vsi_id; 847 u16 flags; 848 }; 849 850 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 851 852 #define FLAG_VF_UNICAST_PROMISC 0x00000001 853 #define FLAG_VF_MULTICAST_PROMISC 0x00000002 854 855 /* VIRTCHNL_OP_GET_STATS 856 * VF sends this message to request stats for the selected VSI. VF uses 857 * the virtchnl_queue_select struct to specify the VSI. The queue_id 858 * field is ignored by the PF. 859 * 860 * PF replies with struct eth_stats in an external buffer. 861 */ 862 863 /* VIRTCHNL_OP_CONFIG_RSS_KEY 864 * VIRTCHNL_OP_CONFIG_RSS_LUT 865 * VF sends these messages to configure RSS. Only supported if both PF 866 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 867 * configuration negotiation. If this is the case, then the RSS fields in 868 * the VF resource struct are valid. 869 * Both the key and LUT are initialized to 0 by the PF, meaning that 870 * RSS is effectively disabled until set up by the VF. 871 */ 872 struct virtchnl_rss_key { 873 u16 vsi_id; 874 u16 key_len; 875 u8 key[]; /* RSS hash key, packed bytes */ 876 }; 877 878 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key); 879 #define virtchnl_rss_key_LEGACY_SIZEOF 6 880 881 struct virtchnl_rss_lut { 882 u16 vsi_id; 883 u16 lut_entries; 884 u8 lut[]; /* RSS lookup table */ 885 }; 886 887 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut); 888 #define virtchnl_rss_lut_LEGACY_SIZEOF 6 889 890 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS 891 * VIRTCHNL_OP_SET_RSS_HENA 892 * VF sends these messages to get and set the hash filter enable bits for RSS. 893 * By default, the PF sets these to all possible traffic types that the 894 * hardware supports. The VF can query this value if it wants to change the 895 * traffic types that are hashed by the hardware. 896 */ 897 struct virtchnl_rss_hena { 898 u64 hena; 899 }; 900 901 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 902 903 /* VIRTCHNL_OP_ENABLE_CHANNELS 904 * VIRTCHNL_OP_DISABLE_CHANNELS 905 * VF sends these messages to enable or disable channels based on 906 * the user specified queue count and queue offset for each traffic class. 907 * This struct encompasses all the information that the PF needs from 908 * VF to create a channel. 909 */ 910 struct virtchnl_channel_info { 911 u16 count; /* number of queues in a channel */ 912 u16 offset; /* queues in a channel start from 'offset' */ 913 u32 pad; 914 u64 max_tx_rate; 915 }; 916 917 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 918 919 struct virtchnl_tc_info { 920 u32 num_tc; 921 u32 pad; 922 struct virtchnl_channel_info list[]; 923 }; 924 925 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info); 926 #define virtchnl_tc_info_LEGACY_SIZEOF 24 927 928 /* VIRTCHNL_ADD_CLOUD_FILTER 929 * VIRTCHNL_DEL_CLOUD_FILTER 930 * VF sends these messages to add or delete a cloud filter based on the 931 * user specified match and action filters. These structures encompass 932 * all the information that the PF needs from the VF to add/delete a 933 * cloud filter. 934 */ 935 936 struct virtchnl_l4_spec { 937 u8 src_mac[ETH_ALEN]; 938 u8 dst_mac[ETH_ALEN]; 939 __be16 vlan_id; 940 __be16 pad; /* reserved for future use */ 941 __be32 src_ip[4]; 942 __be32 dst_ip[4]; 943 __be16 src_port; 944 __be16 dst_port; 945 }; 946 947 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 948 949 union virtchnl_flow_spec { 950 struct virtchnl_l4_spec tcp_spec; 951 u8 buffer[128]; /* reserved for future use */ 952 }; 953 954 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 955 956 enum virtchnl_action { 957 /* action types */ 958 VIRTCHNL_ACTION_DROP = 0, 959 VIRTCHNL_ACTION_TC_REDIRECT, 960 VIRTCHNL_ACTION_PASSTHRU, 961 VIRTCHNL_ACTION_QUEUE, 962 VIRTCHNL_ACTION_Q_REGION, 963 VIRTCHNL_ACTION_MARK, 964 VIRTCHNL_ACTION_COUNT, 965 }; 966 967 enum virtchnl_flow_type { 968 /* flow types */ 969 VIRTCHNL_TCP_V4_FLOW = 0, 970 VIRTCHNL_TCP_V6_FLOW, 971 }; 972 973 struct virtchnl_filter { 974 union virtchnl_flow_spec data; 975 union virtchnl_flow_spec mask; 976 977 /* see enum virtchnl_flow_type */ 978 s32 flow_type; 979 980 /* see enum virtchnl_action */ 981 s32 action; 982 u32 action_meta; 983 u8 field_flags; 984 u8 pad[3]; 985 }; 986 987 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 988 989 struct virtchnl_supported_rxdids { 990 u64 supported_rxdids; 991 }; 992 993 /* VIRTCHNL_OP_EVENT 994 * PF sends this message to inform the VF driver of events that may affect it. 995 * No direct response is expected from the VF, though it may generate other 996 * messages in response to this one. 997 */ 998 enum virtchnl_event_codes { 999 VIRTCHNL_EVENT_UNKNOWN = 0, 1000 VIRTCHNL_EVENT_LINK_CHANGE, 1001 VIRTCHNL_EVENT_RESET_IMPENDING, 1002 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 1003 }; 1004 1005 #define PF_EVENT_SEVERITY_INFO 0 1006 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 1007 1008 struct virtchnl_pf_event { 1009 /* see enum virtchnl_event_codes */ 1010 s32 event; 1011 union { 1012 /* If the PF driver does not support the new speed reporting 1013 * capabilities then use link_event else use link_event_adv to 1014 * get the speed and link information. The ability to understand 1015 * new speeds is indicated by setting the capability flag 1016 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 1017 * in virtchnl_vf_resource struct and can be used to determine 1018 * which link event struct to use below. 1019 */ 1020 struct { 1021 enum virtchnl_link_speed link_speed; 1022 bool link_status; 1023 u8 pad[3]; 1024 } link_event; 1025 struct { 1026 /* link_speed provided in Mbps */ 1027 u32 link_speed; 1028 u8 link_status; 1029 u8 pad[3]; 1030 } link_event_adv; 1031 } event_data; 1032 1033 s32 severity; 1034 }; 1035 1036 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1037 1038 /* used to specify if a ceq_idx or aeq_idx is invalid */ 1039 #define VIRTCHNL_RDMA_INVALID_QUEUE_IDX 0xFFFF 1040 /* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP 1041 * VF uses this message to request PF to map RDMA vectors to RDMA queues. 1042 * The request for this originates from the VF RDMA driver through 1043 * a client interface between VF LAN and VF RDMA driver. 1044 * A vector could have an AEQ and CEQ attached to it although 1045 * there is a single AEQ per VF RDMA instance in which case 1046 * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid 1047 * idx for ceqs There will never be a case where there will be multiple CEQs 1048 * attached to a single vector. 1049 * PF configures interrupt mapping and returns status. 1050 */ 1051 1052 struct virtchnl_rdma_qv_info { 1053 u32 v_idx; /* msix_vector */ 1054 u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */ 1055 u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */ 1056 u8 itr_idx; 1057 u8 pad[3]; 1058 }; 1059 1060 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info); 1061 1062 struct virtchnl_rdma_qvlist_info { 1063 u32 num_vectors; 1064 struct virtchnl_rdma_qv_info qv_info[]; 1065 }; 1066 1067 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info); 1068 #define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF 16 1069 1070 /* VF reset states - these are written into the RSTAT register: 1071 * VFGEN_RSTAT on the VF 1072 * When the PF initiates a reset, it writes 0 1073 * When the reset is complete, it writes 1 1074 * When the PF detects that the VF has recovered, it writes 2 1075 * VF checks this register periodically to determine if a reset has occurred, 1076 * then polls it to know when the reset is complete. 1077 * If either the PF or VF reads the register while the hardware 1078 * is in a reset state, it will return DEADBEEF, which, when masked 1079 * will result in 3. 1080 */ 1081 enum virtchnl_vfr_states { 1082 VIRTCHNL_VFR_INPROGRESS = 0, 1083 VIRTCHNL_VFR_COMPLETED, 1084 VIRTCHNL_VFR_VFACTIVE, 1085 }; 1086 1087 /* Type of RSS algorithm */ 1088 enum virtchnl_rss_algorithm { 1089 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 1090 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, 1091 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 1092 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 1093 }; 1094 1095 #define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1096 #define PROTO_HDR_SHIFT 5 1097 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT) 1098 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1099 1100 /* VF use these macros to configure each protocol header. 1101 * Specify which protocol headers and protocol header fields base on 1102 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1103 * @param hdr: a struct of virtchnl_proto_hdr 1104 * @param hdr_type: ETH/IPV4/TCP, etc 1105 * @param field: SRC/DST/TEID/SPI, etc 1106 */ 1107 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1108 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1109 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1110 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1111 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1112 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1113 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1114 1115 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1116 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1117 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1118 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1119 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1120 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1121 1122 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1123 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1124 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1125 (((hdr)->type) >> PROTO_HDR_SHIFT) 1126 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1127 ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT))) 1128 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1129 (VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \ 1130 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val))) 1131 1132 /* Protocol header type within a packet segment. A segment consists of one or 1133 * more protocol headers that make up a logical group of protocol headers. Each 1134 * logical group of protocol headers encapsulates or is encapsulated using/by 1135 * tunneling or encapsulation protocols for network virtualization. 1136 */ 1137 enum virtchnl_proto_hdr_type { 1138 VIRTCHNL_PROTO_HDR_NONE, 1139 VIRTCHNL_PROTO_HDR_ETH, 1140 VIRTCHNL_PROTO_HDR_S_VLAN, 1141 VIRTCHNL_PROTO_HDR_C_VLAN, 1142 VIRTCHNL_PROTO_HDR_IPV4, 1143 VIRTCHNL_PROTO_HDR_IPV6, 1144 VIRTCHNL_PROTO_HDR_TCP, 1145 VIRTCHNL_PROTO_HDR_UDP, 1146 VIRTCHNL_PROTO_HDR_SCTP, 1147 VIRTCHNL_PROTO_HDR_GTPU_IP, 1148 VIRTCHNL_PROTO_HDR_GTPU_EH, 1149 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1150 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1151 VIRTCHNL_PROTO_HDR_PPPOE, 1152 VIRTCHNL_PROTO_HDR_L2TPV3, 1153 VIRTCHNL_PROTO_HDR_ESP, 1154 VIRTCHNL_PROTO_HDR_AH, 1155 VIRTCHNL_PROTO_HDR_PFCP, 1156 }; 1157 1158 /* Protocol header field within a protocol header. */ 1159 enum virtchnl_proto_hdr_field { 1160 /* ETHER */ 1161 VIRTCHNL_PROTO_HDR_ETH_SRC = 1162 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1163 VIRTCHNL_PROTO_HDR_ETH_DST, 1164 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1165 /* S-VLAN */ 1166 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1167 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1168 /* C-VLAN */ 1169 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1170 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1171 /* IPV4 */ 1172 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1173 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1174 VIRTCHNL_PROTO_HDR_IPV4_DST, 1175 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1176 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1177 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1178 /* IPV6 */ 1179 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1180 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1181 VIRTCHNL_PROTO_HDR_IPV6_DST, 1182 VIRTCHNL_PROTO_HDR_IPV6_TC, 1183 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1184 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1185 /* TCP */ 1186 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1187 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1188 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1189 /* UDP */ 1190 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1191 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1192 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1193 /* SCTP */ 1194 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1195 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1196 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1197 /* GTPU_IP */ 1198 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1199 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1200 /* GTPU_EH */ 1201 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1202 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1203 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1204 /* PPPOE */ 1205 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1206 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1207 /* L2TPV3 */ 1208 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1209 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1210 /* ESP */ 1211 VIRTCHNL_PROTO_HDR_ESP_SPI = 1212 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1213 /* AH */ 1214 VIRTCHNL_PROTO_HDR_AH_SPI = 1215 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1216 /* PFCP */ 1217 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1218 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1219 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1220 }; 1221 1222 struct virtchnl_proto_hdr { 1223 /* see enum virtchnl_proto_hdr_type */ 1224 s32 type; 1225 u32 field_selector; /* a bit mask to select field for header type */ 1226 u8 buffer[64]; 1227 /** 1228 * binary buffer in network order for specific header type. 1229 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1230 * header is expected to be copied into the buffer. 1231 */ 1232 }; 1233 1234 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1235 1236 struct virtchnl_proto_hdrs { 1237 u8 tunnel_level; 1238 u8 pad[3]; 1239 /** 1240 * specify where protocol header start from. 1241 * 0 - from the outer layer 1242 * 1 - from the first inner layer 1243 * 2 - from the second inner layer 1244 * .... 1245 **/ 1246 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ 1247 struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1248 }; 1249 1250 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1251 1252 struct virtchnl_rss_cfg { 1253 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1254 1255 /* see enum virtchnl_rss_algorithm; rss algorithm type */ 1256 s32 rss_algorithm; 1257 u8 reserved[128]; /* reserve for future */ 1258 }; 1259 1260 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1261 1262 /* action configuration for FDIR */ 1263 struct virtchnl_filter_action { 1264 /* see enum virtchnl_action type */ 1265 s32 type; 1266 union { 1267 /* used for queue and qgroup action */ 1268 struct { 1269 u16 index; 1270 u8 region; 1271 } queue; 1272 /* used for count action */ 1273 struct { 1274 /* share counter ID with other flow rules */ 1275 u8 shared; 1276 u32 id; /* counter ID */ 1277 } count; 1278 /* used for mark action */ 1279 u32 mark_id; 1280 u8 reserve[32]; 1281 } act_conf; 1282 }; 1283 1284 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1285 1286 #define VIRTCHNL_MAX_NUM_ACTIONS 8 1287 1288 struct virtchnl_filter_action_set { 1289 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1290 int count; 1291 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1292 }; 1293 1294 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1295 1296 /* pattern and action for FDIR rule */ 1297 struct virtchnl_fdir_rule { 1298 struct virtchnl_proto_hdrs proto_hdrs; 1299 struct virtchnl_filter_action_set action_set; 1300 }; 1301 1302 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1303 1304 /* Status returned to VF after VF requests FDIR commands 1305 * VIRTCHNL_FDIR_SUCCESS 1306 * VF FDIR related request is successfully done by PF 1307 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER. 1308 * 1309 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1310 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1311 * 1312 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1313 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1314 * 1315 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1316 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1317 * 1318 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1319 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1320 * 1321 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1322 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1323 * or HW doesn't support. 1324 * 1325 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1326 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1327 * for programming. 1328 * 1329 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID 1330 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation, 1331 * for example, VF query counter of a rule who has no counter action. 1332 */ 1333 enum virtchnl_fdir_prgm_status { 1334 VIRTCHNL_FDIR_SUCCESS = 0, 1335 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1336 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1337 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1338 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1339 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1340 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1341 VIRTCHNL_FDIR_FAILURE_QUERY_INVALID, 1342 }; 1343 1344 /* VIRTCHNL_OP_ADD_FDIR_FILTER 1345 * VF sends this request to PF by filling out vsi_id, 1346 * validate_only and rule_cfg. PF will return flow_id 1347 * if the request is successfully done and return add_status to VF. 1348 */ 1349 struct virtchnl_fdir_add { 1350 u16 vsi_id; /* INPUT */ 1351 /* 1352 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1353 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1354 */ 1355 u16 validate_only; /* INPUT */ 1356 u32 flow_id; /* OUTPUT */ 1357 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1358 1359 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1360 s32 status; 1361 }; 1362 1363 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1364 1365 /* VIRTCHNL_OP_DEL_FDIR_FILTER 1366 * VF sends this request to PF by filling out vsi_id 1367 * and flow_id. PF will return del_status to VF. 1368 */ 1369 struct virtchnl_fdir_del { 1370 u16 vsi_id; /* INPUT */ 1371 u16 pad; 1372 u32 flow_id; /* INPUT */ 1373 1374 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1375 s32 status; 1376 }; 1377 1378 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1379 1380 #define __vss_byone(p, member, count, old) \ 1381 (struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0))) 1382 1383 #define __vss_byelem(p, member, count, old) \ 1384 (struct_size(p, member, count - 1) + (old - struct_size(p, member, 0))) 1385 1386 #define __vss_full(p, member, count, old) \ 1387 (struct_size(p, member, count) + (old - struct_size(p, member, 0))) 1388 1389 #define __vss(type, func, p, member, count) \ 1390 struct type: func(p, member, count, type##_LEGACY_SIZEOF) 1391 1392 #define virtchnl_struct_size(p, m, c) \ 1393 _Generic(*p, \ 1394 __vss(virtchnl_vf_resource, __vss_full, p, m, c), \ 1395 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c), \ 1396 __vss(virtchnl_irq_map_info, __vss_full, p, m, c), \ 1397 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c), \ 1398 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c), \ 1399 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c), \ 1400 __vss(virtchnl_tc_info, __vss_byelem, p, m, c), \ 1401 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c), \ 1402 __vss(virtchnl_rss_key, __vss_byone, p, m, c), \ 1403 __vss(virtchnl_rss_lut, __vss_byone, p, m, c)) 1404 1405 /** 1406 * virtchnl_vc_validate_vf_msg 1407 * @ver: Virtchnl version info 1408 * @v_opcode: Opcode for the message 1409 * @msg: pointer to the msg buffer 1410 * @msglen: msg length 1411 * 1412 * validate msg format against struct for each opcode 1413 */ 1414 static inline int 1415 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 1416 u8 *msg, u16 msglen) 1417 { 1418 bool err_msg_format = false; 1419 u32 valid_len = 0; 1420 1421 /* Validate message length. */ 1422 switch (v_opcode) { 1423 case VIRTCHNL_OP_VERSION: 1424 valid_len = sizeof(struct virtchnl_version_info); 1425 break; 1426 case VIRTCHNL_OP_RESET_VF: 1427 break; 1428 case VIRTCHNL_OP_GET_VF_RESOURCES: 1429 if (VF_IS_V11(ver)) 1430 valid_len = sizeof(u32); 1431 break; 1432 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 1433 valid_len = sizeof(struct virtchnl_txq_info); 1434 break; 1435 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 1436 valid_len = sizeof(struct virtchnl_rxq_info); 1437 break; 1438 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 1439 valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF; 1440 if (msglen >= valid_len) { 1441 struct virtchnl_vsi_queue_config_info *vqc = 1442 (struct virtchnl_vsi_queue_config_info *)msg; 1443 valid_len = virtchnl_struct_size(vqc, qpair, 1444 vqc->num_queue_pairs); 1445 if (vqc->num_queue_pairs == 0) 1446 err_msg_format = true; 1447 } 1448 break; 1449 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 1450 valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF; 1451 if (msglen >= valid_len) { 1452 struct virtchnl_irq_map_info *vimi = 1453 (struct virtchnl_irq_map_info *)msg; 1454 valid_len = virtchnl_struct_size(vimi, vecmap, 1455 vimi->num_vectors); 1456 if (vimi->num_vectors == 0) 1457 err_msg_format = true; 1458 } 1459 break; 1460 case VIRTCHNL_OP_ENABLE_QUEUES: 1461 case VIRTCHNL_OP_DISABLE_QUEUES: 1462 valid_len = sizeof(struct virtchnl_queue_select); 1463 break; 1464 case VIRTCHNL_OP_ADD_ETH_ADDR: 1465 case VIRTCHNL_OP_DEL_ETH_ADDR: 1466 valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF; 1467 if (msglen >= valid_len) { 1468 struct virtchnl_ether_addr_list *veal = 1469 (struct virtchnl_ether_addr_list *)msg; 1470 valid_len = virtchnl_struct_size(veal, list, 1471 veal->num_elements); 1472 if (veal->num_elements == 0) 1473 err_msg_format = true; 1474 } 1475 break; 1476 case VIRTCHNL_OP_ADD_VLAN: 1477 case VIRTCHNL_OP_DEL_VLAN: 1478 valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF; 1479 if (msglen >= valid_len) { 1480 struct virtchnl_vlan_filter_list *vfl = 1481 (struct virtchnl_vlan_filter_list *)msg; 1482 valid_len = virtchnl_struct_size(vfl, vlan_id, 1483 vfl->num_elements); 1484 if (vfl->num_elements == 0) 1485 err_msg_format = true; 1486 } 1487 break; 1488 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 1489 valid_len = sizeof(struct virtchnl_promisc_info); 1490 break; 1491 case VIRTCHNL_OP_GET_STATS: 1492 valid_len = sizeof(struct virtchnl_queue_select); 1493 break; 1494 case VIRTCHNL_OP_RDMA: 1495 /* These messages are opaque to us and will be validated in 1496 * the RDMA client code. We just need to check for nonzero 1497 * length. The firmware will enforce max length restrictions. 1498 */ 1499 if (msglen) 1500 valid_len = msglen; 1501 else 1502 err_msg_format = true; 1503 break; 1504 case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP: 1505 break; 1506 case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP: 1507 valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF; 1508 if (msglen >= valid_len) { 1509 struct virtchnl_rdma_qvlist_info *qv = 1510 (struct virtchnl_rdma_qvlist_info *)msg; 1511 1512 valid_len = virtchnl_struct_size(qv, qv_info, 1513 qv->num_vectors); 1514 } 1515 break; 1516 case VIRTCHNL_OP_CONFIG_RSS_KEY: 1517 valid_len = virtchnl_rss_key_LEGACY_SIZEOF; 1518 if (msglen >= valid_len) { 1519 struct virtchnl_rss_key *vrk = 1520 (struct virtchnl_rss_key *)msg; 1521 valid_len = virtchnl_struct_size(vrk, key, 1522 vrk->key_len); 1523 } 1524 break; 1525 case VIRTCHNL_OP_CONFIG_RSS_LUT: 1526 valid_len = virtchnl_rss_lut_LEGACY_SIZEOF; 1527 if (msglen >= valid_len) { 1528 struct virtchnl_rss_lut *vrl = 1529 (struct virtchnl_rss_lut *)msg; 1530 valid_len = virtchnl_struct_size(vrl, lut, 1531 vrl->lut_entries); 1532 } 1533 break; 1534 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 1535 break; 1536 case VIRTCHNL_OP_SET_RSS_HENA: 1537 valid_len = sizeof(struct virtchnl_rss_hena); 1538 break; 1539 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 1540 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 1541 break; 1542 case VIRTCHNL_OP_REQUEST_QUEUES: 1543 valid_len = sizeof(struct virtchnl_vf_res_request); 1544 break; 1545 case VIRTCHNL_OP_ENABLE_CHANNELS: 1546 valid_len = virtchnl_tc_info_LEGACY_SIZEOF; 1547 if (msglen >= valid_len) { 1548 struct virtchnl_tc_info *vti = 1549 (struct virtchnl_tc_info *)msg; 1550 valid_len = virtchnl_struct_size(vti, list, 1551 vti->num_tc); 1552 if (vti->num_tc == 0) 1553 err_msg_format = true; 1554 } 1555 break; 1556 case VIRTCHNL_OP_DISABLE_CHANNELS: 1557 break; 1558 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 1559 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 1560 valid_len = sizeof(struct virtchnl_filter); 1561 break; 1562 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 1563 break; 1564 case VIRTCHNL_OP_ADD_RSS_CFG: 1565 case VIRTCHNL_OP_DEL_RSS_CFG: 1566 valid_len = sizeof(struct virtchnl_rss_cfg); 1567 break; 1568 case VIRTCHNL_OP_ADD_FDIR_FILTER: 1569 valid_len = sizeof(struct virtchnl_fdir_add); 1570 break; 1571 case VIRTCHNL_OP_DEL_FDIR_FILTER: 1572 valid_len = sizeof(struct virtchnl_fdir_del); 1573 break; 1574 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 1575 break; 1576 case VIRTCHNL_OP_ADD_VLAN_V2: 1577 case VIRTCHNL_OP_DEL_VLAN_V2: 1578 valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF; 1579 if (msglen >= valid_len) { 1580 struct virtchnl_vlan_filter_list_v2 *vfl = 1581 (struct virtchnl_vlan_filter_list_v2 *)msg; 1582 1583 valid_len = virtchnl_struct_size(vfl, filters, 1584 vfl->num_elements); 1585 1586 if (vfl->num_elements == 0) { 1587 err_msg_format = true; 1588 break; 1589 } 1590 } 1591 break; 1592 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 1593 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 1594 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 1595 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 1596 valid_len = sizeof(struct virtchnl_vlan_setting); 1597 break; 1598 /* These are always errors coming from the VF. */ 1599 case VIRTCHNL_OP_EVENT: 1600 case VIRTCHNL_OP_UNKNOWN: 1601 default: 1602 return VIRTCHNL_STATUS_ERR_PARAM; 1603 } 1604 /* few more checks */ 1605 if (err_msg_format || valid_len != msglen) 1606 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 1607 1608 return 0; 1609 } 1610 #endif /* _VIRTCHNL_H_ */ 1611