1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 /* 4 * Linux-specific definitions for managing interactions with Microsoft's 5 * Hyper-V hypervisor. The definitions in this file are architecture 6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions 7 * that are specific to architecture <arch>. 8 * 9 * Definitions that are derived from Hyper-V code or headers should not go in 10 * this file, but should instead go in the relevant files in include/hyperv. 11 * 12 * Copyright (C) 2019, Microsoft, Inc. 13 * 14 * Author : Michael Kelley <[email protected]> 15 */ 16 17 #ifndef _ASM_GENERIC_MSHYPERV_H 18 #define _ASM_GENERIC_MSHYPERV_H 19 20 #include <linux/types.h> 21 #include <linux/atomic.h> 22 #include <linux/bitops.h> 23 #include <acpi/acpi_numa.h> 24 #include <linux/cpumask.h> 25 #include <linux/nmi.h> 26 #include <asm/ptrace.h> 27 #include <hyperv/hvhdk.h> 28 29 #define VTPM_BASE_ADDRESS 0xfed40000 30 31 enum hv_partition_type { 32 HV_PARTITION_TYPE_GUEST, 33 HV_PARTITION_TYPE_ROOT, 34 }; 35 36 struct ms_hyperv_info { 37 u32 features; 38 u32 priv_high; 39 u32 misc_features; 40 u32 hints; 41 u32 nested_features; 42 u32 max_vp_index; 43 u32 max_lp_index; 44 u8 vtl; 45 union { 46 u32 isolation_config_a; 47 struct { 48 u32 paravisor_present : 1; 49 u32 reserved_a1 : 31; 50 }; 51 }; 52 union { 53 u32 isolation_config_b; 54 struct { 55 u32 cvm_type : 4; 56 u32 reserved_b1 : 1; 57 u32 shared_gpa_boundary_active : 1; 58 u32 shared_gpa_boundary_bits : 6; 59 u32 reserved_b2 : 20; 60 }; 61 }; 62 u64 shared_gpa_boundary; 63 }; 64 extern struct ms_hyperv_info ms_hyperv; 65 extern bool hv_nested; 66 extern u64 hv_current_partition_id; 67 extern enum hv_partition_type hv_curr_partition_type; 68 69 extern void * __percpu *hyperv_pcpu_input_arg; 70 extern void * __percpu *hyperv_pcpu_output_arg; 71 72 extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr); 73 extern u64 hv_do_fast_hypercall8(u16 control, u64 input8); 74 bool hv_isolation_type_snp(void); 75 bool hv_isolation_type_tdx(void); 76 77 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node) 78 { 79 struct hv_proximity_domain_info pxm_info = {}; 80 81 if (node != NUMA_NO_NODE) { 82 pxm_info.domain_id = node_to_pxm(node); 83 pxm_info.flags.proximity_info_valid = 1; 84 pxm_info.flags.proximity_preferred = 1; 85 } 86 87 return pxm_info; 88 } 89 90 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */ 91 static inline int hv_result(u64 status) 92 { 93 return status & HV_HYPERCALL_RESULT_MASK; 94 } 95 96 static inline bool hv_result_success(u64 status) 97 { 98 return hv_result(status) == HV_STATUS_SUCCESS; 99 } 100 101 static inline unsigned int hv_repcomp(u64 status) 102 { 103 /* Bits [43:32] of status have 'Reps completed' data. */ 104 return (status & HV_HYPERCALL_REP_COMP_MASK) >> 105 HV_HYPERCALL_REP_COMP_OFFSET; 106 } 107 108 /* 109 * Rep hypercalls. Callers of this functions are supposed to ensure that 110 * rep_count and varhead_size comply with Hyper-V hypercall definition. 111 */ 112 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, 113 void *input, void *output) 114 { 115 u64 control = code; 116 u64 status; 117 u16 rep_comp; 118 119 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; 120 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; 121 122 do { 123 status = hv_do_hypercall(control, input, output); 124 if (!hv_result_success(status)) 125 return status; 126 127 rep_comp = hv_repcomp(status); 128 129 control &= ~HV_HYPERCALL_REP_START_MASK; 130 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; 131 132 touch_nmi_watchdog(); 133 } while (rep_comp < rep_count); 134 135 return status; 136 } 137 138 /* Generate the guest OS identifier as described in the Hyper-V TLFS */ 139 static inline u64 hv_generate_guest_id(u64 kernel_version) 140 { 141 u64 guest_id; 142 143 guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48); 144 guest_id |= (kernel_version << 16); 145 146 return guest_id; 147 } 148 149 /* Free the message slot and signal end-of-message if required */ 150 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) 151 { 152 /* 153 * On crash we're reading some other CPU's message page and we need 154 * to be careful: this other CPU may already had cleared the header 155 * and the host may already had delivered some other message there. 156 * In case we blindly write msg->header.message_type we're going 157 * to lose it. We can still lose a message of the same type but 158 * we count on the fact that there can only be one 159 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages 160 * on crash. 161 */ 162 if (cmpxchg(&msg->header.message_type, old_msg_type, 163 HVMSG_NONE) != old_msg_type) 164 return; 165 166 /* 167 * The cmxchg() above does an implicit memory barrier to 168 * ensure the write to MessageType (ie set to 169 * HVMSG_NONE) happens before we read the 170 * MessagePending and EOMing. Otherwise, the EOMing 171 * will not deliver any more messages since there is 172 * no empty slot 173 */ 174 if (msg->header.message_flags.msg_pending) { 175 /* 176 * This will cause message queue rescan to 177 * possibly deliver another msg from the 178 * hypervisor 179 */ 180 hv_set_msr(HV_MSR_EOM, 0); 181 } 182 } 183 184 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info); 185 186 void hv_setup_vmbus_handler(void (*handler)(void)); 187 void hv_remove_vmbus_handler(void); 188 void hv_setup_stimer0_handler(void (*handler)(void)); 189 void hv_remove_stimer0_handler(void); 190 191 void hv_setup_kexec_handler(void (*handler)(void)); 192 void hv_remove_kexec_handler(void); 193 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); 194 void hv_remove_crash_handler(void); 195 196 extern int vmbus_interrupt; 197 extern int vmbus_irq; 198 199 #if IS_ENABLED(CONFIG_HYPERV) 200 /* 201 * Hypervisor's notion of virtual processor ID is different from 202 * Linux' notion of CPU ID. This information can only be retrieved 203 * in the context of the calling CPU. Setup a map for easy access 204 * to this information. 205 */ 206 extern u32 *hv_vp_index; 207 extern u32 hv_max_vp_index; 208 209 extern u64 (*hv_read_reference_counter)(void); 210 211 /* Sentinel value for an uninitialized entry in hv_vp_index array */ 212 #define VP_INVAL U32_MAX 213 214 int __init hv_common_init(void); 215 void __init hv_get_partition_id(void); 216 void __init hv_common_free(void); 217 void __init ms_hyperv_late_init(void); 218 int hv_common_cpu_init(unsigned int cpu); 219 int hv_common_cpu_die(unsigned int cpu); 220 void hv_identify_partition_type(void); 221 222 void *hv_alloc_hyperv_page(void); 223 void *hv_alloc_hyperv_zeroed_page(void); 224 void hv_free_hyperv_page(void *addr); 225 226 /** 227 * hv_cpu_number_to_vp_number() - Map CPU to VP. 228 * @cpu_number: CPU number in Linux terms 229 * 230 * This function returns the mapping between the Linux processor 231 * number and the hypervisor's virtual processor number, useful 232 * in making hypercalls and such that talk about specific 233 * processors. 234 * 235 * Return: Virtual processor number in Hyper-V terms 236 */ 237 static inline int hv_cpu_number_to_vp_number(int cpu_number) 238 { 239 return hv_vp_index[cpu_number]; 240 } 241 242 static inline int __cpumask_to_vpset(struct hv_vpset *vpset, 243 const struct cpumask *cpus, 244 bool (*func)(int cpu)) 245 { 246 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; 247 int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK; 248 249 /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */ 250 if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS) 251 return 0; 252 253 /* 254 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex 255 * structs are not cleared between calls, we risk flushing unneeded 256 * vCPUs otherwise. 257 */ 258 for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++) 259 vpset->bank_contents[vcpu_bank] = 0; 260 261 /* 262 * Some banks may end up being empty but this is acceptable. 263 */ 264 for_each_cpu(cpu, cpus) { 265 if (func && func(cpu)) 266 continue; 267 vcpu = hv_cpu_number_to_vp_number(cpu); 268 if (vcpu == VP_INVAL) 269 return -1; 270 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK; 271 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK; 272 __set_bit(vcpu_offset, (unsigned long *) 273 &vpset->bank_contents[vcpu_bank]); 274 if (vcpu_bank >= nr_bank) 275 nr_bank = vcpu_bank + 1; 276 } 277 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); 278 return nr_bank; 279 } 280 281 /* 282 * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant, 283 * 'func' is called for each CPU present in cpumask. If 'func' returns 284 * true, that CPU is skipped -- i.e., that CPU from cpumask is *not* 285 * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are 286 * skipped. 287 */ 288 static inline int cpumask_to_vpset(struct hv_vpset *vpset, 289 const struct cpumask *cpus) 290 { 291 return __cpumask_to_vpset(vpset, cpus, NULL); 292 } 293 294 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset, 295 const struct cpumask *cpus, 296 bool (*func)(int cpu)) 297 { 298 return __cpumask_to_vpset(vpset, cpus, func); 299 } 300 301 int hv_result_to_errno(u64 status); 302 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die); 303 bool hv_is_hyperv_initialized(void); 304 bool hv_is_hibernation_supported(void); 305 enum hv_isolation_type hv_get_isolation_type(void); 306 bool hv_is_isolation_supported(void); 307 bool hv_isolation_type_snp(void); 308 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size); 309 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2); 310 void hyperv_cleanup(void); 311 bool hv_query_ext_cap(u64 cap_query); 312 void hv_setup_dma_ops(struct device *dev, bool coherent); 313 #else /* CONFIG_HYPERV */ 314 static inline void hv_identify_partition_type(void) {} 315 static inline bool hv_is_hyperv_initialized(void) { return false; } 316 static inline bool hv_is_hibernation_supported(void) { return false; } 317 static inline void hyperv_cleanup(void) {} 318 static inline void ms_hyperv_late_init(void) {} 319 static inline bool hv_is_isolation_supported(void) { return false; } 320 static inline enum hv_isolation_type hv_get_isolation_type(void) 321 { 322 return HV_ISOLATION_TYPE_NONE; 323 } 324 #endif /* CONFIG_HYPERV */ 325 326 #if IS_ENABLED(CONFIG_MSHV_ROOT) 327 static inline bool hv_root_partition(void) 328 { 329 return hv_curr_partition_type == HV_PARTITION_TYPE_ROOT; 330 } 331 int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages); 332 int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id); 333 int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags); 334 335 #else /* CONFIG_MSHV_ROOT */ 336 static inline bool hv_root_partition(void) { return false; } 337 static inline int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages) 338 { 339 return -EOPNOTSUPP; 340 } 341 static inline int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id) 342 { 343 return -EOPNOTSUPP; 344 } 345 static inline int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags) 346 { 347 return -EOPNOTSUPP; 348 } 349 #endif /* CONFIG_MSHV_ROOT */ 350 351 #endif 352